1
|
Lv L, Zhang H, Liu Z, Lei L, Feng Z, Zhang D, Ren Y, Zhao S. Comparative study of yeast selenium vs. sodium selenite on growth performance, nutrient digestibility, anti-inflammatory and anti-oxidative activity in weaned piglets challenged by Salmonella typhimurium. Innate Immun 2020; 26:248-258. [PMID: 31766926 PMCID: PMC7251790 DOI: 10.1177/1753425919888566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022] Open
Abstract
The present study was conducted to investigate the effects of dietary supplementation of selenium from different sources on the growth performance, nutrient digestibility, and blood immune indices of piglets orally challenged with Salmonella typhimurium (ST). In a 2 × 2 factorial arrangement, 32 piglets (6.43 ± 0.54 kg of body mass) were assigned into four groups with or without dietary inclusion of sodium selenite (SS) or yeast selenium (YS) and with or without ST challenge (5 ml 1 × 109 cfu/ml ST or 5 ml saline) on d 13. In each period, YS increased average daily feed intake and average daily gain but did not reach statistical significance. During the challenged stage, piglets fed YS had higher digestibility of dry matter, crude protein, crude fat, and YS reduced the amount of Escherichia coli in feces. Additionally, YS regulated the composition of T-lymphocyte subset and influenced the production of inflammatory cytokines. In conclusion, in this study selenium-enriched yeast was more effective in enhancing nutrient digestibility, and inhibiting inflammation and oxidative stress by inducing the activity of the lymphocytes, expression of antioxidant enzymes and so on.
Collapse
Affiliation(s)
- Liangkang Lv
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Hui Zhang
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Zhengya Liu
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Long Lei
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Zhi Feng
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Dandan Zhang
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Ying Ren
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Shengjun Zhao
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| |
Collapse
|
2
|
Kumar A, Allison A, Henry M, Scales A, Fouladkhah AC. Development of Salmonellosis as Affected by Bioactive Food Compounds. Microorganisms 2019; 7:microorganisms7090364. [PMID: 31540475 PMCID: PMC6780870 DOI: 10.3390/microorganisms7090364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Infections caused by Salmonella serovars are the leading cause of foodborne hospitalizations and deaths in Americans, extensively prevalent worldwide, and pose a considerable financial burden on public health infrastructure and private manufacturing. While a comprehensive review is lacking for delineating the role of dietary components on prevention of Salmonellosis, evidence for the role of diet for preventing the infection and management of Salmonellosis symptoms is increasing. The current study is an evaluation of preclinical and clinical studies and their underlying mechanisms to elaborate the efficacy of bioactive dietary components for augmenting the prevention of Salmonella infection. Studies investigating dietary components such as fibers, fatty acids, amino acids, vitamins, minerals, phenolic compounds, and probiotics exhibited efficacy of dietary compounds against Salmonellosis through manipulation of host bile acids, mucin, epithelial barrier, innate and adaptive immunity and gut microbiota as well as impacting the cellular signaling cascades of the pathogen. Pre-clinical studies investigating synergism and/or antagonistic activities of various bioactive compounds, additional randomized clinical trials, if not curtailed by lack of equipoise and ethical concerns, and well-planned epidemiological studies could augment the development of a validated and evidence-based guideline for mitigating the public health burden of human Salmonellosis through dietary compounds.
Collapse
Affiliation(s)
- Ajay Kumar
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Abimbola Allison
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Monica Henry
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Anita Scales
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
3
|
Cheng C, Sun WK, Liu R, Wang RM, Chen YH, Wang Y, Li JL, Lu XB, Gao R. Comparison of gene expression of Toll-like receptors and antimicrobial peptides in immune organs and tissues between Yorkshire and Tibetan pigs. Anim Genet 2015; 46:272-9. [PMID: 25917299 DOI: 10.1111/age.12286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 11/29/2022]
Abstract
Toll-like receptors (TLRs), an important family of pattern-recognition receptors, and antimicrobial peptides (AMPs) contribute to the first line of innate protection of mammals against microbes. To compare characteristics of innate immunity between Tibetan and Yorkshire pigs, we investigated the mRNA abundance of TLR genes (TLR1-TLR9) and two AMP-encoding genes (PBD-1 and PR-39) in thymus, spleen, blood, palatine tonsils, and mesenteric and pulmonary hilar lymph nodes of the two breeds at ages of 6, 12 and 24 weeks using quantitative real-time PCR. Results showed that all mRNAs were detected in all tissues. Transcript levels of the major TLR genes of Tibetan pigs were significantly higher than those of Yorkshires in most tissues of the immune system, with a higher abundance of porcine (PBD-1) (beta-defensin-1) and PR-39 mRNA in lymphoid organs and tissues, especially blood, palatine tonsils, and mesenteric and pulmonary hilar lymph nodes. Our data suggest that Tibetan pigs have stronger innate immunity for triggering local and/or systemic immune responses to eliminate infections with pathogenic microorganisms.
Collapse
Affiliation(s)
- C Cheng
- Key Laboratory for Bio-resource and Eco-environment of the Education Ministry, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, China; Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, China; College of Bioengineering, Sichuan University of Science & Engineering, Zigong, Sichuan, 643000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Antibody repertoire development in fetal and neonatal piglets. XXIII: fetal piglets infected with a vaccine strain of PRRS Virus display the same immune dysregulation seen in isolator piglets. Vaccine 2012; 30:3646-52. [PMID: 22465749 DOI: 10.1016/j.vaccine.2012.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 01/22/2023]
Abstract
The Ig levels and antibody repertoire diversification in fetal piglets infected with an attenuated Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) were measured. Serum Ig levels were greatly elevated in PRRSV-infected fetuses; IgG was elevated >50-fold, IgM>5-15-fold and IgA>2-fold compared to control fetuses. Their IgM to IgG to IgA profile was the same as that in isolator piglets infected for the same period with wild-type PRRSV. Fetal animals showed less repertoire diversification than even isolator piglets that were maintained germfree (GF) while the repertoire diversification index (RDI) for PRRSV-infected isolator piglets was 10-fold higher and comparable to littermates infected with swine influenza (S-FLU). However, when expressed as the RDI:Ig ratio, infected fetuses appeared 10-fold less capable of repertoire diversification than uninfected littermates and GF isolator piglets. Compared to S-FLU isolator piglets that resolve the infection, the RDI:Ig of PRRSV-infected isolator piglets was 100-fold lower. Overall, infection of fetuses with an attenuated virus shows the same immune dysregulation seen postnatally in wild type infected isolator piglets, indicating that: (a) attenuation did not alter the ability of the virus to cause dysregulation and (b) the isolator infectious model reflects the fetal disease.
Collapse
|
5
|
Occurrence of Salmonella spp. in samples from pigs slaughtered for consumption: A comparison between ISO 6579:2002 and 23S rRNA Fluorescent In Situ Hybridization method. Food Res Int 2012. [DOI: 10.1016/j.foodres.2010.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Rothkötter HJ. Anatomical particularities of the porcine immune system--a physician's view. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:267-272. [PMID: 18775744 DOI: 10.1016/j.dci.2008.06.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 05/26/2023]
Abstract
In this article the anatomical structure of the porcine immune organs is described. The focus is on their particularities that are related to the use of pigs as an animal model. Key issues of the intrauterine development of the lymphoid organs are presented, such as the specific epithelio-chorial placenta, the appearance of the thymic tissue and the initial development of B cells. The role of the thymus for the development of alpha/beta and gamma/delta T cells and the location of tonsillar tissue in the naso-pharynx, in the oral cavity and at the basis of the tongue are described. The porcine spleen is of interest for surgical techniques to treat splenic trauma adequately. The observation of the inverted lymph node structure of pigs is puzzling and it remains unclear why only few species have this distinct morphological organisation. Based on the functional differences in lymphocyte recirculation observed in pigs, specific lymph cannulation experiments are possible in the porcine immune system. The porcine intestinal lymphoid tissue and the lymphocytes in the mucosal epithelium and lamina propria are of interest for studying the gut immune responses. For use as a model the fact that the pig is a monogastric omnivorous animal represents an advantage, although the porcine ileal Peyer's patch has no obvious anatomical equivalent in man. Based on the detailed knowledge of porcine immune morphology the pig is suitable as model animal for immunology--in addition to the various experimental approaches in physiology, pharmacology, surgery, etc. that are applicable to human medicine.
Collapse
Affiliation(s)
- Hermann-Josef Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| |
Collapse
|
7
|
Vieira-Pinto M, Oliveira M, Aranha J, Martins C, Bernardo F. Influence of an enrichment step on Salmonella sp. detection by fluorescent in situ hybridization on pork samples. Food Control 2008. [DOI: 10.1016/j.foodcont.2007.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Spreng S, Dietrich G, Weidinger G. Rational design of Salmonella-based vaccination strategies. Methods 2006; 38:133-43. [PMID: 16414270 DOI: 10.1016/j.ymeth.2005.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 11/30/2022] Open
Abstract
A permanently growing body of information is becoming available about the quality of protective immune responses induced by mucosal immunization. Attenuated live bacterial vaccines can be administered orally and induce long-lasting protective immunity in humans without causing major side effects. An attenuated Salmonella enterica serovar Typhi strain is registered as live oral vaccine against typhoid fever and has been in use for more than two decades. Recombinant attenuated Salmonella strains are also an attractive means of delivering heterologous antigens to the immune system, thereby, stimulating strong mucosal and systemic immune responses and consequently provide an efficient platform technology to design novel vaccination strategies. This includes the choice of heterologous protective antigens and their expression under the control of appropriate promoters within the carrier strain. The availability of well-characterized attenuated mutants of Salmonella concomitantly supports fine tuning of immune response triggered against heterologous antigens. Exploring different mucosal sites as a potential route of immunization has to be taken into account as an additional important way to modulate immune responses according to clinical requirements. This article focuses on the rational design of strategies to modulate appropriate immunological effector functions on the basis of selection of (i) attenuating mutations of the Salmonella strains, (ii) specific expression systems for the heterologous antigens, and (iii) route of mucosal administration.
Collapse
Affiliation(s)
- Simone Spreng
- Berna Biotech Ltd., Bacterial Vaccine Research, Rehhagstr. 79, CH-3018 Berne, Switzerland.
| | | | | |
Collapse
|
9
|
VIEIRA-PINTO MADALENA, OLIVEIRA MANUELA, BERNARDO FERNANDO, MARTINS CONCEICAO. EVALUATION OF FLUORESCENT IN SITU HYBRIDIZATION (FISH) AS A RAPID SCREENING METHOD FOR DETECTION OF SALMONELLA IN TONSILS OF SLAUGHTERED PIGS FOR CONSUMPTION: A COMPARISON WITH CONVENTIONAL CULTURE METHOD. J Food Saf 2005. [DOI: 10.1111/j.1745-4565.2005.00563.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Pasetti MF, Levine MM, Sztein MB. Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar Typhi live oral vaccines and live vectors. Vaccine 2003; 21:401-18. [PMID: 12531639 DOI: 10.1016/s0264-410x(02)00472-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Attenuated Salmonella enterica serovar Typhi (S. Typhi) strains can serve as safe and effective oral vaccines to prevent typhoid fever and as live vectors to deliver foreign antigens to the immune system, either by the bacteria expressing antigens through prokaryotic expression plasmids or by delivering foreign genes carried on eukaryotic expression systems (DNA vaccines). The practical utility of such live vector vaccines relies on achieving a proper balance between minimizing the vaccine's reactogenicity and maximizing its immunogenicity. To advance to clinical trials, vaccine candidates need to be pre-clinically evaluated in relevant animal models that attempt to predict what their safety and immunogenicity profile will be when administered to humans. Since S. Typhi is a human-restricted pathogen, a major obstacle that has impeded the progress of vaccine development has been the shortcomings of the animal models available to assess vaccine candidates. In this review, we summarize the usefulness of animal models in the assessment of the degree of attenuation and immunogenicity of novel attenuated S. Typhi strains as vaccine candidates for the prevention of typhoid fever and as live vectors in humans.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Room 480, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
11
|
Host Immunity and Vaccine Development to Coccidia and Salmonella Infections in Chickens. J Poult Sci 2003. [DOI: 10.2141/jpsa.40.151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Montagne A, Menanteau P, Boivin R, Bernard S, Lantier F, Lalmanach AC. Cytokine gene expression in lymph node and spleen of sheep in response to Salmonella infection by two serotypes displaying different host specificity. Vet Immunol Immunopathol 2001; 82:257-72. [PMID: 11587739 DOI: 10.1016/s0165-2427(01)00366-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to investigate the determinism of the host specificity and to better understand the host resistance mechanisms, infections of sheep were performed with either S. abortusovis, serotype specific for ovine species, or with S. dublin, serotype adapted to cattle and accidentally transmissible to human. Following a subcutaneous challenge, S. dublin disseminated more rapidly towards lymphoid tissues than S. abortusovis. However, S. abortusovis tended to persist in spleen more efficiently than S. dublin. Using a quantitative RT-PCR method, the expression level of ovine cytokines genes was measured in the draining lymph node and in the spleen, in the course of infection. Inflammatory cytokine response was characterised by an early and strong increase of IL-1beta and TNFalpha mRNA in both lymphoid organs following S. dublin infection, while S. abortusovis challenge only induced IL-1beta mRNA increase in the spleen at day 3 post-inoculation. Likewise, S. dublin infection provoked a marked increase of IL-12 mRNA and a slight up-regulation of IFNgamma gene transcription in the local lymphoid site, in contrast to S. abortusovis infection. Elsewhere, both serotypes induced a strong and early IL-10 mRNA production and had no effect on IL-4 gene expression. Finally, taken together, these data suggest that the intensity of inflammatory and anti-infectious cytokine responses, but not the type 2 cytokine response, is serotype-dependent. They also suggest that the host-specific serotype, by limiting the host cytokine-mediated defence, could favour its persistence within lymphoid organs.
Collapse
Affiliation(s)
- A Montagne
- Laboratoire de Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, Centre de Recherche de Tours, F-37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|