1
|
Gessler TB, Wu Z, Valenzuela N. Transcriptomic thermal plasticity underlying gonadal development in a turtle with ZZ/ZW sex chromosomes despite canalized genotypic sex determination. Ecol Evol 2023; 13:e9854. [PMID: 36844670 PMCID: PMC9951354 DOI: 10.1002/ece3.9854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/28/2023] Open
Abstract
Understanding genome-wide responses to environmental conditions during embryogenesis is essential for discerning the evolution of developmental plasticity and canalization, two processes generating phenotypic variation targeted by natural selection. Here, we present the first comparative trajectory analysis of matched transcriptomic developmental time series from two reptiles incubated under identical conditions, a turtle with a ZZ/ZW system of genotypic sex determination (GSD), Apalone spinifera, and a turtle with temperature-dependent sex determination (TSD), Chrysemys picta. Results from our genome-wide, hypervariate gene expression analysis of sexed embryos across five developmental stages revealed that substantial transcriptional plasticity in the developing gonads can persist for >145 Myr, long after the canalization of sex determination via the evolution of sex chromosomes, while some gene-specific thermal sensitivity drifts or evolves anew. Such standing thermosensitivity represents an underappreciated evolutionary potential harbored by GSD species that may be co-opted during future adaptive shifts in developmental programing, such as a GSD to TSD reversal, if favored by ecological conditions. Additionally, we identified novel candidate regulators of vertebrate sexual development in GSD reptiles, including sex-determining candidate genes in a ZZ/ZW turtle.
Collapse
Affiliation(s)
- Thea B. Gessler
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA,Genetics and Genomics ProgramIowa State UniversityAmesIowaUSA
| | - Zhiqiang Wu
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA,Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
2
|
Elkhenany HA, Szojka ARA, Mulet-Sierra A, Liang Y, Kunze M, Lan X, Sommerfeldt M, Jomha NM, Adesida AB. Bone Marrow Mesenchymal Stem Cell-Derived Tissues are Mechanically Superior to Meniscus Cells. Tissue Eng Part A 2020; 27:914-928. [PMID: 32940137 DOI: 10.1089/ten.tea.2020.0183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to form the mechanically responsive matrices of joint tissues, including the menisci of the knee joint. The purpose of this study is to assess BMSC's potential to engineer meniscus-like tissue relative to meniscus fibrochondrocytes (MFCs). MFCs were isolated from castoffs of partial meniscectomy from nonosteoarthritic knees. BMSCs were developed from bone marrow aspirates of the iliac crest. All cells were of human origin. Cells were cultured in type I collagen scaffolds under normoxia (21% O2) for 2 weeks followed by hypoxia (3% O2) for 3 weeks. The structural and functional assessment of the generated meniscus constructs were based on glycosaminoglycan (GAG) content, histological appearance, gene expression, and mechanical properties. The tissues formed by both cell types were histologically positive for Safranin O stain and appeared more intense in the BMSC constructs. This observation was confirmed by a 2.7-fold higher GAG content. However, there was no significant difference in collagen I (COL1A2) expression in BMSC- and MFC-based constructs (p = 0.17). The expression of collagen II (COL2A1) and aggrecan (ACAN) were significantly higher in BMSCs than MFC (p ≤ 0.05). Also, the gene expression of the hypertrophic marker collagen X (COL10A1) was 199-fold higher in BMSCs than MFC (p < 0.001). Moreover, relaxation moduli were significantly higher in BMSC-based constructs at 10-20% strain step than MFC-based constructs. BMSC-based constructs expressed higher COL2A1, ACAN, COL10A1, contained higher GAG content, and exhibited higher relaxation moduli at 10-20% strain than MFC-based construct. Impact statement Cell-based tissue engineering (TE) has the potential to produce functional tissue replacements for irreparably damaged knee meniscus. But the source of cells for the fabrication of the tissue replacements is currently unknown and of research interest in orthopedic TE. In this study, we fabricated tissue-engineered constructs using type I collagen scaffolds and two candidate cell sources in meniscus TE. We compared the mechanical properties of the tissues formed from human meniscus fibrochondrocytes and bone marrow-derived mesenchymal stem cells (BMSCs). Our data show that the tissues engineered from the BMSC are mechanically superior in relaxation modulus.
Collapse
Affiliation(s)
- Hoda A Elkhenany
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Alexander R A Szojka
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Aillette Mulet-Sierra
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Yan Liang
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Melanie Kunze
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Xiaoyi Lan
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Mark Sommerfeldt
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Glen Sather Sports Medicine Clinic, University of Alberta, Edmonton, Canada
| | - Nadr M Jomha
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Neural Crest-Derived Chondrocytes Isolation for Tissue Engineering in Regenerative Medicine. Cells 2020. [PMID: 32295228 DOI: 10.3390/cells9040962.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chondrocyte transplantation has been successfully tested and proposed as a clinical procedure aiming to repair articular cartilage defects. However, the isolation of chondrocytes and the optimization of the enzymatic digestion process, as well as their successful in vitro expansion, remain the main challenges in cartilage tissue engineering. In order to address these issues, we investigated the performance of recombinant collagenases in tissue dissociation assays with the aim of isolating chondrocytes from bovine nasal cartilage in order to establish the optimal enzyme blend to ensure the best outcomes of the overall procedure. We show, for the first time, that collagenase H activity alone is required for effective cartilage digestion, resulting in an improvement in the yield of viable cells. The extracted chondrocytes proved able to grow and activate differentiation/dedifferentiation programs, as assessed by morphological and gene expression analyses.
Collapse
|
4
|
Salamone M, Rigogliuso S, Nicosia A, Tagliavia M, Campora S, Cinà P, Bruno C, Ghersi G. Neural Crest-Derived Chondrocytes Isolation for Tissue Engineering in Regenerative Medicine. Cells 2020; 9:cells9040962. [PMID: 32295228 PMCID: PMC7226976 DOI: 10.3390/cells9040962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023] Open
Abstract
Chondrocyte transplantation has been successfully tested and proposed as a clinical procedure aiming to repair articular cartilage defects. However, the isolation of chondrocytes and the optimization of the enzymatic digestion process, as well as their successful in vitro expansion, remain the main challenges in cartilage tissue engineering. In order to address these issues, we investigated the performance of recombinant collagenases in tissue dissociation assays with the aim of isolating chondrocytes from bovine nasal cartilage in order to establish the optimal enzyme blend to ensure the best outcomes of the overall procedure. We show, for the first time, that collagenase H activity alone is required for effective cartilage digestion, resulting in an improvement in the yield of viable cells. The extracted chondrocytes proved able to grow and activate differentiation/dedifferentiation programs, as assessed by morphological and gene expression analyses.
Collapse
Affiliation(s)
- Monica Salamone
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
| | - Salvatrice Rigogliuso
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.N.); (M.T.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies [STEBICEF], University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Marcello Tagliavia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.N.); (M.T.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies [STEBICEF], University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies [STEBICEF], University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Paolo Cinà
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
| | - Carmelo Bruno
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
| | - Giulio Ghersi
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies [STEBICEF], University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
5
|
Telias M. Molecular Mechanisms of Synaptic Dysregulation in Fragile X Syndrome and Autism Spectrum Disorders. Front Mol Neurosci 2019; 12:51. [PMID: 30899214 PMCID: PMC6417395 DOI: 10.3389/fnmol.2019.00051] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of monogenic hereditary cognitive impairment. FXS patient exhibit a high comorbidity rate with autism spectrum disorders (ASDs). This makes FXS a model disease for understanding how synaptic dysregulation alters neuronal excitability, learning and memory, social behavior, and more. Since 1991, with the discovery of fragile X mental retardation 1 (FMR1) as the sole gene that is mutated in FXS, thousands of studies into the function of the gene and its encoded protein FMR1 protein (FMRP), have been conducted, yielding important information regarding the pathophysiology of the disease, as well as insight into basic synaptic mechanisms that control neuronal networking and circuitry. Among the most important, are molecular mechanisms directly involved in plasticity, including glutamate and γ-aminobutyric acid (GABA) receptors, which can control synaptic transmission and signal transduction, including short- and long-term plasticity. More recently, several novel mechanisms involving growth factors, enzymatic cascades and transcription factors (TFs), have been proposed to have the potential of explaining some of the synaptic dysregulation in FXS. In this review article, I summarize the main mechanisms proposed to underlie synaptic disruption in FXS and ASDs. I focus on studies conducted on the Fmr1 knock-out (KO) mouse model and on FXS-human pluripotent stem cells (hPSCs), emphasizing the differences and even contradictions between mouse and human, whenever possible. As FXS and ASDs are both neurodevelopmental disorders that follow a specific time-course of disease progression, I highlight those studies focusing on the differential developmental regulation of synaptic abnormalities in these diseases.
Collapse
Affiliation(s)
- Michael Telias
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
6
|
Murine and Chinese cobra venom‑derived nerve growth factor stimulate chondrogenic differentiation of BMSCs in vitro: A comparative study. Mol Med Rep 2018; 18:3341-3349. [PMID: 30066875 PMCID: PMC6102669 DOI: 10.3892/mmr.2018.9307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/22/2018] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has been commonly used in cartilage reconstruction, due to its self-renewing ability and multi-differentiation potential. Nerve growth factor (NGF) from cobra venom has been reported to regulate chondrogenesis of bone-derived MSCs (BMSCs) and chondrocyte metabolism. Therefore, the present study aimed to determine whether other sources of NGF behave in the same manner as NGF from natural venom. The present study compared the effects of NGF from two sources, the commercially purchased recombinant murine β-NGF (mNGF) and cobra venom-derived NGF (cvNGF), on chondrogenesis of BMSCs by performing hematoxylin and eosin and fluorescein diacetate/propidium iodide staining, DNA and glycosaminoglycan quantization and reverse transcription-quantitative polymerase chain reaction to investigate cell morphology, viability, proliferation, glycosaminoglycan synthesis and cartilage-specific gene expression. The results demonstrated that cvNGF significantly accelerated cell proliferation and upregulated the expression of cartilage-specific genes, including aggrecan, SRY-box 9 and collagen type II α1 chain. Conversely, cvNGF reduced the expression levels of collagen type I α1 chain (a fibrocartilage marker), runt-related transcription factor 2 and enolase 2 compared with in the mNGF and control groups. In addition, Chinese cobra venom, which is the main resource of cvNGF, is abundant and inexpensive, thus greatly decreasing the cost. In conclusion, the present study demonstrated that cvNGF may be considered a potential growth factor for inducing chondrogenic differentiation of BMSCs.
Collapse
|
7
|
Miao Z, Lu Z, Wu H, Liu H, Li M, Lei D, Zheng L, Zhao J. Collagen, agarose, alginate, and Matrigel hydrogels as cell substrates for culture of chondrocytes in vitro: A comparative study. J Cell Biochem 2018; 119:7924-7933. [PMID: 28941304 DOI: 10.1002/jcb.26411] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/20/2017] [Indexed: 12/28/2022]
Abstract
Autologous chondrocyte implantation (ACI) has emerged as a new approach to cartilage repair through the use of harvested chondrocytes. But the expansion of the chondrocytes from the donor tissue in vitro is restricted by limited cell numbers and dedifferentiation of chondrocytes. In this study, we used four types of hydrogels including agarose, alginate, Matrigel, and collagen type I hydrogels to serve as cell substrates and investigated the effect on proliferation and phenotype maintenance of chondrocytes. As a substrate for monolayer culture, collagen facilitated cell expansion and effectively suppressed the dedifferentiation of chondrocytes, as evidenced by fluorescein diacetate/propidium iodide (FDA/PI), hematoxylin-eosin staining (HE), Safranin O, immunofluorescenceassay, biochemistry analysis, and quantitative real-time polymerase chain reaction (qRT-PCR). Compared with that in agarose gels, alginate, and Matrigel, collagen accelerated cell proliferation and enhanced the expression of cartilage specific genes such as ACAN, SOX9, and COLII more markedly. Furthermore, significantly lower expression of COL I (an indicator of dedifferentiation) and COL X (the chondrocyte hypertrophy marker) was present in collagen group than in other groups. This indicated that collagen substrate can better support chondrocyte growth and maintain cell phenotype, due to that it might serve as a cartilage-like ECM to provide adhesive site for chondrocytes. In summary, collagen hydrogel is a promising cell substrate for chondrocytes culture for ACI.
Collapse
Affiliation(s)
- Zhikang Miao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huayu Wu
- Department of Cell Biology & Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Liu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Muyan Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danqing Lei
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Dreval K, de Conti A, Furuya S, Beland FA, Rusyn I, Pogribny IP. miR-1247 blocks SOX9–mediated regeneration in alcohol- and fibrosis-associated acute kidney injury in mice. Toxicology 2017; 384:40-49. [DOI: 10.1016/j.tox.2017.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
|
9
|
Tan J, Lu Z, Miao Z, Lei D, Zheng L, Zhao J. Effect of NGF From Venom of Chinese Cobra (Naja Atra)on Chondrocytes Proliferation and Metabolism In Vitro. J Cell Biochem 2017; 118:4308-4316. [DOI: 10.1002/jcb.26083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/19/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jiachang Tan
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Key Laboratory of Regenerative MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- The Medical and Scientific Research CenterGuangxi Medical UniversityNanning530021China
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Key Laboratory of Regenerative MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| | - Zhikang Miao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Key Laboratory of Regenerative MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| | - Danqing Lei
- Department of Orthopaedics Trauma and Hand SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Key Laboratory of Regenerative MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Key Laboratory of Regenerative MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- The Medical and Scientific Research CenterGuangxi Medical UniversityNanning530021China
| |
Collapse
|
10
|
Carvajal N, Martínez-García M, Chagoyen M, Morcillo N, Pino A, Lorda I, Trujillo-Tiebas MJ. Clinical, genetics and bioinformatics characterization of a campomelic dysplasia case report. Gene 2015; 577:289-92. [PMID: 26631621 DOI: 10.1016/j.gene.2015.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/20/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023]
Abstract
Campomelic dysplasia is a rare disorder characterized by skeletal and extraskeletal defects. Up to two-thirds of affected XY individuals have a gradation of genital defects or may develop as phenotypic females. This syndrome is caused by alterations in SRY-related HMG-Box Gene 9 (SOX9), a transcription factor essential in both chondrocyte differentiation and sex determination. We report a 27-week fetus with ambiguous genitalia and upper and lower extremities bone malformations. Gross photographs, radiologic and pathological studies led the clinical diagnosis to campomelic dysplasia. A new frameshift mutation (p.Pro415Serfs*163) was identified in the SOX9 gene by genetic analysis. This mutation not only alters almost the entire sequence of the C-terminal transactivation (TA) domain of SOX9, but also enlarges it. This altered sequence does not resemble any other existing sequence. Since TA domain is entirely affected, SOX9 could not establish its normal function. The comparison between p.Pro415Serfs*163 and other frameshift mutations that enlarges SOX9 showed the same nucleotides added. This new sequence is not conserved either. We speculate that the fact of adding a sequence downstream of the C-terminal domain alters SOX9 and leads to campomelic dysplasia. The clinical information is essential not only to achieve a correct diagnosis in fetuses with pathologic ultrasound findings, but also to offer a proper genetic counseling.
Collapse
Affiliation(s)
- Nerea Carvajal
- Genetics Department, Health Research Institute, Fundación Jiménez Díaz, UAM (IIS-FJD), UAM, Madrid, Spain; Department of Pathological Anatomy, Fundación Jiménez Díaz, Madrid, Spain
| | - Mónica Martínez-García
- Genetics Department, Health Research Institute, Fundación Jiménez Díaz, UAM (IIS-FJD), UAM, Madrid, Spain; Center of Biomedical Researches of Rare Diseases (CIBER), ISCIII, Madrid, Spain
| | - Monica Chagoyen
- Bioinformatics Department, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Nieves Morcillo
- Gynecological Department, Santa Cristina Hospital, Albacete, Spain
| | - Ana Pino
- Department of Pathological Anatomy, Fundación Jiménez Díaz, Madrid, Spain
| | - I Lorda
- Genetics Department, Health Research Institute, Fundación Jiménez Díaz, UAM (IIS-FJD), UAM, Madrid, Spain
| | - María José Trujillo-Tiebas
- Genetics Department, Health Research Institute, Fundación Jiménez Díaz, UAM (IIS-FJD), UAM, Madrid, Spain; Center of Biomedical Researches of Rare Diseases (CIBER), ISCIII, Madrid, Spain.
| |
Collapse
|
11
|
Effect of Longan polysaccharides on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro. Med Biol Eng Comput 2015; 54:607-17. [DOI: 10.1007/s11517-015-1352-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 07/07/2015] [Indexed: 01/24/2023]
|
12
|
Wei S, Lu Z, Zou Y, Lin X, Lin C, Liu B, Zheng L, Zhao J. A Novel Synthesized Sulfonamido-Based Gallate-JEZ-C as Potential Therapeutic Agents for Osteoarthritis. PLoS One 2015; 10:e0125930. [PMID: 26107568 PMCID: PMC4480854 DOI: 10.1371/journal.pone.0125930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/25/2015] [Indexed: 11/24/2022] Open
Abstract
Gallic acid (GA) and its derivatives are anti-inflammatory agents reported to have an effect on osteoarthritis (OA). However, GA has much weaker anti-oxidant effects and inferior bioactivity compared with its derivatives. We modified GA with the introduction of sulfonamide to synthesize a novel compound named JEZ-C and analyzed its anti-arthritis and chondro-protective effects. Comparison of JEZ-C with its sources i.e. GA and Sulfamethoxazole (SMZ) was also performed. Results showed that JEZ-C could effectively inhibit the IL-1-mediated induction of MMP-1 and MMP-13 and could induce the expression of TIMP-1, which demonstrated its ability to reduce the progression of OA. JEZ-C can also exert chondro-protective effects by promoting cell proliferation and maintaining the phenotype of articular chondrocytes, as evidenced by improved cell growth, enhanced synthesis of cartilage specific markers such as aggrecan, collagen II and Sox9. Meanwhile, expression of the collagen I gene was effectively downregulated, revealing the inhibition of chondrocytes dedifferentiation by JEZ-C. Hypertrophy that may lead to chondrocyte ossification was also undetectable in JEZ-C groups. The recommended dose of JEZ-C ranges from 6.25×10-7 μg/ml to 6.25×10-5 μg/ml, among which the most profound response was observed with 6.25×10-6 μg/ml. In contrast, its source products of GA and SMZ have a weak effect not only in the inhibition of OA but also in the bioactivity of chondrocytes, which indicated the significance of this modification. This study revealed JEZ-C as a promising novel agent in the treatment of chondral and osteochondral lesions.
Collapse
Affiliation(s)
- Shixiu Wei
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
| | - Zhenhui Lu
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Buming Liu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Li Zheng
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- * E-mail:
| | - Jinmin Zhao
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
13
|
Luo L, Wei Q, Liu L, Lin X, Lin C, Zheng LI, Zhao J. Protocatechuic acid benefits proliferation and phenotypic maintenance of rabbit articular chondrocytes: An in vitro study. Exp Ther Med 2015; 9:1865-1870. [PMID: 26136906 DOI: 10.3892/etm.2015.2326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022] Open
Abstract
Numerous antioxidants exhibit antiarthritic effects due to their inhibitory effect on inflammatory factors. Certain antioxidants, such as protocatechuic acid (PCA) and its analogs, have been reported to be effective in the treatment of arthritis. However, the effect of PCA on chondro-protection may be alleviated due to the induction of apoptosis, as has been demonstrated in stomatocytes. To clearly determine the effect of PCA on the biological and cellular metabolism of rabbit articular chondrocytes in vitro, examinations of cytotoxicity, proliferation and morphology were performed, in addition to analyses of glycosaminoglycan (GAG) synthesis and the expression of cartilage-specific genes. The results revealed that PCA effectively promoted chondrocyte growth, the synthesis of the extracellular matrix and the mRNA expression of aggrecan, collagen II and Sox9, while downregulating the expression of the collagen I gene, a marker of chondrocyte dedifferentiation. In addition, hypertrophy, which may result in chondrocyte ossification, was not detected in the groups. Among the doses (range, 0.05-0.3 mmol/l) of PCA that promoted the proliferation of chondrocytes, a concentration of 0.125 mmol/l produced the optimum performance. The results indicated that PCA, particularly at a dose of 0.125 mmol/l, accelerated the proliferation of rabbit articular chondrocytes in vitro and maintained their phenotype. This study may provide a basis for further research concerning the treatment of cartilage defects.
Collapse
Affiliation(s)
- Like Luo
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qingjun Wei
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lei Liu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China ; Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, Guangxi 530022, P.R. China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - L I Zheng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; The Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
14
|
Andrographolide enhances proliferation and prevents dedifferentiation of rabbit articular chondrocytes: an in vitro study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:984850. [PMID: 25802548 PMCID: PMC4353662 DOI: 10.1155/2015/984850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022]
Abstract
As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO) was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P < 0.05). DNA content and glycosaminoglycan (GAG) /DNA were, respectively, improved in ANDRO groups comparing to the control (P < 0.05). ANDRO could promote expression of aggrecan, collagen II, and Sox9 genes while downregulating expression of collagen I gene (P < 0.05). Furthermore, hypertrophy that may result in chondrocyte ossification could not be detected in all groups (P > 0.05). The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis.
Collapse
|
15
|
Liu Q, Lu Z, Wu H, Zheng L. Chondroprotective Effects of Taurine in Primary Cultures of Human Articular Chondrocytes. TOHOKU J EXP MED 2015; 235:201-13. [DOI: 10.1620/tjem.235.201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Qin Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University
- The Medical and Scientific Research Center, Guangxi Medical University
| | - Zhenhui Lu
- The Medical and Scientific Research Center, Guangxi Medical University
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Premedical Sciences, Guangxi Medical University
| | - Li Zheng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University
- The Medical and Scientific Research Center, Guangxi Medical University
| |
Collapse
|
16
|
Huang H, Liu Q, Liu L, Wu H, Zheng L. Effect of epigallocatechin-3-gallate on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro.. Exp Ther Med 2014; 9:213-218. [PMID: 25452805 PMCID: PMC4247298 DOI: 10.3892/etm.2014.2057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022] Open
Abstract
In autologous chondrocyte implantation (ACI) to restore defective cartilage, limited cell numbers and dedifferentiation of chondrocytes are the major difficulties. An alternative is the use of growth factors, but their high cost and potential for tumorigenesis are major obstacles. To ensure successful ACI therapy, it is important to find an effective substitute pro-chondrogenic agent. Epigallocatechin-3-gallate (EGCG), one of the green tea catechins, has been widely investigated in studies of interleukin-1β-induced chondrocytes. In the present study, the effects of EGCG on rabbit articular chondrocytes were investigated through the examination of cell proliferation, morphology, glycosaminoglycan synthesis and cartilage-specific gene expression. The results showed that EGCG could effectively promote chondrocyte growth and enhance the secretion and synthesis of the cartilage extracellular matrix by upregulating expression levels of aggrecan, collagen II and Sox9 genes. Expression of the collagen I gene was downregulated, which showed that EGCG effectively inhibited the dedifferentiation of chondrocytes. Hypertrophy, which may lead to chondrocyte ossification, was also undetectable in the EGCG groups. In conclusion, the recommended dose of EGCG was found to be in the range of 5 to 20 μM, with the most marked response observed with 10 μM. The present study may provide a basis for the development of a novel agent as a substitute for growth factors in the treatment of articular cartilage defects.
Collapse
Affiliation(s)
- Haojia Huang
- Graduate School, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qin Liu
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lei Liu
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Zheng
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
17
|
Effect of a novel synthesized sulfonamido-based gallate-SZNTC on chondrocytes metabolism in vitro. Chem Biol Interact 2014; 221:127-38. [DOI: 10.1016/j.cbi.2014.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/20/2022]
|
18
|
Effect of JEZTC, a synthetic compound, on proliferation and phenotype maintenance of rabbit articular chondrocytes in vitro. In Vitro Cell Dev Biol Anim 2014; 50:982-91. [DOI: 10.1007/s11626-014-9795-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022]
|
19
|
Faucette AN, Maher VA, Gutierrez MA, Jucker JM, Yates DC, Welsh TH, Amstalden M, Newton GR, Nuti LC, Forrest DW, Ing NH. Temporal changes in histomorphology and gene expression in goat testes during postnatal development. J Anim Sci 2014; 92:4440-8. [PMID: 25085396 DOI: 10.2527/jas.2014-7903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Testicular cell proliferation and differentiation is critical for development of normal testicular function and male reproductive maturity. The objective of the current study was to evaluate histoarchitecture and expression of genes marking specific cells and important functions as well as testosterone production of the developing goat testes. Testes were harvested from Alpine bucks at 0, 2, 4, 6, and 8 mo of age (n = 5/age group). Paired testes weight increased from 2 to 4 (P < 0.001) and 4 to 6 mo (P < 0.01). The greatest increases in seminiferous tubule and lumen diameters and height of the seminiferous epithelium occurred between 2 and 4 mo (P < 0.001). Genes expressed in haploid germ cells (Protamine1 [PRM1], Outer Dense Fiber protein 2 [ODF2], and Stimulated by Retinoic Acid gene 8 [STRA8]) increased dramatically at the same time (P < 0.001). Expression of other genes decreased (P < 0.05) during testicular maturation. These genes included P450 side chain cleavage (CYP11A1), Sex determining region Y-box 9 (SOX9), Insulin-like Growth Factor 1 Receptor (IGF1R), and Heat Shock Protein A8 (HSPA8). The Glutathione S-Transferase A3 (GSTA3) gene, whose product was recently recognized as a primary enzyme involved in isomerization of androstenedione in man and livestock species including goats, sheep, cattle, pigs, and horses, uniquely peaked in expression at 2 mo (P < 0.05). Follicle-Stimulating Hormone Receptor (FSHR) mRNA abundance tended to steadily decrease with age (P = 0.1), while Luteinizing Hormone Receptor (LHCGR) mRNA abundance in testes was not significantly different across the ages. Testosterone content per gram of testicular tissue varied among individuals. However, testosterone content per testis tended to increase at 6 mo (P = 0.06). In conclusion, major changes in cellular structure and gene expression in goat testes were observed at 4 mo of age, when spermatogenesis was initiated. Male goats mature rapidly and represent a good model species for the study of agents that enhance or impair development of testicular functions.
Collapse
Affiliation(s)
- A N Faucette
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - V A Maher
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - M A Gutierrez
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - J M Jucker
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - D C Yates
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - T H Welsh
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - M Amstalden
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - G R Newton
- Cooperative Agriculture Research Center, Prairie View A&M University, Prairie View, TX 77446
| | - L C Nuti
- Cooperative Agriculture Research Center, Prairie View A&M University, Prairie View, TX 77446
| | - D W Forrest
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - N H Ing
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| |
Collapse
|
20
|
Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling. Proc Natl Acad Sci U S A 2013; 110:2882-7. [PMID: 23382206 DOI: 10.1073/pnas.1211747110] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Coordination of neural crest cell (NCC) induction and delamination is orchestrated by several transcription factors. Among these, Sry-related HMG box-9 (Sox9) and Snail2 have been implicated in both the induction of NCC identity and, together with phoshorylation, NCC delamination. How phosphorylation effects this function has not been clear. Here we show, in the developing chick neural tube, that phosphorylation of Sox9 on S64 and S181 facilitates its SUMOylation, and the phosphorylated forms of Sox9 are essential for trunk neural crest delamination. Both phosphorylation and to a lesser extent SUMOylation, of Sox9 are required to cooperate with Snail2 to promote delamination. Moreover, bone morphogenetic protein and canonical Wnt signaling induce phosphorylation of Sox9, thereby connecting extracellular signals with the delamination of NCCs. Together the data suggest a model in which extracellular signals initiate phosphorylation of Sox9 and its cooperation with Snail2 to induce NCC delamination.
Collapse
|
21
|
Malloy PJ, Feldman D. The role of vitamin D receptor mutations in the development of alopecia. Mol Cell Endocrinol 2011; 347:90-6. [PMID: 21693169 PMCID: PMC3196847 DOI: 10.1016/j.mce.2011.05.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 12/22/2022]
Abstract
Hereditary Vitamin D Resistant Rickets (HVDRR) is a rare disease caused by mutations in the vitamin D receptor (VDR). The consequence of defective VDR is the inability to absorb calcium normally in the intestine. This leads to a constellation of metabolic abnormalities including hypocalcemia, secondary hyperparathyroidism and hypophosphatemia that cause the development of rickets at an early age in affected children. An interesting additional abnormality is the presence of alopecia in some children depending on the nature of the VDR mutation. The data indicate that VDR mutations that cause defects in DNA binding, RXR heterodimerization or absence of the VDR cause alopecia while mutations that alter VDR affinity for 1,25(OH)(2)D(3) or disrupt coactivator interactions do not cause alopecia. The cumulative findings indicate that hair follicle cycling is dependent on unliganded actions of the VDR. Further research is ongoing to elucidate the role of the VDR in hair growth and differentiation.
Collapse
Affiliation(s)
- Peter J Malloy
- Stanford University School of Medicine, Stanford, CA 94305-5103, USA
| | | |
Collapse
|
22
|
Goldring MB, Otero M, Plumb DA, Dragomir C, Favero M, El Hachem K, Hashimoto K, Roach HI, Olivotto E, Borzì RM, Marcu KB, Marcu KB. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater 2011; 21:202-20. [PMID: 21351054 PMCID: PMC3937960 DOI: 10.22203/ecm.v021a16] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human cartilage is a complex tissue of matrix proteins that vary in amount and orientation from superficial to deep layers and from loaded to unloaded zones. A major challenge to efforts to repair cartilage by stem cell-based and other tissue engineering strategies is the inability of the resident chondrocytes to lay down new matrix with the same structural and resilient properties that it had upon its original formation. This is particularly true of the collagen network, which is susceptible to cleavage once proteoglycans are depleted. Thus, a thorough understanding of the similarities and particularly the marked differences in mechanisms of cartilage remodeling during development, osteoarthritis, and aging may lead to more effective strategies for preventing cartilage damage and promoting repair. To identify and characterize effectors or regulators of cartilage remodeling in these processes, we are using culture models of primary human and mouse chondrocytes and cell lines and mouse genetic models to manipulate gene expression programs leading to matrix remodeling and subsequent chondrocyte hypertrophic differentiation, pivotal processes which both go astray in OA disease. Matrix metalloproteinases (MMP)-13, the major type II collagen-degrading collagenase, is regulated by stress-, inflammation-, and differentiation-induced signals that not only contribute to irreversible joint damage (progression) in OA, but importantly, also to the initiation/onset phase, wherein chondrocytes in articular cartilage leave their natural growth- and differentiation-arrested state. Our work points to common mediators of these processes in human OA cartilage and in early through late stages of OA in surgical and genetic mouse models.
Collapse
Affiliation(s)
- Mary B. Goldring
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA,Address for correspondence: Mary B. Goldring, 535 East 70th Street, Caspary Research Building, 5th Floor, New York, NY 10021. USA,
| | - Miguel Otero
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Darren A. Plumb
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Cecilia Dragomir
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Marta Favero
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Karim El Hachem
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Ko Hashimoto
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | | | - Eleonora Olivotto
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy
| | - Kenneth B. Marcu
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy,Biochemistry and Cell Biology Dept., Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | | |
Collapse
|
23
|
Delcroix GJR, Curtis KM, Schiller PC, Montero-Menei CN. EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells. Differentiation 2010; 80:213-27. [PMID: 20813449 DOI: 10.1016/j.diff.2010.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/28/2010] [Accepted: 07/12/2010] [Indexed: 02/06/2023]
Abstract
AIMS Multipotent mesenchymal stromal cells raise great interest for regenerative medicine studies. Some MSC subpopulations have the potential to undergo neural differentiation, including marrow isolated adult multilineage inducible (MIAMI) cells, which differentiate into neuron-like cells in a multi-step neurotrophin 3-dependent manner. Epidermal and basic fibroblast growth factors are often used in neuronal differentiation protocols for MSCs, but with a limited understanding of their role. In this study, we thoroughly assessed for the first time the capacity of these factors to enhance the neuronal differentiation of MSCs. MATERIALS AND METHODS We have characterized MIAMI cell neuronal differentiation program in terms of stem cell molecule expression, cell cycle modifications, acquisition of a neuronal morphology and expression of neural and neuronal molecules in the absence and presence of an EGF-bFGF pre-treatment. RESULTS EGF-bFGF pre-treatment down-regulated the expression of stemness markers Oct4A, Notch1 and Hes5, whereas neural/neuronal molecules Nestin, Pax6, Ngn2 and the neurotrophin receptor tyrosine kinase 1 and 3 were up-regulated. During differentiation, a sustained Erk phosphorylation in response to NT3 was observed, cells began to exit from the cell cycle and exhibit increased neurite-like extensions. In addition, neuronal β3-tubulin and neurofilament expression was increased; an effect mediated via the Erk pathway. A slight pre-oligodendrocyte engagement was noted, and no default neurotransmitter phenotype was observed. Overall, mesodermal markers were unaffected or decreased, while neurogenic/adipogenic PPARγ2 was increased. CONCLUSION EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells, further increasing their potential use in adult cell therapy of the nervous system.
Collapse
|
24
|
Geetha-Loganathan P, Nimmagadda S, Christ B, Huang R, Scaal M. Ectodermal Wnt6 is an early negative regulator of limb chondrogenesis in the chicken embryo. BMC DEVELOPMENTAL BIOLOGY 2010; 10:32. [PMID: 20334703 PMCID: PMC2859743 DOI: 10.1186/1471-213x-10-32] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 03/25/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pattern formation of the limb skeleton is regulated by a complex interplay of signaling centers located in the ectodermal sheath and mesenchymal core of the limb anlagen, which results, in the forelimb, in the coordinate array of humerus, radius, ulna, carpals, metacarpals and digits. Much less understood is why skeletal elements form only in the central mesenchyme of the limb, whereas muscle anlagen develop in the peripheral mesenchyme ensheathing the chondrogenic center. Classical studies have suggested a role of the limb ectoderm as a negative regulator of limb chondrogenesis. RESULTS In this paper, we investigated the molecular nature of the inhibitory influence of the ectoderm on limb chondrogenesis in the avian embryo in vivo. We show that ectoderm ablation in the early limb bud leads to increased and ectopic expression of early chondrogenic marker genes like Sox9 and Collagen II, indicating that the limb ectoderm inhibits limb chondrogenesis at an early stage of the chondrogenic cascade. To investigate the molecular nature of the inhibitory influence of the ectoderm, we ectopically expressed Wnt6, which is presently the only known Wnt expressed throughout the avian limb ectoderm, and found that Wnt6 overexpression leads to reduced expression of the early chondrogenic marker genes Sox9 and Collagen II. CONCLUSION Our results suggest that the inhibitory influence of the ectoderm on limb chondrogenesis acts on an early stage of chondrogenesis upsteam of Sox9 and Collagen II. We identify Wnt6 as a candidate mediator of ectodermal chondrogenic inhibition in vivo. We propose a model of Wnt-mediated centripetal patterning of the limb by the surface ectoderm.
Collapse
Affiliation(s)
- Poongodi Geetha-Loganathan
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
25
|
Bradford ST, Hiramatsu R, Maddugoda MP, Bernard P, Chaboissier MC, Sinclair A, Schedl A, Harley V, Kanai Y, Koopman P, Wilhelm D. The cerebellin 4 precursor gene is a direct target of SRY and SOX9 in mice. Biol Reprod 2009; 80:1178-88. [PMID: 19211811 DOI: 10.1095/biolreprod.108.071480] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In most mammals, the expression of SRY (sex-determining region on the Y chromosome) initiates the development of testes, and thus determines the sex of the individual. However, despite the pivotal role of SRY, its mechanism of action remains elusive. One important missing piece of the puzzle is the identification of genes regulated by SRY. In this study we used chromatin immunoprecipitation to identify direct SRY target genes. Anti-mouse SRY antibody precipitated a region 7.5 kb upstream of the transcriptional start site of cerebellin 4 precursor (Cbln4), which encodes a secreted protein. Cbln4 is expressed in Sertoli cells in the developing gonad, with a profile mimicking that of the testis-determining gene SRY-box containing gene 9 (Sox9). In transgenic XY mouse embryos with reduced Sox9 expression, Cbln4 expression also was reduced, whereas overexpression of Sox9 in XX mice caused an upregulation of Cbln4 expression. Finally, ectopic upregulation of SRY in vivo resulted in ectopic expression of Cbln4. Our findings suggest that both SRY and SOX9 contribute to the male-specific upregulation of Cbln4 in the developing testis, and they identified a direct in vivo target gene of SRY.
Collapse
Affiliation(s)
- Stephen T Bradford
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yokoi H, Yan YL, Miller MR, BreMiller RA, Catchen JM, Johnson EA, Postlethwait JH. Expression profiling of zebrafish sox9 mutants reveals that Sox9 is required for retinal differentiation. Dev Biol 2009; 329:1-15. [PMID: 19210963 DOI: 10.1016/j.ydbio.2009.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/27/2008] [Accepted: 01/06/2009] [Indexed: 01/01/2023]
Abstract
The transcription factor gene Sox9 plays various roles in development, including differentiation of the skeleton, gonads, glia, and heart. Other functions of Sox9 remain enigmatic. Because Sox9 protein regulates expression of target genes, the identification of Sox9 targets should facilitate an understanding of the mechanisms of Sox9 action. To help identify Sox9 targets, we used microarray expression profiling to compare wild-type embryos to mutant embryos lacking activity for both sox9a and sox9b, the zebrafish co-orthologs of Sox9. Candidate genes were further evaluated by whole-mount in situ hybridization in wild-type and sox9 single and double mutant embryos. Results identified genes expressed in cartilage (col2a1a and col11a2), retina (calb2a, calb2b, crx, neurod, rs1, sox4a and vsx1) and pectoral fin bud (klf2b and EST AI722369) as candidate targets for Sox9. Cartilage is a well-characterized Sox9 target, which validates this strategy, whereas retina represents a novel Sox9 function. Analysis of mutant phenotypes confirmed that Sox9 helps regulate the number of Müller glia and photoreceptor cells and helps organize the neural retina. These roles in eye development were previously unrecognized and reinforce the multiple functions that Sox9 plays in vertebrate development.
Collapse
Affiliation(s)
- Hayato Yokoi
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 2008; 67 Suppl 3:iii75-82. [PMID: 19022820 DOI: 10.1136/ard.2008.098764] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In osteoarthritis (OA), adult articular chondrocytes undergo phenotypic modulation in response to alterations in the environment owing to mechanical injury and inflammation. These processes not only stimulate the production of enzymes that degrade the cartilage matrix but also inhibit repair. With the use of in vitro and in vivo models, new genes, not known previously to act in cartilage, have been identified and their roles in chondrocyte differentiation during development and in dysregulated chondrocyte function in OA have been examined. These new genes include growth arrest and DNA damage (GADD)45beta and the epithelial-specific ETS (ESE)-1 transcription factor, induced by bone morphogenetic protein (BMP)-2 and inflammatory cytokines, respectively. Both genes are induced by NF-kappaB, suppress COL2A1 and upregulate matrix meatalloproteinase-13 (MMP-13) expression. These genes have also been examined in mouse models of OA, in which discoidin domain receptor 2 is associated with MMP-13-mediated remodelling, in order to understand their roles in physiological cartilage homoeostasis and joint disease.
Collapse
Affiliation(s)
- M B Goldring
- Hospital for Special Surgery, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
28
|
Feng S, Bogatcheva NV, Truong A, Korchin B, Bishop CE, Klonisch T, Agoulnik IU, Agoulnik AI. Developmental Expression and Gene Regulation of Insulin-like 3 Receptor RXFP2 in Mouse Male Reproductive Organs1. Biol Reprod 2007; 77:671-80. [PMID: 17615407 DOI: 10.1095/biolreprod.107.060442] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mutations of testicular insulin-like 3 (INSL3) hormone or its receptor RXFP2 cause cryptorchidism in male mice. Here we have examined Rxfp2 gene expression at different stages of embryonic and postnatal mouse development in male reproductive tissues employing quantitative RT-PCR and several RXFP2-specific antibodies directed toward different parts of the RXFP2 protein. Receptor expression was markedly increased after birth and was readily detectable in the epididymis, Leydig cells, and germ cells of the testis. The strongest expression was detected in adult mouse cremaster muscle. INSL3 treatment increased cell proliferation of embryonic gubernacular and TM3 embryonic Leydig cells, implicating active INSL3-mediated autocrine signaling in these cells and identifying TM3 as a novel in vitro model to study the effects of RXFP2 signaling. We generated Tg(Rxfp2-cre)Aia (Rxfp2-iCre) transgenic mice expressing improved Cre recombinase (iCre) under the control of the 2.4-kb mouse Rxfp2 promoter. The iCre was expressed in the gubernacular ligament at E14.5, indicating that this promoter is able to drive Rxfp2 gene expression during transabdominal testis descent. We demonstrated that the transcription factor Sox9, a known male sex determination factor, is expressed in mouse embryonic gubernacula and upregulated human, but not mouse, promoter luciferase reporter constructs. In conclusion, we have determined the developmental expression profile of INSL3 receptor employing newly characterized RXFP2 antisera and a novel Rxfp2-iCre transgenic mouse model. We determined the promoter region capable of providing the gubernacular-specific expression of Rxfp2. Analysis of RXFP2 promoter identified SOX9 as a new transcriptional enhancer of human gene expression.
Collapse
Affiliation(s)
- Shu Feng
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Drivdahl R, Haugk KH, Sprenger CC, Nelson PS, Tennant MK, Plymate SR. Suppression of growth and tumorigenicity in the prostate tumor cell line M12 by overexpression of the transcription factor SOX9. Oncogene 2004; 23:4584-93. [PMID: 15077158 DOI: 10.1038/sj.onc.1207603] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of mac25 in the prostate cancer cell line M12 effects a dramatic reversal of the transformed phenotype. cDNA array analysis of RNA from cells overproducing the mac25 protein (M12/mac25) indicated upregulation of the sex determining transcription factor SOX9. In this study, we have confirmed increased expression of SOX9 in M12/mac25 cells and have further investigated the physiological effects of increased SOX9 production. Greatly increased levels of SOX9 RNA and mature protein were demonstrated in cells transfected with a SOX9 cDNA (M12/SOX9), and gel mobility shift assays confirmed binding of nuclear protein from these cells to an oligonucleotide containing the SOX9 consensus binding sequence. M12/SOX9 cells assumed the spindle-shaped morphology characteristic of M12/mac25 cells, suggesting that SOX9 mediates some effects of mac25. Elevated expression of SOX9 resulted in a decreased rate of cellular proliferation, cell cycle arrest in G0/G1, and increased sensitivity to apoptosis. Tumor development in athymic nude mice was inhibited by 80%. Finally, prostate-specific antigen and the androgen receptor, two genes whose expression is characteristic of differentiated cells, were both upregulated in M12/SOX9 cells. These data indicate that SOX9 contributes to growth regulation by mac25 via inhibition of cell growth and promotion of differentiation.
Collapse
Affiliation(s)
- Rolf Drivdahl
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98105, USA
| | | | | | | | | | | |
Collapse
|
30
|
Le Maitre CL, Hoyland JA, Freemont AJ. Studies of human intervertebral disc cell function in a constrained in vitro tissue culture system. Spine (Phila Pa 1976) 2004; 29:1187-95. [PMID: 15167656 DOI: 10.1097/00007632-200406010-00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This is a laboratory-based study examining a novel in vitro culture system for intervertebral disc tissue. OBJECTIVES Address the hypothesis that "the novel culture system will preserve intervertebral disc tissue matrix and cell function and prevent cellular apoptosis for periods up to 21 days." SUMMARY OF BACKGROUND DATA Studies of cell function in human intervertebral disc tissue are scarce. In vivo study of human intervertebral disc cells remains impracticable; in situ molecular biology in histologic sections lacks a dynamic dimension; and as for in vitro studies, cell culture often lacks physiologic relevance and explant cultures are subject to loss of tissue integrity and altered cell behavior. There is a biologic and therapeutic need for a satisfactory explant culture system for studying human intervertebral disc tissue in a controlled environment. METHODS Samples of human intervertebral disc tissue, obtained at surgery, were examined for a number of tissue and cell parameters immediately after excision (controls) and following culture of tissue samples either in a plastic ring or unconstrained in tissue culture medium for up to 3 weeks. Data were compared between cultured tissue and controls. RESULTS By comparison with control tissue, unconstrained explants swelled, tissue structure was disturbed, and there were profound changes in cell function. By contrast, tissue cultured in plastic rings maintained tissue structure, and after 3 weeks, the cellular parameters were the same as in controls. CONCLUSIONS This is the first reported system to preserve cell function of human discal explants for long periods in tissue culture. It will be a useful tool for a wide range of investigations of intervertebral disc biology that have not hitherto been possible.
Collapse
|
31
|
Tan L, Peng H, Osaki M, Choy BK, Auron PE, Sandell LJ, Goldring MB. Egr-1 mediates transcriptional repression of COL2A1 promoter activity by interleukin-1beta. J Biol Chem 2003; 278:17688-700. [PMID: 12637574 DOI: 10.1074/jbc.m301676200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Following induction and activation of the early growth response (Egr)-1 transcription factor in human chondrocytes, interleukin-1beta (IL-1beta) suppresses the expression of the type II collagen gene (COL2A1), associated with induction of Egr-1 binding activity in nuclear extracts. The COL2A1 proximal promoter contains overlapping binding sites for Egr-1 and Sp1 family members at -119/-112 bp and -81/-74 bp. Mutations that block binding of Sp1 and Sp3 to either site markedly reduce constitutive expression of the core promoter. IL-1beta-induced Egr-1 binds strongly to the -119/-112 bp site, and mutations that block Egr-1 binding prevent inhibition by IL-1beta. Cotransfection with pCMV-Egr1 potentiates the inhibition of COL2A1 promoter activity by IL-1beta, whereas overexpression of dominant-negative Egr-1 mutant, Wilm's tumor-1 (WT1)/Egr1, Sp1, or Sp3 reverses the inhibition by IL-1beta. Cotransfection of pGL2-COL2/Gal4, in which we substituted the critical residue for Egr-1 binding with a Gal4 binding domain and a pCMV-Gal4-Egr1 chimera permits an inhibitory response to IL-1beta that is reversed by overexpression of Gal4-CBP. Our results indicate that IL-1beta-induced activation of Egr-1 binding is required for inhibition of COL2A1 proximal promoter activity and suggest that Egr-1 acts as a repressor of a constitutively expressed collagen gene by preventing interactions between Sp1 and the general transcriptional machinery.
Collapse
Affiliation(s)
- Lujian Tan
- Rheumatology Division, Beth Israel Deaconess Medical Center and New England Baptist Bone & Joint Institute, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Osaki M, Tan L, Choy BK, Yoshida Y, Cheah KSE, Auron PE, Goldring MB. The TATA-containing core promoter of the type II collagen gene (COL2A1) is the target of interferon-gamma-mediated inhibition in human chondrocytes: requirement for Stat1 alpha, Jak1 and Jak2. Biochem J 2003; 369:103-15. [PMID: 12223098 PMCID: PMC1223055 DOI: 10.1042/bj20020928] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 09/05/2002] [Accepted: 09/11/2002] [Indexed: 01/18/2023]
Abstract
Interferon-gamma (IFN-gamma) inhibits the synthesis of the cartilage-specific extracellular matrix protein type II collagen, and suppresses the expression of the type II collagen gene ( COL2A1 ) at the transcriptional level. To further examine this mechanism, the responses of COL2A1 regulatory sequences to IFN-gamma and the role of components of the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway were examined in the immortalized human chondrocyte cell line, C-28/I2. IFN-gamma inhibited the mRNA levels of COL2A1 and aggrecan, but not Sox9, L-Sox5 and Sox6, all of which were expressed by these cells as markers of the differentiated phenotype. IFN-gamma suppressed the expression of luciferase reporter constructs containing sequences of the COL2A1 promoter spanning -6368 to +125 bp in the absence and presence of the intronic enhancer and stimulated activity of the gamma-interferon-activated site (GAS) luciferase reporter vector, associated with induction of Stat1 alpha-binding activity in nuclear extracts. These responses to IFN-gamma were blocked by overexpression of the JAK inhibitor, JAK-binding protein (JAB), or reversed by dominant-negative Stat1 alpha Y701F containing a mutation at Tyr-701, the JAK phosphorylation site. IFN-gamma had no effect on COL2A1 promoter expression in Jak1 (U4A)-, Jak2 (gamma 2A)- and Stat1 alpha (U3A)-deficient cell lines. In the U3A cell line, the response to IFN-gamma was rescued by overexpression of Stat1 alpha, but not by either Stat1 alpha Y701F or Stat1 beta. Functional analysis using deletion constructs showed that the IFN-gamma response was retained in the COL2A1 core promoter region spanning -45 to +11 bp, containing the TATA-box and GC-rich sequences but no Stat1-binding elements. Inhibition of COL2A1 promoter activity by IFN-gamma persisted in the presence of multiple deletions within the -45/+11 bp region. Our results indicate that repression of COL2A1 gene transcription by IFN-gamma requires Jak1, Jak2 and Stat1 alpha and suggest that this response involves indirect interaction of activated Stat1 alpha with the general transcriptional machinery that drives constitutive COL2A1 expression.
Collapse
Affiliation(s)
- Makoto Osaki
- Beth Israel Deaconess Medical Center, Rheumatology Division, and New England Baptist Bone & Joint Institute, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Human mutations in the transcription factor gene, SOX9, cause campomelic dysplasia (CD), a severe dwarfism associated with brain abnormalities including dilation of lateral ventricles, hypoplasia of the corpus callosum and cerebellum defects. To improve our understanding of how SOX9 contributes to the molecular genetic pathway of brain development we sought to investigate the distribution of SOX9 protein in rat and mouse brain. The regions of SOX9 expression identified in this study correlated with the sites of reported brain abnormalities in CD patients. SOX9 immunoreactivity was observed in nuclei of scattered cells throughout the brain, in the ependymal layer and cells of the choroid plexus. In the forebrain most SOX9-immunoreactive nuclei co-localised with the glial astrocyte marker S-100. In the cerebellum, SOX9 was observed mostly in cells surrounding Purkinje cells, which were identified, by electron microscopy, as Golgi epithelial cells, also known as Bergmann glia. Using SOX9 antibody as a marker for the precursors of Bergmann glia, we traced their origin during mouse development. At embryonic day (E)14.5 and E16.5, SOX9 immunoreactivity was present mainly in the primordial choroid plexus, and ventricular zone. By E18.5, SOX9 was observed in the granular cell and Purkinje cell layers but no labelling was detectable in the external granular layer. These results suggest that SOX9 immunoreactivity is a marker for Bergmann cells during development and favour the proposed origin of the secondary glial scaffold arising from Bergmann cells derived exclusively from the ventricular zone.
Collapse
Affiliation(s)
- S Pompolo
- Howard Florey Institute of Experimental Physiology and Medicine, Parkville 3052, Victoria, Australia.
| | | |
Collapse
|
34
|
Abstract
The campomelic dysplasia/autosomal sex reversal protein SOX9 is an important developmental transcription factor, required for correct bone and testis formation. Through in vitro and in vivo studies we have identified the heat shock protein HSP70 as an interacting partner for SOX9 in chondrocyte and testicular cell lines. HSP70 forms a ternary complex with DNA-bound SOX9. The interaction between HSP70 and SOX9 is ATP-independent and involves a highly conserved region of SOX9 hitherto of unknown function and the C-terminal region of HSP70. Our results implicate HSP70-SOX9 interactions in the assembly of multi-protein complexes during SOX9-mediated transcription.
Collapse
Affiliation(s)
- O J Marshall
- Prince Henry's Institute of Medical Research, Monash Medical Centre, P.O. Box 5152, Melbourne, Vic. 3168, Australia
| | | |
Collapse
|