1
|
Li F, Artiushin G, Sehgal A. Modulation of sleep by trafficking of lipids through the Drosophila blood-brain barrier. eLife 2023; 12:e86336. [PMID: 37140181 PMCID: PMC10205086 DOI: 10.7554/elife.86336] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Endocytosis through Drosophila glia is a significant determinant of sleep amount and occurs preferentially during sleep in glia of the blood-brain barrier (BBB). To identify metabolites whose trafficking is mediated by sleep-dependent endocytosis, we conducted metabolomic analysis of flies that have increased sleep due to a block in glial endocytosis. We report that acylcarnitines, fatty acids conjugated to carnitine to promote their transport, accumulate in heads of these animals. In parallel, to identify transporters and receptors whose loss contributes to the sleep phenotype caused by blocked endocytosis, we screened genes enriched in barrier glia for effects on sleep. We find that knockdown of lipid transporters LRP1&2 or of carnitine transporters ORCT1&2 increases sleep. In support of the idea that the block in endocytosis affects trafficking through specific transporters, knockdown of LRP or ORCT transporters also increases acylcarnitines in heads. We propose that lipid species, such as acylcarnitines, are trafficked through the BBB via sleep-dependent endocytosis, and their accumulation reflects an increased need for sleep.
Collapse
Affiliation(s)
- Fu Li
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Gregory Artiushin
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
2
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
3
|
Li N, Zhao H. Role of Carnitine in Non-alcoholic Fatty Liver Disease and Other Related Diseases: An Update. Front Med (Lausanne) 2021; 8:689042. [PMID: 34434943 PMCID: PMC8381051 DOI: 10.3389/fmed.2021.689042] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Carnitine is an amino acid-derived substance that coordinates a wide range of biological processes. Such functions include transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix, regulation of acetyl-CoA/CoA, control of inter-organellar acyl traffic, and protection against oxidative stress. Recent studies have found that carnitine plays an important role in several diseases, including non-alcoholic fatty liver disease (NAFLD). However, its effect is still controversial, and its mechanism is not clear. Herein, this review provides current knowledge on the biological functions of carnitine, the “multiple hit” impact of carnitine on the NAFLD progression, and the downstream mechanisms. Based on the “multiple hit” hypothesis, carnitine inhibits β-oxidation, improves mitochondrial dysfunction, and reduces insulin resistance to ameliorate NAFLD. L-carnitine may have therapeutic role in liver diseases including non-alcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, alcoholic fatty liver disease, and viral hepatitis. We also discuss the prospects of L-carnitine supplementation as a therapeutic strategy in NAFLD and related diseases, and the factors limiting its widespread use.
Collapse
Affiliation(s)
- Na Li
- Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of General Practice, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Hui Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Alaedin M, Ghaffari MH, Sadri H, Meyer J, Dänicke S, Frahm J, Huber K, Grindler S, Kersten S, Rehage J, Muráni E, Sauerwein H. Effects of dietary l-carnitine supplementation on the response to an inflammatory challenge in mid-lactating dairy cows: Hepatic mRNA abundance of genes involved in fatty acid metabolism. J Dairy Sci 2021; 104:11193-11209. [PMID: 34253361 DOI: 10.3168/jds.2021-20226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022]
Abstract
This study aimed at characterizing the effects of dietary l-carnitine supplementation on hepatic fatty acid (FA) metabolism during inflammation in mid-lactating cows. Fifty-three pluriparous Holstein dairy cows were randomly assigned to either a control (CON, n = 26) or an l-carnitine supplemented (CAR; n = 27) group. The CAR cows received 125 g of a rumen-protected l-carnitine product per cow per day (corresponding to 25 g of l-carnitine/cow per day) from d 42 antepartum (AP) until the end of the trial on d 126 postpartum (PP). Aside from the supplementation, the same basal diets were fed in the dry period and during lactation to all cows. In mid lactation, each cow was immune-challenged by a single intravenous injection of 0.5 μg of LPS/kg of BW at d 111 PP. Blood samples were collected before and after LPS administration. The mRNA abundance of in total 39 genes related to FA metabolism was assessed in liver biopsies taken at d -11, 1, and 14 relative to LPS (d 111 PP) and also on d 42 AP as an individual covariate using microfluidics integrated fluidic circuit chips (96.96 dynamic arrays). In addition to the concentrations of 3 selected proteins related to FA metabolism, acetyl-CoA carboxylase α (ACACA), 5' AMP-activated protein kinase (AMPK), and solute carrier family 25 member 20 (SLC25A20) were assessed by a capillary Western blot method in liver biopsies from d -11 and 1 relative to LPS from 11 cows each of CAR and CON. On d -11 relative to LPS, differences between the mRNA abundance in CON and CAR were limited to acyl-CoA dehydrogenase (ACAD) very-long-chain (ACADVL) with greater mRNA abundance in the CAR than in the CON group. The liver fat content decreased from d -11 to d 1 relative to the LPS injection and remained at the lower level until d 14 in both groups. One day after the LPS challenge, lower mRNA abundance of carnitine palmitoyltransferase 1 (CPT1), CPT2, ACADVL, ACAD short-chain (ACADS), and solute carrier family 22 member 5 (SLC22A5) were observed in the CAR group as compared with the CON group. However, the mRNA abundance of protein kinase AMP-activated noncatalytic subunit gamma 1 (PRKAG1), ACAD medium-chain (ACADM), ACACA, and FA binding protein 1 (FABP1) were greater in the CAR group than in the CON group on d 1 relative to LPS. Two weeks after the LPS challenge, differences between the groups were no longer detectable. The altered mRNA abundance before and 1 d after LPS pointed to increased transport of FA into hepatic mitochondria during systemic inflammation in both groups. The protein abundance of AMPK was lower in CAR than in CON before the LPS administration. The protein abundance of SLC25A20 was neither changing with time nor treatment and the ACACA protein abundance was only affected by time. In conclusion, l-carnitine supplementation temporally altered the hepatic mRNA abundance of some genes related to mitochondrial biogenesis and very-low-density lipoprotein export in response to an inflammatory challenge, but with largely lacking effects before and 2 wk after LPS.
Collapse
Affiliation(s)
- M Alaedin
- Institute of Animal Science, Physiology Unit, University of Bonn, Katzenburgweg 7-9, 53115 Bonn, Germany
| | - M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, Katzenburgweg 7-9, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - J Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany
| | - J Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany
| | - K Huber
- Institute of Animal Science, Functional Anatomy of Livestock, University of Hohenheim, Fruwirthstraße 35, 70593 Stuttgart, Germany
| | - S Grindler
- Institute of Animal Science, Functional Anatomy of Livestock, University of Hohenheim, Fruwirthstraße 35, 70593 Stuttgart, Germany
| | - S Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany
| | - J Rehage
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - E Muráni
- Research Institute for the Biology of Farm Animals (FBN), Research Unit Molecular Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Katzenburgweg 7-9, 53115 Bonn, Germany.
| |
Collapse
|
5
|
Ghaffari MH, Alaedin MT, Sadri H, Hofs I, Koch C, Sauerwein H. Longitudinal changes in fatty acid metabolism and in the mitochondrial protein import system in overconditioned and normal conditioned cows: A transcriptional study using microfluidic quantitative PCR. J Dairy Sci 2021; 104:10338-10354. [PMID: 34147221 DOI: 10.3168/jds.2021-20237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022]
Abstract
This study investigated the effect of body condition around calving on the hepatic mRNA expression of genes involved in fatty acid (FA) metabolism and mitochondrial protein import system of dairy cows during the transition period. Fifteen weeks before their anticipated calving date, 38 multiparous Holstein cows were selected based on their current and previous body condition scores (BCS) and allocated to either a high or a normal BCS group (19 cows each). They received different diets to reach targeted differences in BCS and backfat thickness (BFT) until dry-off. At dry-off, normal BCS (NBCS) cows had a BCS <3.5 and BFT <1.2 cm, and the high BCS (HBCS) cows had a BCS >3.75 and BFT >1.4 cm. The expression of targeted genes in the liver was assayed by reverse-transcription quantitative real-time PCR using microfluidics integrated fluidic circuit chips on a subset of 5 cows from each group. Liver biopsies were collected at d -49, +3, +21, and +84 relative to parturition. The mRNA abundance of 47 genes related to lipid metabolism including carnitine metabolism, FA uptake and transport, lipoprotein export, carnitine metabolism, mitochondrial and proximal FA oxidation, ketogenesis, AMP-activated protein kinase/mammalian target of rapamycin pathway, and mitochondrial protein import system was assessed in liver tissue. The mRNA abundances of FA binding protein (FABP)6 (in both groups), and FABP1 and solute carrier family 22 member 5 (SLC22A5) in HBCS were upregulated (>1.5-fold change, FC) in early lactation (at d +3 and +21 postpartum) compared with antepartum (d -49), indicating promoted FA uptake and intracellular transport in the liver due to the metabolic adaptations of elevated lipo-mobilization after parturition. The upregulation of SLC22A5 and SLC25A20 after parturition was more pronounced in HBCS than in NBCS cows, suggesting a need for increasing the capacity of FA uptake, and FA transport into the hepatocyte. The increased mRNA abundance of carnitine palmitoyltransferase 1A, after parturition and to a greater extent in HBCS (FC = 4.1) versus NBCS (FC = 2.1) indicates a physiological increase in the capacity of long-chain fatty acyl-CoA entry into the liver mitochondria compared with antepartum (ap; d -49 relative to calving). The greater hepatic mRNA abundance of genes encoding enzymes involved in mitochondrial FA oxidation in HBCS than in NBCS points to an increased rate of mitochondrial β-oxidation. The hepatic mRNA abundance of 3-hydroxy-3-methylglutaryl-CoA synthase 2 and 3-hydroxy-3-methylglutaryl-CoA were upregulated after parturition (d +21/d +3 pp) to a greater extent in HBCS than in NBCS cows, indicating that excess acetyl-CoA generated via β-oxidation was increasingly used for ketogenesis. We observed for the first time that the mRNA abundance of genes involved in the translocase of the inner membrane (TIM) complex (TIM22 and TIM23) in the hepatic mitochondrial protein import system were undergoing distinct changes during the transition from late pregnancy to early lactation in dairy cows. Even though sample size in this study was relatively small, the results support that overconditioning around calving may contribute to mitochondrial FA overload and greater ketogenesis at the level of transcription in the liver of early lactation cows.
Collapse
Affiliation(s)
- Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - Mohamad Taher Alaedin
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Inga Hofs
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Christian Koch
- Educational and Research Center for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
6
|
Yang H, Zhao C, Tang MC, Wang Y, Wang SP, Allard P, Furtos A, Mitchell GA. Inborn errors of mitochondrial acyl-coenzyme a metabolism: acyl-CoA biology meets the clinic. Mol Genet Metab 2019; 128:30-44. [PMID: 31186158 DOI: 10.1016/j.ymgme.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/30/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022]
Abstract
The last decade saw major advances in understanding the metabolism of Coenzyme A (CoA) thioesters (acyl-CoAs) and related inborn errors (CoA metabolic diseases, CAMDs). For diagnosis, acylcarnitines and organic acids, both derived from acyl-CoAs, are excellent markers of most CAMDs. Clinically, each CAMD is unique but strikingly, three main patterns emerge: first, systemic decompensations with combinations of acidosis, ketosis, hypoglycemia, hyperammonemia and fatty liver; second, neurological episodes, particularly acute "stroke-like" episodes, often involving the basal ganglia but sometimes cerebral cortex, brainstem or optic nerves and third, especially in CAMDs of long chain fatty acyl-CoA metabolism, lipid myopathy, cardiomyopathy and arrhythmia. Some patients develop signs from more than one category. The pathophysiology of CAMDs is not precisely understood. Available data suggest that signs may result from CoA sequestration, toxicity and redistribution (CASTOR) in the mitochondrial matrix has been suggested to play a role. This predicts that most CAMDs cause deficiency of CoA, limiting mitochondrial energy production, and that toxic effects from the abnormal accumulation of acyl-CoAs and from extramitochondrial functions of acetyl-CoA may also contribute. Recent progress includes the following. (1) Direct measurements of tissue acyl-CoAs in mammalian models of CAMDs have been related to clinical features. (2) Inborn errors of CoA biosynthesis were shown to cause clinical changes similar to those of inborn errors of acyl-CoA degradation. (3) CoA levels in cells can be influenced pharmacologically. (4) Roles for acetyl-CoA are increasingly identified in all cell compartments. (5) Nonenzymatic acyl-CoA-mediated acylation of intracellular proteins occurs in mammalian tissues and is increased in CAMDs.
Collapse
Affiliation(s)
- Hao Yang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Chen Zhao
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada; College of Animal Science and Technology, Northwest A&F University, China
| | | | - Youlin Wang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Shu Pei Wang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Pierre Allard
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | | | - Grant A Mitchell
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada.
| |
Collapse
|
7
|
Karahoda R, Ceckova M, Staud F. The inhibitory effect of antiretroviral drugs on the L-carnitine uptake in human placenta. Toxicol Appl Pharmacol 2019; 368:18-25. [PMID: 30735677 DOI: 10.1016/j.taap.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/30/2022]
Abstract
In spite of remarkable reduction in the number of children born with HIV due to antiretroviral therapy, concerns remain on the short- and long-term effects of antiretroviral drugs at the feto-placental unit. Cardio- and skeletal myopathies have been reported in children exposed to antiretroviral drugs prenatally. These conditions have also been described in perturbed placental transfer of l-carnitine, an essential co-factor in fatty acid oxidation. Due to limited fetal and placental synthesis, carnitine supply is maintained through the placental carnitine uptake from maternal blood by the organic cation/carnitine transporters OCTN1 and OCTN2 (SLC22A4 and SLC22A5, respectively). The aim of our study was to investigate potential inhibition of placental carnitine uptake by a broad range of antiretroviral drugs comprising nucleoside/nucleotide reverse transcriptase inhibitors (lamivudine, zidovudine, abacavir, tenofovir disoproxil fumarate), non-nucleoside reverse transcriptase inhibitors (rilpivirine, efavirenz, etravirine), protease inhibitors (ritonavir, lopinavir, atazanavir, saquinavir, tipranavir), integrase inhibitors (raltegravir, dolutegravir, elvitegravir) and viral entry inhibitor, maraviroc. Studies in choriocarcinoma BeWo cells and human placenta-derived models confirmed predominant expression and function of OCTN2 above OCTN1 in l-carnitine transport. Subsequent screenings in BeWo cells and isolated MVM vesicles revealed seven antiretroviral drugs as inhibitors of the Na+-dependent l-carnitine uptake, corresponding to OCTN2. Ritonavir, saquinavir and elvitegravir showed the highest inhibitory potential which was further confirmed for ritonavir and saquinavir in placental fresh villous fragments. Our data indicate possible impairment in placental and fetal supply of l-carnitine with ritonavir and saquinavir, while suggesting retained placental carnitine transport with the other antiretroviral drugs.
Collapse
Affiliation(s)
- Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Czech Republic.
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Czech Republic
| |
Collapse
|
8
|
Elsworth B, Dawe K, Vincent EE, Langdon R, Lynch BM, Martin RM, Relton C, Higgins JPT, Gaunt TR. MELODI: Mining Enriched Literature Objects to Derive Intermediates. Int J Epidemiol 2018; 47:4803214. [PMID: 29342271 PMCID: PMC5913624 DOI: 10.1093/ije/dyx251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/02/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The scientific literature contains a wealth of information from different fields on potential disease mechanisms. However, identifying and prioritizing mechanisms for further analytical evaluation presents enormous challenges in terms of the quantity and diversity of published research. The application of data mining approaches to the literature offers the potential to identify and prioritize mechanisms for more focused and detailed analysis. METHODS Here we present MELODI, a literature mining platform that can identify mechanistic pathways between any two biomedical concepts. RESULTS Two case studies demonstrate the potential uses of MELODI and how it can generate hypotheses for further investigation. First, an analysis of ETS-related gene ERG and prostate cancer derives the intermediate transcription factor SP1, recently confirmed to be physically interacting with ERG. Second, examining the relationship between a new potential risk factor for pancreatic cancer identifies possible mechanistic insights which can be studied in vitro. CONCLUSIONS We have demonstrated the possible applications of MELODI, including two case studies. MELODI has been implemented as a Python/Django web application, and is freely available to use at [www.melodi.biocompute.org.uk].
Collapse
Affiliation(s)
- Benjamin Elsworth
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Karen Dawe
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Ryan Langdon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Brigid M Lynch
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, VIC, Australia
- Physical Activity Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | | | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Park HJ, Jung ES, Kong KA, Park EM, Cheon JH, Choi JH. Identification of OCTN2 variants and their association with phenotypes of Crohn's disease in a Korean population. Sci Rep 2016; 6:22887. [PMID: 26965072 PMCID: PMC4786794 DOI: 10.1038/srep22887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/23/2016] [Indexed: 12/19/2022] Open
Abstract
Crohn’s disease (CD) is a chronic inflammatory bowel disease and a genetic variant in the OCTN2, g.-207G > C is significantly associated with CD susceptibility. This study was aimed to identify novel OCTN2 functional promoter variants and their roles in transcriptional regulation using various in vitro assays. In addition, we investigated the association between OCTN2 genotypes and CD through genetic analysis using DNA samples from 193 patients with CD and 281 healthy controls. Among the three major promoter haplotypes of OCTN2 identified, one haplotype, H3, showed a significant decrease in promoter activity: two polymorphisms in H3 were associated with a significant reduction in promoter activity. In particular, we found that the reduced transcriptional activity of those two polymorphisms results from a reduction in the binding affinity of the activators, NF-E2 and YY1, to the OCTN2 promoter. The functional haplotype of the OCTN2 promoter was associated with clinical course of CD such as the disease behavior and need for surgery. However, genetic variants or haplotypes of OCTN2 did not affect the susceptibility to CD. Our results suggest that a common promoter haplotype of OCTN2 regulates the transcriptional rate of OCTN2 and influences the clinical course of CD.
Collapse
Affiliation(s)
- Hyo Jin Park
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Eun Suk Jung
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyoung Ae Kong
- Clinical Trial Center, Ewha Womans University Medical Center, Seoul, 07985, Korea
| | - Eun-Mi Park
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ji Ha Choi
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, 07985, Korea
| |
Collapse
|
10
|
Empl MT, Kammeyer P, Ulrich R, Joseph JF, Parr MK, Willenberg I, Schebb NH, Baumgärtner W, Röhrdanz E, Steffen C, Steinberg P. The influence of chronic L-carnitine supplementation on the formation of preneoplastic and atherosclerotic lesions in the colon and aorta of male F344 rats. Arch Toxicol 2015; 89:2079-87. [PMID: 25164827 PMCID: PMC7079849 DOI: 10.1007/s00204-014-1341-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/14/2014] [Indexed: 12/30/2022]
Abstract
L-Carnitine, a key component of fatty acid oxidation, is nowadays being extensively used as a nutritional supplement with allegedly "fat burning" and performance-enhancing properties, although to date there are no conclusive data supporting these claims. Furthermore, there is an inverse relationship between exogenous supplementation and bioavailability, i.e., fairly high oral doses are not fully absorbed and thus a significant amount of carnitine remains in the gut. Human and rat enterobacteria can degrade unabsorbed L-carnitine to trimethylamine or trimethylamine-N-oxide, which, under certain conditions, may be transformed to the known carcinogen N-nitrosodimethylamine. Recent findings indicate that trimethylamine-N-oxide might also be involved in the development of atherosclerotic lesions. We therefore investigated whether a 1-year administration of different L-carnitine concentrations (0, 1, 2 and 5 g/l) via drinking water leads to an increased incidence of preneoplastic lesions (so-called aberrant crypt foci) in the colon of Fischer 344 rats as well as to the appearance of atherosclerotic lesions in the aorta of these animals. No significant difference between the test groups regarding the formation of lesions in the colon and aorta of the rats was observed, suggesting that, under the given experimental conditions, L-carnitine up to a concentration of 5 g/l in the drinking water does not have adverse effects on the gastrointestinal and vascular system of Fischer 344 rats.
Collapse
Affiliation(s)
- Michael T Empl
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Patricia Kammeyer
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Jan F Joseph
- Institute of Pharmacy, Free University of Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Maria K Parr
- Institute of Pharmacy, Free University of Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Ina Willenberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Nils H Schebb
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Elke Röhrdanz
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger Allee 3, 53175, Bonn, Germany
| | - Christian Steffen
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger Allee 3, 53175, Bonn, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany.
| |
Collapse
|
11
|
Elimrani I, Dionne S, Saragosti D, Qureshi I, Levy E, Delvin E, Seidman EG. Acetylcarnitine potentiates the anticarcinogenic effects of butyrate on SW480 colon cancer cells. Int J Oncol 2015; 47:755-63. [PMID: 26043725 DOI: 10.3892/ijo.2015.3029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/02/2015] [Indexed: 11/06/2022] Open
Abstract
Butyrate is a potent anticarcinogenic compound against colon cancer cells in vitro. However, its rapid metabolism is hypothesized to limit its anticancer benefits in colonic epithelial cells. Carnitine, a potent antioxidant, is essential to fatty acid oxidation. The aims of this study were to identify a colon cancer cell line capable of transporting carnitine. We evaluated the effect of carnitine and acetylcarnitine (ALCAR) on the response of colon carcinoma cells to butyrate. We explored the mechanisms underlying the anticarcinogenic benefit. SW480 cells were incubated with butyrate ± carnitine or ALCAR. Carnitine uptake was assessed using [3H]-carnitine. Apoptosis and cell viability were assessed using an ELISA kit and flow cytometry, respectively. Modulation of proteins implicated in carnitine transport, cell death and proliferation were assessed by western blotting. SW480 cells were found to transport carnitine primarily via the OCTN2 transporter. Butyrate induced SW480 cell death occurred at concentrations of 2 mM and higher. Cells treated with the combination of butyrate (3 mM) with ALCAR exhibited increased mortality. The addition of carnitine or ALCAR also increased butyrate-induced apoptosis. Butyrate increased levels of cyclin D1, p21 and PARP p86, but decreased Bcl-XL and survivin levels. Butyrate also downregulated dephospho-β-catenin and increased acetylated histone H4 levels. Butyrate and carnitine decreased survivin levels by ≥25%. ALCAR independently induced a 20% decrease in p21. These results demonstrate that butyrate and ALCAR are potentially beneficial anticarcinogenic nutrients that inhibit colon cancer cell survival in vitro. The combination of both agents may have superior anticarcinogenic properties than butyrate alone.
Collapse
Affiliation(s)
- Ihsan Elimrani
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Serge Dionne
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Dan Saragosti
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ijaz Qureshi
- Sainte Justine Hospital Research Center, Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Emile Levy
- Sainte Justine Hospital Research Center, Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Edgar Delvin
- Sainte Justine Hospital Research Center, Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Ernest G Seidman
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Zhou X, Ringseis R, Wen G, Eder K. The pro-inflammatory cytokine tumor necrosis factor α stimulates expression of the carnitine transporter OCTN2 (novel organic cation transporter 2) and carnitine uptake via nuclear factor-κB in Madin-Darby bovine kidney cells. J Dairy Sci 2015; 98:3840-8. [PMID: 25892691 DOI: 10.3168/jds.2014-9044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/13/2015] [Indexed: 01/22/2023]
Abstract
Carnitine uptake into tissues is mediated mainly by the novel organic cation transporter 2 (OCTN2), whose expression is upregulated in the liver of early-lactating dairy cows. It has been shown recently that pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), stimulate OCTN2 expression and carnitine uptake in intestinal cells and inflamed intestinal mucosa. Given that many early-lactating dairy cows show typical signs of hepatic and systemic inflammation, such as elevated concentrations of circulating TNFα and activation of the key regulator of inflammation, nuclear factor κB (NF-κB), in tissues, it is possible that upregulation of OCTN2 and increase of carnitine uptake by TNFα is mediated by NF-κB, a mechanism that might contribute to the upregulation of OCNT2 in the liver of early-lactating dairy cows. Thus, in the present study, we tested the hypothesis that TNFα stimulates OCTN2 gene expression and carnitine uptake via NF-κB in the bovine Madin-Darby bovine kidney (MDBK) cell line. Treatment with TNFα caused activation of NF-κB, increased the mRNA and protein concentration of OCTN2, and stimulated the uptake of carnitine in MDBK cells. In contrast, combined treatment of MDBK cells with TNFα and the NF-κB inhibitor BAY 11-7085 completely blocked the effect of TNFα on OCTN2 mRNA and protein concentration and uptake of carnitine. These findings suggest that the bovine OCTN2 gene and carnitine uptake are regulated by NF-κB. Future studies are required to show the in vivo relevance of this regulatory mechanism in cattle.
Collapse
Affiliation(s)
- X Zhou
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - G Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany.
| |
Collapse
|
13
|
Sun YH, He X, Yang XL, Dong CL, Zhang CF, Song ZJ, Lu MX, Yang ZL, Li P. Absorption characteristics of the total alkaloids from Mahonia bealei in an in situ single-pass intestinal perfusion assay. Chin J Nat Med 2015; 12:554-60. [PMID: 25053555 DOI: 10.1016/s1875-5364(14)60085-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Indexed: 11/19/2022]
Abstract
AIM To investigate the absorption characteristics of the total alkaloids from Mahoniae Caulis (TAMC) through the administration of monterpene absorption enhancers or protein inhibitors. METHOD The absorption behavior was investigated in an in situ single-pass intestinal perfusion (SPIP) assay in rats. RESULTS The intestinal absorption of TAMC was much more than that of a single compound or a mixture of compounds (jatrorrhizine, palmatine, and berberine). Promotion of absorption by the bicyclic monoterpenoids (borneol or camphor) was higher than by the monocyclic monoterpenes (menthol or menthone), and promotion by compounds with a hydroxyl group (borneol or menthol) was higher than those with a carbonyl group (camphor or menthone). The apparent permeability coefficient (Papp) of TAMC was increased to 1.8-fold by verapamil, while it was reduced to one half by thiamine. The absorption rate constant (Ka) and Papp of TAMC were unchanged by probenecid and pantoprazole. CONCLUSION The intestinal absorption characteristics of TAMC might be passive transport, and the intestinum tenue was the best absorptive site. In addition, TAMC might be likely a substrate of P-glycoprotein (P-gp) and organic cation transporters (OCT), rather than multidrug resistance protein (MRP) and breast cancer resistance protein (BCRP). Compared with a single compound and a mixture of compounds, TAMC was able to be absorbed in the blood circulation effectively.
Collapse
Affiliation(s)
- Yu-He Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xin He
- School of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xiao-Lin Yang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Cui-Lan Dong
- The People's Hospital of Zhangqiu City, Zhangqiu 250200, China
| | - Chun-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Zi-Jing Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ming-Xing Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhong-Lin Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Liu L, Zhang DM, Wang MX, Fan CY, Zhou F, Wang SJ, Kong LD. The adverse effects of long-term l-carnitine supplementation on liver and kidney function in rats. Hum Exp Toxicol 2015; 34:1148-61. [DOI: 10.1177/0960327115571767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Levo-Carnitine (l-carnitine) is widely used in health and food. This study was to focus on the adverse effects of 8-week oral supplementation of l-carnitine (0.3 and 0.6 g/kg) in female and male Sprague Dawley rats. l-carnitine reduced body and fat weights, as well as serum, liver, and kidney lipid levels in rats. Simultaneously, hepatic fatty acid β-oxidation and lipid synthesis were disturbed in l-carnitine-fed rats. Moreover, l-carnitine accelerated reactive oxygen species production in serum and liver, thereby triggering hepatic NOD-like receptor 3 (NLRP3) inflammasome activation to elevate serum interleukin (IL)-1β and IL-18 levels in rats. Alteration of serum alkaline phosphatase levels further confirmed liver dysfunction in l-carnitine-fed rats. Additionally, l-carnitine may potentially disturb kidney function by altering renal protein levels of rat organic ion transporters. These observations may provide the caution information for the safety of long-term l-carnitine supplementation.
Collapse
Affiliation(s)
- L Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| | - D-M Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| | - M-X Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| | - C-Y Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| | - F Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| | - S-J Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| | - L-D Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
15
|
Zhou X, Wen G, Ringseis R, Eder K. Short communication: The pharmacological peroxisome proliferator-activated receptor α agonist WY-14,643 increases expression of novel organic cation transporter 2 and carnitine uptake in bovine kidney cells. J Dairy Sci 2014; 97:345-9. [DOI: 10.3168/jds.2013-7161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022]
|
16
|
Abstract
Organic anions and cations (OAs and OCs, respectively) comprise an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. The kidney, primarily the renal proximal tubule, plays a critical role in regulating the plasma concentrations of these organic electrolytes and in clearing the body of potentially toxic xenobiotics agents, a process that involves active, transepithelial secretion. This transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. Basolateral and luminal OA and OC transport reflects the concerted activity of a suite of separate proteins arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney, now allows the development of models describing the molecular basis of the renal secretion of OAs and OCs. New information on naturally occurring genetic variation of many of these processes provides insight into the basis of observed variability of drug efficacy and unwanted drug-drug interactions in human populations. The present review examines recent work on these issues.
Collapse
Affiliation(s)
- Ryan M Pelis
- Novartis Pharmaceuticals Corp., Translational Sciences, East Hanover, New Jersey, USA
| | | |
Collapse
|
17
|
Indiveri C, Galluccio M, Scalise M, Pochini L. Strategies of bacterial over expression of membrane transporters relevant in human health: the successful case of the three members of OCTN subfamily. Mol Biotechnol 2013; 54:724-36. [PMID: 22843325 PMCID: PMC3636443 DOI: 10.1007/s12033-012-9586-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The OCTN subfamily includes OCTN1, 2, and 3 which are structurally and functionally related. These transporters are involved in maintenance of the carnitine homeostasis, which is essential in mammals for fatty acid β-oxidation, VLDL assembly, post-translational modifications, and other essential functions. Indeed, defects of these transporters lead to severe pathologies. OCTN1 and OCTN2 are expressed in many human tissues, while OCTN3 gene has been identified only in mouse and rat. The transporters mediate transport of carnitine and other substrates with different efficiencies and mechanisms. In order to over express the three proteins, a screening of many combinations of E. coli strains with plasmid constructs has been conducted. Only Rosetta(DE3) or Rosettagami2(DE3) gave significant expression. Higher protein amounts were firstly obtained with pET-41a(+) or pGEX-4T1 carrying fusion protein tags which required additional purification passages. Vectors carrying only a 6His tag, suitable for single passage purification, were preferred even though they lead to lower initial expression levels. Expressions were then increased optimizing several critical parameters. hOCTN1 was obtained with pH6EX3 in RosettaGami2(DE3)pLysS. hOCTN2 and mOCTN3 were obtained using pET-21a(+) in Rosetta(DE3). In particular, hOCTN2 was expressed only after codon bias, substituting the second triplet CGG with AAA (R2K mutant). The best growth conditions for hOCTN1 and mOCTN3 were 28 °C and 6 h of induction, while 4 h of induction for hOCTN2R2K. The proteins collected in the insoluble fraction of cell lysates, solubilized with sarkosyl, were purified by Ni-chelating chromatography. Final yield was 2.0, 3.0, or 3.5 mg/l of cell culture for mOCTN3, hOCTN1, or hOCTN2R2K. The data indicated that, in spite of the close evolutionary relations, several factors play different critical roles in bacterial expression of the three proteins, thus general criteria cannot be underlined. However, the strategy of dealing with related proteins revealed to be finally successful for over expressing all the three subfamily members.
Collapse
Affiliation(s)
- Cesare Indiveri
- Department of Cell Biology, University of Calabria, Arcavacata di Rende, Italy.
| | | | | | | |
Collapse
|
18
|
Proteoliposomes as tool for assaying membrane transporter functions and interactions with xenobiotics. Pharmaceutics 2013; 5:472-97. [PMID: 24300519 PMCID: PMC3836619 DOI: 10.3390/pharmaceutics5030472] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/15/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023] Open
Abstract
Proteoliposomes represent a suitable and up to date tool for studying membrane transporters which physiologically mediate absorption, excretion, trafficking and reabsorption of nutrients and metabolites. Using recently developed reconstitution strategies, transporters can be inserted in artificial bilayers with the same orientation as in the cell membranes and in the absence of other interfering molecular systems. These methodologies are very suitable for studying kinetic parameters and molecular mechanisms. After the first applications on mitochondrial transporters, in the last decade, proteoliposomes obtained with optimized methodologies have been used for studying plasma membrane transporters and defining their functional and kinetic properties and structure/function relationships. A lot of information has been obtained which has clarified and completed the knowledge on several transporters among which the OCTN sub-family members, transporters for neutral amino acid, B0AT1 and ASCT2, and others. Transporters can mediate absorption of substrate-like derivatives or drugs, improving their bioavailability or can interact with these compounds or other xenobiotics, leading to side/toxic effects. Therefore, proteoliposomes have recently been used for studying the interaction of some plasma membrane and mitochondrial transporters with toxic compounds, such as mercurials, H2O2 and some drugs. Several mechanisms have been defined and in some cases the amino acid residues responsible for the interaction have been identified. The data obtained indicate proteoliposomes as a novel and potentially important tool in drug discovery.
Collapse
|
19
|
Dionne S, Elimrani I, Roy MJ, Qureshi IA, Sarma DR, Levy E, Seidman EG. Studies on the chemopreventive effect of carnitine on tumorigenesis in vivo, using two experimental murine models of colon cancer. Nutr Cancer 2013; 64:1279-87. [PMID: 23163856 DOI: 10.1080/01635581.2012.722247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carnitine is known for its essential role in intermediary metabolism. In vitro studies suggest that its antioxidant and anti-inflammatory properties are potentially beneficial toward cancer prevention. This study tested effects of carnitine on the development of colon cancer in vivo using 2 murine models: azoxymethane (AOM) treatment as a model of carcinogen-induced colon cancer and a genetically induced model using Apc (Min/+) mice. AOM and Apc (Min/+) mice divided into dietary groups varying in lipid content, with or without carnitine supplementation (0.08%). AOM-exposed mice on a high butterfat diet had significantly increased aberrant crypts (ACF) (9.3 ± 0.88 vs. 6.3 ± 0.65), and macroscopic tumors (3.8 ± 0.95 vs. 2.0 ± 0.25) compared to mice on a control diet. In AOM mice fed the high butterfat diet, carnitine supplementation inhibited ACF (4.9 ± 0.7 vs. 9.3 ± 0.88, P < 0.001), crypt multiciplicity (1.6 ± 0.08 vs. 1.92 ± 0.1, P < 0.01) and tumors (1.5 ± 0.38 vs. 3.8 ± 0.95, P < 0.001). Carnitine supplementation resulted in significantly increased tissue carnitine and acylcarnitine levels. Carnitine inhibited the development of precancerous lesions and macroscopic colonic tumors in AOM-treated mice. However, carnitine did not exert protective effects on intestinal tumors in Apc (Min/+) mice.
Collapse
Affiliation(s)
- Serge Dionne
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Bain MA, Milne RW, Evans AM. Disposition and Metabolite Kinetics of Oral L-carnitine in Humans. J Clin Pharmacol 2013; 46:1163-70. [PMID: 16988205 DOI: 10.1177/0091270006292851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pharmacokinetics of L-carnitine and its metabolites were investigated in 7 healthy subjects following the oral administration of 0, 0.5, 1, and 2 g 3 times a day for 7 days. Mean plasma concentrations of L-carnitine across an 8-hour dose interval increased significantly (P < .05) from a baseline of 54.2 +/- 9.3 microM to 80.5 +/- 12.5 microM following the 0.5-g dose; there was no further increase at higher doses. There was a significant increase (P < .001) in the renal clearance of L-carnitine indicating saturation of tubular reabsorption. Trimethylamine plasma levels increased proportionately with L-carnitine dose, but there was no change in renal clearance. A significant increase in the plasma concentrations of trimethylamine-N-oxide from baseline was evident only for the 2-g dose of L-carnitine (from 34.5 +/- 2.0 to 149 +/- 145 microM), and its renal clearance decreased with increasing dose (P < .05). There was no evidence for nonlinearity in the metabolism of trimethylamine to trimethylamine-N-oxide. In conclusion, the pharmacokinetics of oral L-carnitine display nonlinearity above a dose of 0.5 g 3 times a day.
Collapse
Affiliation(s)
- Marcus A Bain
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
21
|
Shibani M, Keller J, König B, Kluge H, Hirche F, Stangl G, Ringseis R, Eder K. Effects of fish oil and conjugated linoleic acids on carnitine homeostasis in laying hens. Br Poult Sci 2012; 53:431-8. [DOI: 10.1080/00071668.2012.713464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- M. Shibani
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| | - J. Keller
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| | - B. König
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - H. Kluge
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - F. Hirche
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - G.I. Stangl
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - R. Ringseis
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| | - K. Eder
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| |
Collapse
|
22
|
Ringseis R, Wen G, Eder K. Regulation of Genes Involved in Carnitine Homeostasis by PPARα across Different Species (Rat, Mouse, Pig, Cattle, Chicken, and Human). PPAR Res 2012; 2012:868317. [PMID: 23150726 PMCID: PMC3486131 DOI: 10.1155/2012/868317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
Recent studies in rodents convincingly demonstrated that PPARα is a key regulator of genes involved in carnitine homeostasis, which serves as a reasonable explanation for the phenomenon that energy deprivation and fibrate treatment, both of which cause activation of hepatic PPARα, causes a strong increase of hepatic carnitine concentration in rats. The present paper aimed to comprehensively analyse available data from genetic and animal studies with mice, rats, pigs, cows, and laying hens and from human studies in order to compare the regulation of genes involved in carnitine homeostasis by PPARα across different species. Overall, our comparative analysis indicates that the role of PPARα as a regulator of carnitine homeostasis is well conserved across different species. However, despite demonstrating a well-conserved role of PPARα as a key regulator of carnitine homeostasis in general, our comprehensive analysis shows that this assumption particularly applies to the regulation by PPARα of carnitine uptake which is obviously highly conserved across species, whereas regulation by PPARα of carnitine biosynthesis appears less well conserved across species.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| |
Collapse
|
23
|
Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 2012; 165:1260-87. [PMID: 22013971 DOI: 10.1111/j.1476-5381.2011.01724.x] [Citation(s) in RCA: 553] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human organic anion and cation transporters are classified within two SLC superfamilies. Superfamily SLCO (formerly SLC21A) consists of organic anion transporting polypeptides (OATPs), while the organic anion transporters (OATs) and the organic cation transporters (OCTs) are classified in the SLC22A superfamily. Individual members of each superfamily are expressed in essentially every epithelium throughout the body, where they play a significant role in drug absorption, distribution and elimination. Substrates of OATPs are mainly large hydrophobic organic anions, while OATs transport smaller and more hydrophilic organic anions and OCTs transport organic cations. In addition to endogenous substrates, such as steroids, hormones and neurotransmitters, numerous drugs and other xenobiotics are transported by these proteins, including statins, antivirals, antibiotics and anticancer drugs. Expression of OATPs, OATs and OCTs can be regulated at the protein or transcriptional level and appears to vary within each family by both protein and tissue type. All three superfamilies consist of 12 transmembrane domain proteins that have intracellular termini. Although no crystal structures have yet been determined, combinations of homology modelling and mutation experiments have been used to explore the mechanism of substrate recognition and transport. Several polymorphisms identified in members of these superfamilies have been shown to affect pharmacokinetics of their drug substrates, confirming the importance of these drug transporters for efficient pharmacological therapy. This review, unlike other reviews that focus on a single transporter family, briefly summarizes the current knowledge of all the functionally characterized human organic anion and cation drug uptake transporters of the SLCO and the SLC22A superfamilies.
Collapse
Affiliation(s)
- Megan Roth
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
24
|
Foster DW. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J Clin Invest 2012; 122:1958-9. [PMID: 22833869 DOI: 10.1172/jci63967] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the catabolic state with no food intake, the liver generates ketones by breaking down fatty acids. During the nocturnal fast or longer starvation periods, this protects the brain, which cannot oxidize fatty acids. In 1977, we published a study in the JCI noting the surprising realization that malonyl-CoA, the substrate of fatty acid synthesis, was also an inhibitor of fatty acid oxidation. Subsequent experiments have borne out this finding and furthered our understanding of molecular metabolism.
Collapse
Affiliation(s)
- Daniel W Foster
- Department of Internal Medicine, University Of Texas SW Medical Center, Dallas, Texas 75390-9030, USA.
| |
Collapse
|
25
|
Galluccio M, Amelio L, Scalise M, Pochini L, Boles E, Indiveri C. Over-expression in E. coli and purification of the human OCTN2 transport protein. Mol Biotechnol 2012; 50:1-7. [PMID: 21487769 DOI: 10.1007/s12033-011-9406-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The OCTN2 cDNA amplified from human skin fibroblast was cloned in pET-41a(+) carrying the glutathione S-transferase (GST) gene. The construct pET-41a(+)-hOCTN2 was used to express the GST-hOCTN2 fusion protein in Escherichia coli Rosetta(DE3)pLysS. The best over-expression was obtained after 6 h of induction with IPTG at 28°C. The GST-hOCTN2 polypeptide was collected in the inclusion bodies and showed an apparent molecular mass on SDS-PAGE of 85 kDa. After solubilization with a buffer containing 0.8% sarkosyl and 3 M urea, the fusion protein was applied onto a Ni(2+)-chelating chromatography column. The purified GST-hOCTN2 was treated with thrombin, and the hOCTN2 was separated from the GST by size exclusion chromatography. After the whole procedure, a yield of about 0.2 mg purified protein per liter of cell culture was obtained. To improve the protein yield, hOCTN2 cDNA was subjected to codon bias. The second codon CGG was substituted with AAA; the substitution led to the mutation R2K in the hOCTN2 protein. hOCTN2(R2K) cDNA was cloned in pET-21a(+) carrying a C-terminal 6His tag. The resulting protein was expressed in E. coli Rosetta(DE3)pLysS and purified by Ni(2+)-chelating chromatography. A yield of about 3.5 mg purified protein per liter of cell culture was obtained with this procedure.
Collapse
Affiliation(s)
- Michele Galluccio
- Department of Cell Biology, University of Calabria, Via P. Bucci 4c, 87036, Arcavacata di Rende, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Scalise M, Galluccio M, Pochini L, Indiveri C. Over-expression in Escherichia coli, purification and reconstitution in liposomes of the third member of the OCTN sub-family: the mouse carnitine transporter OCTN3. Biochem Biophys Res Commun 2012; 422:59-63. [PMID: 22561016 DOI: 10.1016/j.bbrc.2012.04.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 01/11/2023]
Abstract
pET-21a(+)-mOCTN3-6His was constructed and used for over-expression in Escherichia coli Rosetta(DE3)pLysS. After IPTG induction a protein with apparent molecular mass of 53 kDa was collected in the insoluble fraction of the cell lysate and purified by Ni(2+)-chelating chromatography with a yield of 2mg/l of cell culture. The over-expressed protein was identified with mOCTN3 by anti-His antibody and reconstitution in liposomes. mOCTN3 required peculiar conditions for optimal expression and reconstitution in liposomes. The protein catalyzed a time dependent [(3)H]carnitine uptake which was stimulated by intraliposomal ATP and nearly independent of the pH. The K(m) for carnitine was 36 μM. [(3)H]carnitine transport was inhibited by carnitine analogues and some Cys and NH(2) reagents. This paper represents the first outcome in over-expressing, in active form, the third member of the OCTN sub-family, mOCTN3, in E. coli.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department of Cell Biology, University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy
| | | | | | | |
Collapse
|
27
|
Schlegel G, Keller J, Hirche F, Geissler S, Schwarz FJ, Ringseis R, Stangl GI, Eder K. Expression of genes involved in hepatic carnitine synthesis and uptake in dairy cows in the transition period and at different stages of lactation. BMC Vet Res 2012; 8:28. [PMID: 22417075 PMCID: PMC3361467 DOI: 10.1186/1746-6148-8-28] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/14/2012] [Indexed: 12/14/2022] Open
Abstract
Background In rodents and pigs, it has shown that carnitine synthesis and uptake of carnitine into cells are regulated by peroxisome proliferator-activated receptor α (PPARA), a transcription factor which is physiologically activated during fasting or energy deprivation. Dairy cows are typically in a negative energy balance during early lactation. We investigated the hypothesis that genes of carnitine synthesis and uptake in dairy cows are enhanced during early lactation. Results mRNA abundances of PPARA and some of its classical target genes and genes involved in carnitine biosynthesis [trimethyllysine dioxygenase (TMLHE), 4-N-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1), γ-butyrobetaine dioxygenase (BBOX1)] and uptake of carnitine [novel organic cation transporter 2 (SLC22A5)] as well as carnitine concentrations in liver biopsy samples of 20 dairy cows in late pregnancy (3 wk prepartum) and early lactation (1 wk, 5 wk, 14 wk postpartum) were determined. From 3 wk prepartum to 1 wk postpartum, mRNA abundances of PPARΑ and several PPARΑ target genes involved in fatty acid uptake, fatty acid oxidation and ketogenesis in the liver were strongly increased. Simultaneously, mRNA abundances of enzymes of carnitine synthesis (TMLHE: 10-fold; ALDH9A1: 6-fold; BBOX1: 1.8-fold) and carnitine uptake (SLC22A5: 13-fold) and the concentration of carnitine in the liver were increased from 3 wk prepartum to 1 wk postpartum (P < 0.05). From 1 wk to 5 and 14 wk postpartum, mRNA abundances of these genes and hepatic carnitine concentrations were declining (P < 0.05). There were moreover positive correlations between plasma concentrations of non-esterified fatty acids (NEFA) and hepatic carnitine concentrations at 1 wk, 5 wk and 14 wk postpartum (P < 0.05). Conclusions The results of this study show for the first time that the expression of hepatic genes of carnitine synthesis and cellular uptake of carnitine is enhanced in dairy cows during early lactation. These changes might provide an explanation for increased hepatic carnitine concentrations observed in 1 wk postpartum and might be regarded as a physiologic means to provide liver cells with sufficient carnitine required for transport of excessive amounts of NEFA during a negative energy balance.
Collapse
Affiliation(s)
- Gloria Schlegel
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Baragou S, Pio M, Di Bernardo S, Ksontini TB, Dommange SJ, Bonafe L, Meijboom E, Sekarski N. [A cause of dilated cardiomyopathy in a child: primary carnitine deficiency]. Ann Cardiol Angeiol (Paris) 2011; 63:107-10. [PMID: 22260907 DOI: 10.1016/j.ancard.2011.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 12/04/2011] [Indexed: 12/30/2022]
Abstract
AIM The aim of this case report was to show the importance to research metabolic etiology, especially a carnitine deficiency in dilated cardiomyopathy of children. CASE REPORT A three years old Togolese child presented muscular hypotonia, dyspnea. Examination showed left galop murmur and systolic murmur 2/6. Chest X-ray showed cardiomegaly (CTI: 0.66), electrocardiogram, a sinusal rythm, left ventricle hypertrophy and T wave abnormalities. Echocardiogram showed a markedly dilated left ventricle with reduced systolic function (EF: 0.43; reference range 0.55-0.80) and moderate mitral regurgitation. The inflammatory signs where negatives. Magnetic resonance imaging don't show signs of ischemic or myocarditis. The levels of free and total plasmatic carnitine decreased: 3μmol/L (N: 18-48μmol/L) and 5μmol/l (N: 29-70μmol/L) respectively. Mutation analysis of the gene SLC22A5 confirms the diagnosis of primary systemic carnitine deficiency. Treatment with oral carnitine was started at 200mg/kg per day. Within three weeks of treatment, we observed the decrease of all symptoms and the left ventricular size and function normalized (EF: 0.62). He has now been on oral carnitine for live. CONCLUSION Primary carnitine deficiency is a cause of dilated cardiomyopathy in child. It must systematically be suspected when a child presents a primitive cardiomyopathy. The treatment with oral carnitine for live is simple, with excellent prognosis.
Collapse
Affiliation(s)
- S Baragou
- Service de cardiologie, CHU Campus, BP 20773, Lomé, Togo.
| | - M Pio
- Service de cardiologie, CHU Campus, BP 20773, Lomé, Togo
| | - S Di Bernardo
- Service de pédiatrie moléculaire, CHUV Lausanne, Lausanne, Suisse
| | | | | | - L Bonafe
- Service de cardiologie pédiatrique, CHUV Lausanne, Lausanne, Suisse
| | - E Meijboom
- Service de pédiatrie moléculaire, CHUV Lausanne, Lausanne, Suisse
| | - N Sekarski
- Service de pédiatrie moléculaire, CHUV Lausanne, Lausanne, Suisse
| |
Collapse
|
29
|
Functional analysis of pharmacogenetic variants of human organic cation/carnitine transporter 2 (hOCTN2) identified in Singaporean populations. Biochem Pharmacol 2011; 82:1692-9. [DOI: 10.1016/j.bcp.2011.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 12/30/2022]
|
30
|
Reconstitution in liposomes of the functionally active human OCTN1 (SLC22A4) transporter overexpressed in Escherichia coli. Biochem J 2011; 439:227-33. [DOI: 10.1042/bj20110544] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The hOCTN1 (human organic cation transporter 1) overexpressed in Escherichia coli and purified by Ni-chelating chromatography has been reconstituted in liposomes by detergent removal with a batch-wise procedure. The reconstitution was optimized with respect to the protein concentration, the detergent/phospholipid ratio and the time of incubation with Amberlite XAD-4 resin. Time-dependent [14C]tetraethylammonium, [3H]carnitine or [3H]ergothioneine uptake was measured in proteoliposomes with activities ratios of 8:1.3:1 respectively. Optimal activity was found at pH 8.0. The transport depended on intraliposomal ATP. [14C]tetraethylammonium transport was inhibited by several compounds. The most effective were acetyl-choline and γ-butyrobetaine, followed by acetylcarnitine and tetramethylammonium. Reagents such as pyridoxal 5-phosphate, MTSES [sodium (2-sulfonatoethyl) methanethiosulfonate] and mercurials strongly inhibited the transport. From kinetic analysis of tetraethylammonium transport a Km of 0.77 mM was calculated. Acetylcholine and γ-butyrobetaine behaved as competitive inhibitors of TEA (tetraethylammonium) transport with Ki values of 0.44 and 0.63 mM respectively.
Collapse
|
31
|
Wen G, Kühne H, Rauer C, Ringseis R, Eder K. Mouse γ-butyrobetaine dioxygenase is regulated by peroxisome proliferator-activated receptor α through a PPRE located in the proximal promoter. Biochem Pharmacol 2011; 82:175-83. [PMID: 21549104 DOI: 10.1016/j.bcp.2011.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/12/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
Convincing evidence from studies with peroxisome proliferator-activated receptor (PPAR)α-deficient mice suggested that the carnitine biosynthetic enzyme γ-butyrobetaine dioxygenase (BBD) is regulated by PPARα. However, the identification of BBD as a direct PPARα target gene as well as its exact regulation remained to be demonstrated. In silico-analysis of the mouse BBD promoter revealed seven putative peroxisome proliferator response elements (PPRE) with high similarity to the consensus PPRE. Luciferase reporter gene assays using mutated and non-mutated serial 5'-truncation BBD promoter reporter constructs revealed that one PPRE located at -75 to -87 relative to the transcription start site in the proximal BBD promoter is probably functional. Using gel shift assays we observed in vitro-binding of PPARα/RXRα heterodimer to this PPRE confirming that it is functional. In conclusion, the present study clearly shows that mouse BBD is a direct PPARα target gene and that transcriptional up-regulation of mouse BBD by PPARα is likely mediated by binding of the PPARα/RXR heterodimer to one PPRE located in its proximal promoter region. The results confirm emerging evidence from recent studies that PPARα plays a key role in the regulation of carnitine homeostasis by controlling genes involved in both, carnitine synthesis and carnitine uptake.
Collapse
Affiliation(s)
- Gaiping Wen
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-Universität, Heinrich-Buff-Ring Giessen, Germany
| | | | | | | | | |
Collapse
|
32
|
Eichhorst J, Alcorn J, Lepage J, Etter M, Antonishyn NA, Fitterer B, Birch DA, Agopsowicz KL, Ruthnum L, Greenberg CR, Lehotay DC. Elevated neonatal 3-OH isovalerylcarnitine due to breast milk sources in maternal 3-MCC deficiency. Mol Genet Metab 2010; 101:84-6. [PMID: 20619711 DOI: 10.1016/j.ymgme.2010.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
We report a positive newborn screen for 3-hydroxyisovalerylcarnitine (C(5)OH) with an absence of 3-methylcrotonyl-coenzyme A carboxylase deficiency in the neonate. Subsequent blood tests demonstrated persistently elevated C(5)OH. Serial testing of the mother identified markedly elevated C(5)OH in both maternal blood and breast milk. High C(5)OH milk concentrations provide a significant source of C(5)OH to the nursing neonate and possibly explains its persistent elevation in the neonate, a commonly observed finding in maternal 3-MCC deficiency.
Collapse
Affiliation(s)
- Jeff Eichhorst
- Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
D'Argenio G, Petillo O, Margarucci S, Torpedine A, Calarco A, Koverech A, Boccia A, Paolella G, Peluso G. Colon OCTN2 gene expression is up-regulated by peroxisome proliferator-activated receptor gamma in humans and mice and contributes to local and systemic carnitine homeostasis. J Biol Chem 2010; 285:27078-27087. [PMID: 20558736 PMCID: PMC2930707 DOI: 10.1074/jbc.m110.109678] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/07/2010] [Indexed: 12/25/2022] Open
Abstract
In the large intestine organic cation transporter type-2 (OCTN2) is recognized as a transporter of compounds such as carnitine and colony sporulation factor, promoting health of the colon intestinal epithelium. Recent reports suggest that OCTN2 expression in small intestine is under control of peroxisome proliferator-activated receptor-alpha (PPARalpha). However, PPARalpha contribution to colonic OCTN2 expression remains controversial. Here we examined the transcriptional regulation of colon OCTN2 gene by PPARgamma. To exclude any additional modulation of other PPAR to OCTN2 expression, we used both in vivo and in vitro PPAR-null models and specific PPAR inhibitors. The PPARgamma agonists thiazolidinediones increased both OCTN2 mRNA and protein expression in colonic epithelial cell lines independently by PPARalpha expression. The induction was blocked only by PPARgamma antagonists or by gammaORF4, a PPARgamma isoform with dominant negative activity, suggesting a PPARgamma-dependent mechanism. A conserved noncanonical PPAR-responsive element was found by computational analysis in the first intron of human OCTN2 gene and validated by EMSA assay. Promoter-reporter assays further confirmed transcriptional functionality of the putative PPAR response element, whereas selective mutation caused complete loss of responsiveness to PPARgamma activation. Finally, adenovirus-mediated overexpression of constitutively active PPARgamma mutant increased colon OCTN2 expression in PPARalpha(-/-) mice. Interestingly, animals overexpressing colon PPARgamma showed a significant increase in plasma carnitine, thus demonstrating the functional contribution of large intestine to systemic carnitine homeostasis. This study reveals a PPARgamma-dependent absorption machinery in colon that is likely involved in the health of colon epithelium, in the microbiota-host interactions and in the absorption of nutraceuticals and drugs.
Collapse
Affiliation(s)
- Giuseppe D'Argenio
- Gastroenterologia, Dipartimento di Medicina Clinica e Sperimentale, Federico II University, 80131 Naples, Italy
| | - Orsolina Petillo
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Sabrina Margarucci
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Angela Torpedine
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Anna Calarco
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | | | - Angelo Boccia
- Dipartimento di Biochimica e Biotecnologie Mediche, Federico II University, CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy
| | - Giovanni Paolella
- Dipartimento di Biochimica e Biotecnologie Mediche, Federico II University, CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy
| | - Gianfranco Peluso
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy.
| |
Collapse
|
34
|
Rytting E, Audus KL. Effects of low oxygen levels on the expression and function of transporter OCTN2 in BeWo cells. J Pharm Pharmacol 2010; 59:1095-102. [PMID: 17725851 DOI: 10.1211/jpp.59.8.0006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Although hypoxia is normal in early pregnancy, low placental oxygen concentrations later in pregnancy are often linked to complications such as pre-eclampsia and intrauterine growth restriction. The effects of low oxygen levels on drug and nutrient uptake via the organic cation transporter OCTN2 has been studied in BeWo cells, an in-vitro model of human trophoblast. BeWo cells were cultured under 20% (control) or 2% O2 (hypoxia) for 48 h before each experiment. In-vitro hypoxia was also simulated by the addition of CoCl2 to the cell culture medium. RT-PCR indicated increased transcription of OCTN2 in BeWo cells cultured under hypoxia, but Western blots did not show a corresponding increase in the amount of OCTN2 protein in the hypoxic cells compared with control. Hypoxia resulted in significant reductions in OCTN2-mediated carnitine uptake. Decreased placental transport of carnitine may lead to symptoms of carnitine deficiency in infants from hypoxic pregnancies, whether caused by high altitude, pre-eclampsia or other factors. The OCTN1 substrate ergothioneine reversed the effects of hypoxia on carnitine transport, but identical concentrations of N-acetylcysteine, another water-soluble intracellular antioxidant, did not have the same effect.
Collapse
Affiliation(s)
- Erik Rytting
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
35
|
The role of peroxisome proliferator-activated receptor α in transcriptional regulation of novel organic cation transporters. Eur J Pharmacol 2010; 628:1-5. [DOI: 10.1016/j.ejphar.2009.11.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 11/08/2009] [Accepted: 11/17/2009] [Indexed: 12/26/2022]
|
36
|
LinToh DS, Yee JY, Koo SH, Murray M, Lee EJD. Genetic Variations of the SLC22A5 Gene in the Chinese and Indian Populations of Singapore. Drug Metab Pharmacokinet 2010; 25:112-9. [DOI: 10.2133/dmpk.25.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Carnitine synthesis and uptake into cells are stimulated by fasting in pigs as a model of nonproliferating species. J Nutr Biochem 2009; 20:840-7. [DOI: 10.1016/j.jnutbio.2008.07.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/18/2008] [Accepted: 07/30/2008] [Indexed: 01/05/2023]
|
38
|
Activities of γ-butyrobetaine dioxygenase and concentrations of carnitine in tissues of pigs. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:324-31. [DOI: 10.1016/j.cbpa.2009.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/07/2009] [Accepted: 03/08/2009] [Indexed: 11/19/2022]
|
39
|
Over-expression in E. coli and purification of the human OCTN1 transport protein. Protein Expr Purif 2009; 68:215-20. [PMID: 19567267 DOI: 10.1016/j.pep.2009.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 11/23/2022]
Abstract
The hOCTN1 amplified from skin fibroblast RNA was cloned in pET-28a(+) or in pH6EX3 plasmid. The encoded recombinant hOCTN1 resulted in a 6-His tagged fusion protein with a 34 or 21 amino acid extra N-terminal sequence in the pET-28a(+)-hOCTN1 or in the pH6EX3-hOCTN1 constructs, respectively. Both constructs were used to express the hOCTN1 in Escherichia coli Rosetta(DE3)pLysS. The best over-expression was obtained with the pH6EX3-hOCTN1 after 6h of induction with IPTG at 28 degrees C. The expressed protein with an apparent molecular mass of 54kDa, was collected in the insoluble fraction of the cell lysate. Further improvement was obtained using the E. coli RosettaGami2(DE3)pLysS strain to express the protein encoded by pH6EX3-hOCTN1. After 6h of induction with IPTG at 28 degrees C, hOCTN1 accounted for 30% of the total protein in the insoluble pellet. This protein fraction was washed with Triton X-100 and deoxycholate, solubilized with a buffer containing 0.8% Sarkosyl, 3M urea and applied to a Ni2+-chelating chromatography column. The homogeneously purified hOCTN1 was eluted with a buffer containing 50 mM imidazole, 0.1% Triton X-100 and 50 mM 2-mercaptoethanol. A yield of about 3mg purified protein per liter of cell culture was obtained.
Collapse
|
40
|
García-Delgado M, Peral MJ, Durán JM, García-Miranda P, Calonge ML, Ilundáin AA. Ontogeny of Na+/l-carnitine transporter and of γ-trimethylaminobutyraldehyde dehydrogenase and γ-butyrobetaine hydroxylase genes expression in rat kidney. Mech Ageing Dev 2009; 130:227-33. [DOI: 10.1016/j.mad.2008.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/20/2008] [Accepted: 12/13/2008] [Indexed: 11/26/2022]
|
41
|
Gutgesell A, Ringseis R, Brandsch C, Stangl GI, Hirche F, Eder K. Peroxisome proliferator-activated receptor alpha and enzymes of carnitine biosynthesis in the liver are down-regulated during lactation in rats. Metabolism 2009; 58:226-32. [PMID: 19154956 DOI: 10.1016/j.metabol.2008.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
This study investigated the hypothesis that lactation lowers gene expression of peroxisome proliferator-activated receptor (PPAR) alpha in the liver and that this leads to a down-regulation of hepatic enzymes involved in carnitine synthesis and novel organic cation transporters (OCTNs). Thirty-two pregnant female rats were divided into 4 groups. In the first group, all pups were removed, whereas in the other groups, litters were adjusted to sizes of 4, 10, or 18 pups per dam. Dams suckling their litters, irrespective of litter size, had lower relative messenger RNA concentrations of PPARalpha, various classic PPARalpha target genes involved in fatty acid catabolism, as well as enzymes involved in carnitine synthesis (trimethyllysine dioxygenase, 4-N-trimethylaminobutyraldehyde dehydrogenase, gamma-butyrobetaine dioxygenase) and OCTN1 in the liver than dams whose litters were removed (P < .05). Moreover, dams suckling their litters had a reduced activity of gamma-butyrobetaine dioxygenase in the liver and reduced concentrations of carnitine in plasma, liver, and muscle compared with dams without litters (P < .05). In conclusion, the present study demonstrates for the first time that lactation leads to a down-regulation of PPARalpha and genes involved in hepatic carnitine synthesis and uptake of carnitine (OCTN1) in the liver, irrespective of litter size. It is moreover suggested that down-regulation of PPARalpha in the liver may be a means to conserve energy and metabolic substrates for milk production in the mammary gland.
Collapse
Affiliation(s)
- Anke Gutgesell
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, D-06108 Halle, Saale, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Tahara H, Yee SW, Urban TJ, Hesselson S, Castro RA, Kawamoto M, Stryke D, Johns SJ, Ferrin TE, Kwok PY, Giacomini KM. Functional genetic variation in the basal promoter of the organic cation/carnitine transporters OCTN1 (SLC22A4) and OCTN2 (SLC22A5). J Pharmacol Exp Ther 2009; 329:262-71. [PMID: 19141711 DOI: 10.1124/jpet.108.146449] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The organic cation/ergothioneine transporter OCTN1 (SLC22A4) and the high-affinity carnitine transporter OCTN2 (SLC22A5), play an important role in the disposition of xenobiotics and endogenous compounds. Here, we analyzed the sequence of the proximal promoter regions of OCTN1 and OCTN2 in four ethnic groups and determined the effects of the identified genetic variants on transcriptional activities and mRNA expression. Six variants were found in the proximal promoter of OCTN1, one of which showed high allele frequency ranging from 13 to 34% in samples from individuals with ancestries in Africa, Europe, China, and Mexico. OCTN1 haplotypes had similar activities as the reference in luciferase reporter assays. For OCTN2, three of the seven variants identified in the proximal promoter showed allele frequencies greater than 29.5% in all populations, with the exception of -207C>G (rs2631367) that was monomorphic in Asian Americans. OCTN2 haplotypes containing -207G, present in all populations, were associated with a gain of function in luciferase reporter assays. Consistent with reporter assays, OCTN2 mRNA expression levels in lymphoblastoid cell lines (LCLs) from gene expression analysis were greater in samples carrying a marker for -207G. This SNP seems to contribute to racial differences in OCTN2 mRNA expression levels in LCLs. Our study with healthy subjects (n = 16) homozygous for either -207C or -207G, showed no appreciable effect of this SNP on carnitine disposition. However, there were significant effects of gender on carnitine plasma levels (p < 0.01). Further in vivo studies of OCTN2 promoter variants on carnitine disposition and variation in drug response are warranted.
Collapse
Affiliation(s)
- Harunobu Tahara
- Department of Biopharmaceutical Sciences, University of California, San Francisco, San Francisco, CA 94158-2911, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pochini L, Scalise M, Indiveri C. Inactivation by omeprazole of the carnitine transporter (OCTN2) reconstituted in liposomes. Chem Biol Interact 2008; 179:394-401. [PMID: 19041296 DOI: 10.1016/j.cbi.2008.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/26/2008] [Accepted: 10/29/2008] [Indexed: 11/25/2022]
Abstract
The effect of omeprazole on the carnitine (OCTN2) transporter reconstituted in liposomes has been studied. Omeprazole externally added to the proteoliposomes, inhibited the carnitine/carnitine antiport catalysed by the reconstituted transporter. The inhibition was partially reversed by DTE indicating that it was caused by the covalent reaction of omeprazole with Cys residue(s) of the transporter. Similar results were found with intact brush border vesicles. The residual inhibition of the transport in the presence of DTE, indicated the occurrence of an alternative inhibition mechanism of non-covalent nature. The IC(50) of the two inhibition modes derived from dose-response curves, were 5.7 microM and 20.4 microM, respectively. Kinetic studies of the inhibition showed that in the absence of DTE omeprazole behaved as non-competitive inhibitor. On the contrary, in the presence of DTE competitive inhibition was found. The K(i) of the transporter for the inhibitor was 5.2 microM or 14.6 microM in the absence or presence of DTE, i.e., under condition of covalent (non-competitive) or non-covalent (competitive) interaction of the inhibitor with the transporter. The presence of the substrate during the incubation of the omeprazole (in the absence of DTE) with the proteoliposomes facilitated the covalent reaction of the pharmacological compound with the transporter. Omeprazole did not inhibit when present in the internal proteoliposomal compartment, indicating that the inhibition was specifically due to interaction with external site(s) of the protein. The pharmacological compound was not transported by the reconstituted transporter. The possible in vivo implications of the interaction of omeprazole with the transporter are discussed.
Collapse
Affiliation(s)
- Lorena Pochini
- Department of Cell Biology, University of Calabria, Via P.Bucci 4c, 87036 Arcavacata di Rende, CS, Italy
| | | | | |
Collapse
|
44
|
Ling B, Alcorn J. Acute administration of cefepime lowers L-carnitine concentrations in early lactation stage rat milk. J Nutr 2008; 138:1317-22. [PMID: 18567754 DOI: 10.1093/jn/138.7.1317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our study investigated the potential for important in vivo drug-nutrient transport interactions at the lactating mammary gland using the L-carnitine transporter substrates, cefepime and L-carnitine, as proof-of-concept. On d 4 (n = 6/treatment) and d 10 (n = 6/treatment) of lactation, rats were administered cefepime (250 mg/h) or saline by continuous i.v. infusion (4 h). Serum and milk L-carnitine and cefepime concentrations were quantified by HPLC-UV. In whole mammary gland, organic cation/carnitine transporter (OCTN)1, OCTN2, OCTN3, amino acid transporter B(0,+) (ATB(0,+)), and L-carnitine transporter 2 expression were determined by quantitative RT-PCR and by western blot and immunohistochemistry when possible. Cefepime caused a 56% decrease in milk L-carnitine concentrations on lactation d 4 (P = 0.0048) but did not affect milk L-carnitine at lactation d 10 or serum L-carnitine concentrations at either time. The mean L-carnitine and cefepime milk:serum ratios (M/S) decreased from 9.1 +/- 0.4 to 4.9 +/- 0.6 (P < 0.0001) and 0.89 +/- 0.3 to 0.12 +/- 0.02 (P = 0.0473), respectively, between d 4 and d 10 of lactation. In both groups, OCTN2 (P < 0.0001), OCTN3 (P = 0.0039), and ATB(0,+) (P = 0.004) mRNA expression and OCTN2 protein (P < 0.0001) were higher in mammary glands at d 4 of lactation compared with d 10. Immunohistochemistry revealed OCTN1 and OCTN2 localization in the mammary alveolar epithelium and OCTN3 expression in the interstitial space and blood vessel endothelium. In conclusion, cefepime significantly decreased milk L-carnitine concentrations only at d 4 of lactation. Relative to d 10, enhanced expression of OCTN2 and ATB(0,+) in mammary glands at d 4 of lactation and higher M/S (L-carnitine and cefepime) suggests cefepime competes with L-carnitine for L-carnitine transporters expressed in the lactating mammary gland to adversely affect L-carnitine milk concentrations and these effects depend upon lactation stage.
Collapse
Affiliation(s)
- Binbing Ling
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5C9 Canada
| | | |
Collapse
|
45
|
A moderate excess of dietary lysine lowers plasma and tissue carnitine concentrations in pigs. Br J Nutr 2008; 101:190-6. [PMID: 18492302 DOI: 10.1017/s0007114508994770] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study was performed to investigate whether dietary lysine concentration influences the carnitine status of pigs. Therefore, an experiment with twenty young pigs with an average body weight of 21 kg was performed which were fed either a control diet (9.7 g lysine/kg) or a diet with a moderate excess of lysine (16.8 g lysine/kg). Concentrations of all the other amino acids did not differ between the diets. Pigs fed the high-lysine diet had lower concentrations of free and total carnitine in plasma, liver, kidney and skeletal muscle than control pigs (P<0.05). Pigs fed the high-lysine diet moreover had an increased concentration of trimethyllysine (TML), a reduced mRNA abundance of TML dioxygenase and reduced concentrations of gamma-butyrobetaine (BB) in muscle, indicating that the conversion of TML into BB in muscle was impaired. Concentrations of BB, the metabolic precursor of carnitine, in plasma, liver and kidney were also reduced in pigs fed the high-lysine diet while the activity of BB dioxygenase in kidney was not different and that in liver was even increased compared to control pigs (P<0.05). In conclusion, this study shows that a moderate dietary excess of lysine lowers plasma and tissue carnitine concentrations in pigs. Reduced concentrations of BB in liver and kidney suggest that the depressed carnitine status was likely caused by a decreased rate of carnitine synthesis due to a diminished availability of carnitine precursor, probably mainly as a result of an impaired BB formation in muscle.
Collapse
|
46
|
Mitchell GA, Gauthier N, Lesimple A, Wang SP, Mamer O, Qureshi I. Hereditary and acquired diseases of acyl-coenzyme A metabolism. Mol Genet Metab 2008; 94:4-15. [PMID: 18337138 DOI: 10.1016/j.ymgme.2007.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 01/23/2023]
Abstract
Coenzyme A (CoA) sequestration, toxicity or redistribution (CASTOR) is predicted to occur in many hereditary and acquired conditions in which the degradation of organic acyl esters of CoA is impaired. The resulting accumulation of CoA esters and reduction of acetyl-CoA and free CoA (CoASH) will then trigger a cascade of reactions leading to clinical disease. Most conditions detected by expanded neonatal screening are CASTOR diseases. We review acyl-CoA metabolism, including CoASH synthesis, transesterification of acyl-CoAs to glycine, glutamate or l-carnitine and hydrolysis of CoA esters. Because acyl-CoAs do not cross biological membranes, their main toxicity is intracellular, primarily within mitochondria. Treatment measures directed towards removal of circulating metabolites do not address this central problem of intracellular acyl-CoA accumulation. Treatments usually involve the restriction of dietary precursors and administration of agents like l-carnitine and glycine, which can accept the transfer of acyl groups from acyl-CoA, liberating CoASH. Many hereditary CASTOR patients are chronically ill, with persistent symptoms and continuously abnormal metabolites in blood and urine despite good compliance with treatment. Conversely, asymptomatic patients are also common in hereditary CASTOR conditions. Future challenges include the understanding of pathophysiologic mechanisms in CASTOR diseases, the discovery of reliable predictors of outcome in individual patients and the establishment of therapeutic trials with sufficient numbers of patients to permit solid therapeutic conclusions.
Collapse
Affiliation(s)
- Grant A Mitchell
- Division of Medical Genetics, CHU Sainte-Justine, 3175 Côte Sainte-Catherine Road, Montréal, Que., Canada H1R 2A6.
| | | | | | | | | | | |
Collapse
|
47
|
Ringseis R, Luci S, Spielmann J, Kluge H, Fischer M, Geissler S, Wen G, Hirche F, Eder K. Clofibrate treatment up-regulates novel organic cation transporter (OCTN)-2 in tissues of pigs as a model of non-proliferating species. Eur J Pharmacol 2008; 583:11-7. [DOI: 10.1016/j.ejphar.2008.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 12/17/2007] [Accepted: 01/14/2008] [Indexed: 01/09/2023]
|
48
|
PPARα Mediates Transcriptional Upregulation of Novel Organic Cation Transporters-2 and -3 and Enzymes Involved in Hepatic Carnitine Synthesis. Exp Biol Med (Maywood) 2008; 233:356-65. [DOI: 10.3181/0706-rm-168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We tested the hypothesis that transcription of novel organic cation transporters (OCTNs) is directly regulated by peroxisome proliferator–activated receptor (PPAR)-α. Therefore, wild-type mice and mice deficient in PPARα (PPARα−/−) were treated with the PPARα agonist WY 14,643. Wild-type mice treated with WY 14,643 had a greater abundance of OCTN2 mRNA in their liver, muscle, kidney, and small intestine and a greater abundance of OCTN3 mRNA in kidney and small intestine than did untreated wild-type mice ( P < 0.05). Moreover, wild-type mice treated with WY 14,643 had greater mRNA abundances of enzymes involved in hepatic carnitine synthesis (4-N-trimethylaminobutyraldehyde dehydrogenase, γ-butyrobetaine dioxygenase) and increased carnitine concentrations in liver and muscle than did untreated wild-type mice ( P < 0.05). Untreated PPARα−/− mice had a lower abundance of OCTN2 mRNA in liver, kidney, and small intestine and lower carnitine concentrations in plasma, liver, and kidney than did untreated wild-type mice ( P < 0.05). In PPARα−/− mice, treatment with WY 14,643 did not influence mRNA abundance of OCTN2 and OCTN3 and carnitine concentrations in all tissues analyzed. The abundance of OCTN1 mRNA in all the tissues analyzed was not changed by treatment with WY 14,643 in wild-type or PPARα−/− mice. In conclusion, this study shows that transcriptional upregulation of OCTN2 and OCTN3 in tissues and of enzymes involved in hepatic carnitine biosynthesis are mediated by PPARα. It also shows that PPARα mediates changes of whole-body carnitine homeostasis in mice by upregulation of carnitine transporters and enzymes involved in carnitine synthesis.
Collapse
|
49
|
Luci S, Hirche F, Eder K. Fasting and Caloric Restriction Increases mRNA Concentrations of Novel Organic Cation Transporter-2 and Carnitine Concentrations in Rat Tissues. ANNALS OF NUTRITION AND METABOLISM 2008; 52:58-67. [DOI: 10.1159/000118872] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/06/2007] [Indexed: 11/19/2022]
|
50
|
Genome-wide effects of acute progressive feed restriction in liver and white adipose tissue. Toxicol Appl Pharmacol 2008; 230:41-56. [PMID: 18394668 DOI: 10.1016/j.taap.2008.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/22/2008] [Accepted: 02/05/2008] [Indexed: 01/06/2023]
Abstract
Acute progressive feed restriction (APFR) represents a specific form of caloric restriction in which feed availability is increasingly curtailed over a period of a few days to a few weeks. It is often used for control animals in toxicological and pharmacological studies on compounds causing body weight loss to equalize weight changes between experimental and control groups and thereby, intuitively, to also set their metabolic states to the same phase. However, scientific justification for this procedure is lacking. In the present study, we analyzed by microarrays the impact on hepatic gene expression in rats of two APFR regimens that caused identical diminution of body weight (19%) but differed slightly in duration (4 vs. 10 days). In addition, white adipose tissue (WAT) was also subjected to the transcriptomic analysis on day-4. The data revealed that the two regimens led to distinct patterns of differentially expressed genes in liver, albeit some major pathways of energy metabolism were similarly affected (particularly fatty acid and amino acid catabolism). The reason for the divergence appeared to be entrainment by the longer APFR protocol of peripheral oscillator genes, which resulted in derailment of circadian rhythms and consequent interaction of altered diurnal fluctuations with metabolic adjustments in gene expression activities. WAT proved to be highly unresponsive to the 4-day APFR as only 17 mRNA levels were influenced by the treatment. This study demonstrates that body weight is a poor proxy of metabolic state and that the customary protocols of feed restriction can lead to rhythm entrainment.
Collapse
|