1
|
Oyejobi GK, Zhang X, Xiong D, Ogolla F, Xue H, Wei H. Phage-bacterial evolutionary interactions: experimental models and complications. Crit Rev Microbiol 2023; 49:283-296. [PMID: 35358006 DOI: 10.1080/1040841x.2022.2052793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phage treatment of bacterial infections has offered some hope even as the crisis of antimicrobial resistance continues to be on the rise. However, bacterial resistance to phage is another looming challenge capable of undermining the effectiveness of phage therapy. Moreover, the consideration of including phage therapy in modern medicine calls for more careful research around every aspect of phage study. In an attempt to adequately prepare for the events of phage resistance, many studies have attempted to experimentally evolve phage resistance in different bacterial strains, as well as train phages to evolve counter-infectivity of resistant bacterial mutants, in view of answering such questions as coevolutionary dynamics between phage and bacteria, mechanisms of phage resistance, fitness costs of phage resistance on bacteria, etc. In this review, we summarised many such studies and by careful examination, highlighted critical issues to the outcome of phage therapy. We also discuss the insufficiency of many of these in vitro studies to represent actual disease conditions during phage application, alongside other complications that exist in phage-bacterial evolutionary interactions. Conclusively, we present the exploitation of phage-bacterial interactions for successful infection managements, as well as some future perspectives to direct phage research.
Collapse
Affiliation(s)
- Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,Organization of African Academic Doctors, Nairobi, Kenya
| | - Xiaoxu Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Dongyan Xiong
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Faith Ogolla
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Organization of African Academic Doctors, Nairobi, Kenya.,Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Heng Xue
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Nairobi, Kenya
| |
Collapse
|
2
|
Hsieh SA, Allen PM. Immunomodulatory Roles of Polysaccharide Capsules in the Intestine. Front Immunol 2020; 11:690. [PMID: 32351514 PMCID: PMC7174666 DOI: 10.3389/fimmu.2020.00690] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
The interplay between the immune system and the microbiota in the human intestine dictates states of health vs. disease. Polysaccharide capsules are critical elements of bacteria that protect bacteria against environmental and host factors, including the host immune system. This review summarizes the mechanisms by which polysaccharide capsules from commensal and pathogenic bacteria in the gut microbiota modulate the innate and adaptive immune systems in the intestine. A deeper understanding of the roles of polysaccharide capsules in microbiota-immune interactions will provide a basis to harness their therapeutic potential to advance human health.
Collapse
Affiliation(s)
- Samantha A Hsieh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Oechslin F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 2018; 10:E351. [PMID: 29966329 PMCID: PMC6070868 DOI: 10.3390/v10070351] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/29/2022] Open
Abstract
Bacteriophage (phage) therapy, i.e., the use of viruses that infect bacteria as antimicrobial agents, is a promising alternative to conventional antibiotics. Indeed, resistance to antibiotics has become a major public health problem after decades of extensive usage. However, one of the main questions regarding phage therapy is the possible rapid emergence of phage-resistant bacterial variants, which could impede favourable treatment outcomes. Experimental data has shown that phage-resistant variants occurred in up to 80% of studies targeting the intestinal milieu and 50% of studies using sepsis models. Phage-resistant variants have also been observed in human studies, as described in three out of four clinical trials that recorded the emergence of phage resistance. On the other hand, recent animal studies suggest that bacterial mutations that confer phage-resistance may result in fitness costs in the resistant bacterium, which, in turn, could benefit the host. Thus, phage resistance should not be underestimated and efforts should be made to develop methodologies for monitoring and preventing it. Moreover, understanding and taking advantage of the resistance-induced fitness costs in bacterial pathogens is a potentially promising avenue.
Collapse
Affiliation(s)
- Frank Oechslin
- Department of Fundamental Microbiology (DMF), University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
León M, Bastías R. Virulence reduction in bacteriophage resistant bacteria. Front Microbiol 2015; 6:343. [PMID: 25954266 PMCID: PMC4407575 DOI: 10.3389/fmicb.2015.00343] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/07/2015] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages can influence the abundance, diversity, and evolution of bacterial communities. Several bacteriophages have been reported to add virulence factors to their host and to increase bacterial virulence. However, lytic bacteriophages can also exert a selective pressure allowing the proliferation of strains with reduced virulence. This reduction can be explained because bacteriophages use structures present on the bacterial surface as receptors, which can be virulence factors in different bacterial species. Therefore, strains with modifications in these receptors will be resistant to bacteriophage infection and may also exhibit reduced virulence. This mini-review summarizes the reports on bacteriophage-resistant strains with reductions in virulence, and it discusses the potential consequences in phage therapy and in the use of bacteriophages to select attenuated strains for vaccines.
Collapse
Affiliation(s)
- Marcela León
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| | - Roberto Bastías
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| |
Collapse
|
5
|
Shoji M, Yukitake H, Sato K, Shibata Y, Naito M, Aduse-Opoku J, Abiko Y, Curtis MA, Nakayama K. Identification of an O-antigen chain length regulator, WzzP, in Porphyromonas gingivalis. Microbiologyopen 2013; 2:383-401. [PMID: 23509024 PMCID: PMC3684754 DOI: 10.1002/mbo3.84] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/11/2013] [Accepted: 02/19/2013] [Indexed: 01/22/2023] Open
Abstract
The periodontal pathogen Porphyromonas gingivalis has two different lipopolysaccharides (LPSs) designated O-LPS and A-LPS, which are a conventional O-antigen polysaccharide and an anionic polysaccharide that are both linked to lipid A-cores, respectively. However, the precise mechanisms of LPS biosynthesis remain to be determined. In this study, we isolated a pigment-less mutant by transposon mutagenesis and identified that the transposon was inserted into the coding sequence PGN_2005, which encodes a hypothetical protein of P. gingivalis ATCC 33277. We found that (i) LPSs purified from the PGN_2005 mutant were shorter than those of the wild type; (ii) the PGN_2005 protein was located in the inner membrane fraction; and (iii) the PGN_2005 gene conferred Wzz activity upon an Escherichia coli wzz mutant. These results indicate that the PGN_2005 protein, which was designated WzzP, is a functional homolog of the Wzz protein in P. gingivalis. Comparison of amino acid sequences among WzzP and conventional Wzz proteins indicated that WzzP had an additional fragment at the C-terminal region. In addition, we determined that the PGN_1896 and PGN_1233 proteins and the PGN_1033 protein appear to be WbaP homolog proteins and a Wzx homolog protein involved in LPS biosynthesis, respectively.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pengsuk C, Longyant S, Rukpratanporn S, Chaivisuthangkura P, Sridulyakul P, Sithigorngul P. Differentiation among the Vibrio cholerae serotypes O1, O139, O141 and non-O1, non-O139, non-O141 using specific monoclonal antibodies with dot blotting. J Microbiol Methods 2011; 87:224-33. [PMID: 21851839 DOI: 10.1016/j.mimet.2011.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
Seven different monoclonal antibodies (MAbs) specific to only Vibrio cholerae were produced using a combination of five representative serotypes of V. cholerae for immunization. The first three MAbs (VC-93, VC-82 and VC-223) were specific to the V. cholerae serogroup O1 with different avidity for the serotypes O1 Inaba and O1 Ogawa. The fourth and the fifth MAbs were specific to V. cholerae O139 (VC-812) or O141 (VC-191) serogroups, respectively. The sixth MAb (VC-26) bound to all three serogroups of V. cholerae. The seventh MAb (VC-63) bound to all twenty five isolates of V. cholerae used in this study. None of the seven MAbs showed cross-reactivity with other Vibrio spp. or closely-related V. cholerae species, V. mimicus or other gram-negative bacteria. The eighth MAbs (VC-201) specific to almost all Vibrio spp. was also obtained. In dot blotting, these MAbs can be used to detect a diluted pure culture of V. cholerae in solution with a sensitivity range of from 10(5) to 10(7) CFU ml(-1). However, the detection capability could be improved equivalent to that of PCR technique after preincubation of samples in alkaline peptone water (APW). Thus, these MAbs constitute convenient immunological tools that can be used for simple, rapid and simultaneous direct detection and differentiation of the individual serotypes of V. cholerae in complex samples, such as food and infected animals, without the requirement for bacterial isolation or biochemical characterization.
Collapse
Affiliation(s)
- Chalinan Pengsuk
- Department of Biology, Srinakharinwirot University, Bangkok 10110, Thailand
| | | | | | | | | | | |
Collapse
|
7
|
Exploiting the role of TolC in pathogenicity: identification of a bacteriophage for eradication of Salmonella serovars from poultry. Appl Environ Microbiol 2010; 76:1704-6. [PMID: 20080996 DOI: 10.1128/aem.02681-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a screening procedure, three bacteriophages, ST27, ST29, and ST35, were identified with selective activity for Salmonella enterica serovar Typhimurium (SL1344) but not SL1344 tolC::aph. Overproduction of TolC led to a lower efficiency of plating (EOP), further suggesting that TolC was the target receptor. Activity against other serovars of Salmonella was observed but not against other species of Enterobacteriaceae. This study provides proof of principle that bacteriophages can be active against the outer membrane protein of tripartite resistance-nodulation-division (RND) efflux pumps and so could be used to reduce the numbers of Salmonella cells in animals reared for food production.
Collapse
|
8
|
Attridge SR, Holmgren J. Vibrio cholerae O139 capsular polysaccharide confers complement resistance in the absence or presence of antibody yet presents a productive target for cell lysis: implications for detection of bactericidal antibodies. Microb Pathog 2009; 47:314-20. [DOI: 10.1016/j.micpath.2009.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/22/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
|
9
|
Barth S, Duncker S, Hempe J, Breves G, Baljer G, Bauerfeind R. Escherichia coliNissle 1917 for probiotic use in piglets: evidence for intestinal colonization. J Appl Microbiol 2009; 107:1697-710. [DOI: 10.1111/j.1365-2672.2009.04361.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Establishment of an adult mouse model for direct evaluation of the efficacy of vaccines against Vibrio cholerae. Infect Immun 2009; 77:3475-84. [PMID: 19470748 DOI: 10.1128/iai.01197-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe here a new animal model that offers the prospect of using conventional adult mice for direct evaluation of the protective potential of new cholera vaccines. Pretreatment of adult mice with oral streptomycin allowed intestinal colonization by streptomycin-resistant Vibrio cholerae strains of either the O1 or the O139 serogroup. Bacteria were recovered in greatest numbers from the cecum and large intestine, but recoveries from all regions of the gut correlated significantly with bacterial excretion in fresh fecal pellets, which thus provides a convenient indicator of the extent and duration of gut colonization. Mice immunized mucosally or systemically with viable or inactivated V. cholerae were shown to be comparatively refractory to colonization after challenge with the immunizing strain. Several variables were examined to optimize the model, the most significant being the size of the challenge inoculum; surprisingly, a smaller challenge dose resulted in more consistent and sustained colonization. Studies with mutant strains unable to produce cholera toxin or toxin-coregulated pili revealed that neither factor contributed significantly to colonization potential. Protection against V. cholerae challenge was shown to be serogroup restricted, and significant inverse correlations were detected between serum and intestinal anti-lipopolysaccharide antibody responses and the levels of excretion of challenge organisms.
Collapse
|
11
|
Attridge SR, Wallerström G, Li BL, Morona R, Holmgren J. Differential immunogenicity of Vibrio cholerae O139 variants expressing different combinations of naturally occurring and atypical forms of the serogroup polysaccharide. Vaccine 2008; 27:1055-61. [PMID: 19100303 DOI: 10.1016/j.vaccine.2008.11.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/24/2008] [Accepted: 11/28/2008] [Indexed: 11/28/2022]
Abstract
Field testing of an inactivated bivalent O1/O139 cholera vaccine suggests that Vibrio cholerae O1 is more immunogenic than V. cholerae O139. To investigate whether this might be partly attributable to the production of capsular polysaccharide (CPS) by O139 isolates, we have compared the immunogenicity of variant strains expressing different combinations of lipopolysaccharide (LPS) and CPS. These studies indicate that the core-linked LPS structure is of paramount importance for induction of antibodies to the serogroup antigen. By contrast CPS was minimally immunogenic. Significantly the presence of CPS did not modulate the immunogenicity of the underlying LPS. To examine whether differences in LPS structure might contribute to the differing immunogenicities of the O1 and O139 serogroups, an attempt was made to modify the normal O139 LPS structure by provision of one of several heterologous wzz genes. The resulting variants displayed additional, atypical surface polysaccharide, whose modal length was characteristic for the particular wzz gene. By immunoblotting this novel material showed a ladder-like banding pattern typical of LPS, but its failure to be stained by silver indicated that it was not core-associated and was therefore more like truncated CPS. Consistent with our earlier findings, studies using systemic or mucosal routes of immunization failed to demonstrate any consistent enhancement of antibody responses associated with production of these aberrant polysaccharide polymers.
Collapse
Affiliation(s)
- S R Attridge
- Department of Microbiology and Immunology, Institute of Biomedicine, Gothenburg University, 413 90 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Nygren E, Holmgren J, Attridge SR. Murine antibody responses following systemic or mucosal immunization with viable or inactivated Vibrio cholerae. Vaccine 2008; 26:6784-90. [DOI: 10.1016/j.vaccine.2008.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 09/23/2008] [Accepted: 10/06/2008] [Indexed: 11/25/2022]
|
13
|
Comeau AM, Krisch HM. War is peace--dispatches from the bacterial and phage killing fields. Curr Opin Microbiol 2005; 8:488-94. [PMID: 15979391 DOI: 10.1016/j.mib.2005.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 06/10/2005] [Indexed: 11/23/2022]
Abstract
Large-scale sequence analyses of phage and bacteria have provided new insights into the diverse and multifaceted interactions of these genomes. Such interactions are important because they determine the partitioning of a large fraction of global biomass. Furthermore, the struggle between phage and bacteria has had a significant impact on the evolution of the biosphere. This competition for resources has created an enormous pool of genetic diversity. Eons of horizontal genetic transfer have permitted the entire biosphere to directly benefit from a bargain-basement source of evolutionary innovation.
Collapse
Affiliation(s)
- André M Comeau
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR-5100, 118 Route de Narbonne, 31062 Toulouse, Cedex, France
| | | |
Collapse
|
14
|
Chatterjee SN, Chaudhuri K. Lipopolysaccharides of Vibrio cholerae: III. Biological functions. Biochim Biophys Acta Mol Basis Dis 2005; 1762:1-16. [PMID: 16185850 DOI: 10.1016/j.bbadis.2005.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 08/15/2005] [Accepted: 08/15/2005] [Indexed: 11/26/2022]
Abstract
This review presents the salient features of the biological functions including the (i) endotoxic activities, (ii) antigenic properties, (iii) immunological responses to and (iv) phage receptor activities of the Vibrio cholerae lipopolysaccharides (LPS). The biological functions of the capsular polysaccharide (CPS) of V. cholerae have also been discussed briefly as a relevant topic. The roles of LPS and other extracellular polysaccharides in the (i) intestinal adherence and virulence of the vibrios and (ii) the biofilm formation by the organisms have been analysed on the basis of the available data. Every effort has been made to bring out, wherever applicable, the lacunae in our knowledge. The need for the continuous serogroup surveillance and monitoring of the environmental waters and the role of LPS in the designing of newer cholera vaccines has been discussed briefly in conclusion.
Collapse
Affiliation(s)
- S N Chatterjee
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Sector-1, Calcutta-700 064, India.
| | | |
Collapse
|
15
|
Faruque SM, Nair GB, Mekalanos JJ. Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae. DNA Cell Biol 2005; 23:723-41. [PMID: 15585131 DOI: 10.1089/dna.2004.23.723] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vibrio cholerae, a Gram-negative bacterium belonging to the gamma-subdivision of the family Proteobacteriaceae is the etiologic agent of cholera, a devastating diarrheal disease which occurs frequently as epidemics. Any bacterial species encountering a broad spectrum of environments during the course of its life cycle is likely to develop complex regulatory systems and stress adaptation mechanisms to best survive in each environment encountered. Toxigenic V. cholerae, which has evolved from environmental nonpathogenic V. cholerae by acquisition of virulence genes, represents a paradigm for this process in that this organism naturally exists in an aquatic environment but infects human beings and cause cholera. The V. cholerae genome, which is comprised of two independent circular mega-replicons, carries the genetic determinants for the bacterium to survive both in an aquatic environment as well as in the human intestinal environment. Pathogenesis of V. cholerae involves coordinated expression of different sets of virulence associated genes, and the synergistic action of their gene products. Although the acquisition of major virulence genes and association between V. cholerae and its human host appears to be recent, and reflects a simple pathogenic strategy, the establishment of a productive infection involves the expression of many more genes that are crucial for survival and adaptation of the bacterium in the host, as well as for its onward transmission and epidemic spread. While a few of the virulence gene clusters involved directly with cholera pathogenesis have been characterized, the potential exists for identification of yet new genes which may influence the stress adaptation, pathogenesis, and epidemiological characteristics of V. cholerae. Coevolution of bacteria and mobile genetic elements (plasmids, transposons, pathogenicity islands, and phages) can determine environmental survival and pathogenic interactions between bacteria and their hosts. Besides horizontal gene transfer mediated by genetic elements and phages, the evolution of pathogenic V. cholerae involves a combination of selection mechanisms both in the host and in the environment. The occurrence of periodic epidemics of cholera in endemic areas appear to enhance this process.
Collapse
Affiliation(s)
- Shah M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh.
| | | | | |
Collapse
|
16
|
Ramamurthy T, Yamasaki S, Takeda Y, Nair GB. Vibrio cholerae O139 Bengal: odyssey of a fortuitous variant. Microbes Infect 2003; 5:329-44. [PMID: 12706446 DOI: 10.1016/s1286-4579(03)00035-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vibrio cholerae O139, the new serogroup associated with epidemic cholera, came into being in the second half of the year 1992 in an explosive fashion and was responsible for several outbreaks in India and other neighbouring countries. This was an unprecedented event in the history of cholera and the genesis of the O139 serogroup was, at that time, thought to be the beginning of the next or the eighth pandemic of cholera. However, with the passage of time, the O1 serogroup of the El Tor biotype again reappeared and displaced the O139 serogroup on the Indian subcontinent, and there was a feeling among cholera workers that the appearance of this new serogroup may have been a one-time event. The resurgence of the O139 serogroup in September 1996 in Calcutta and the coexistence of both the O1 and O139 serogroups in much of the cholera endemic areas in India and elsewhere, suggested that the O139 serogroup has come to stay and is a permanent entity to contend with in the coming years. During the past 10 years, intensive work on all aspects of the O139 serogroup was carried out by cholera researchers around the world. The salient findings on this serogroup over the past 10 years pertinent to its prevalence, clinico-epidemiological features, virulence-associated genes, rapid screening and identification, molecular epidemiology, and vaccine developments have been highlighted.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Calcutta 700 010, India.
| | | | | | | |
Collapse
|
17
|
Morona R, Daniels C, Van Den Bosch L. Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. MICROBIOLOGY (READING, ENGLAND) 2003; 149:925-939. [PMID: 12686635 DOI: 10.1099/mic.0.26141-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The lipopolysaccharide (LPS) molecules of Shigella flexneri 2a have O antigen (Oag) polysaccharides with two modal chain length distributions. The chromosomal wzz(SF) gene results in short (S) type Oag chains [11-17 Oag repeat units (RUs)], and the pHS-2 plasmid-located wzz(pHS2) gene results in very long (VL) type Oag chains (>90 Oag RUs). S. flexneri wzz(SF) mutants are unable to form plaques on HeLa cell monolayers and F-actin comet tails, indicating that IcsA/VirG function in actin-based motility (ABM) is defective. An S. flexneri wzz(SF) wzz(pHS2) double mutant had LPS with relatively short, random length Oag chains and, paradoxically, was able to form plaques and F-actin comet tails. The influence of Oag modal chain length distribution on virulence and related properties was investigated using complementation with different wzz genes. Wzz(O139) from Vibrio cholerae O139 and Wzz(ST) from Salmonella enterica serovar Typhimurium were fully functional in Shigella flexneri, resulting in LPS with either very short (VS) type Oag chains (2-7 Oag RUs) or long (L) type Oag chains (19-35 RUs), respectively. In the absence of VL-type Oag chains, the VS-, S- and L-type Oag chains were permissive for plaque and F-actin comet tail formation. However, in the presence of LPS with VL-type Oag chains, the VS- and S-type Oag chains but not the L-type Oag chains were permissive for plaque and F-actin comet tail formation. These data, and the results of a previous investigation, show that IcsA function in ABM requires LPS Oag chains with at least two but less than 18 RUs when VL-type Oag chains are co-expressed on the cell surface. However, in the absence of the VL-type Oag chains, LPS Oag chains with at least two but less than 90 RUs are able to support IcsA function in ABM. Indirect immunofluorescence staining of IcsA on the cell surface of the S. flexneri strains did not correlate with the observed effect of Oag chain length on plaque and F-actin comet tail formation. However, when intracellular bacteria lacking VL-type Oag chains were examined, an inverse correlation between Oag modal chain length and detection of IcsA was observed, i.e. staining decreased with increased modal length. It is hypothesized that Oag chains can mask IcsA and interfere with its function in ABM, and a model is presented to explain how LPS Oag and IcsA may interact. It is suggested that S. flexneri 2a has evolved to synthesize LPS with two Oag modal chain lengths, as S-type Oag chains allow IcsA to function in ABM in the presence of VL-type Oag chains that confer resistance to serum.
Collapse
Affiliation(s)
- Renato Morona
- Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia, Australia, 5005
| | - Craig Daniels
- Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia, Australia, 5005
| | - Luisa Van Den Bosch
- Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia, Australia, 5005
| |
Collapse
|
18
|
Murray GL, Attridge SR, Morona R. Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol 2003; 47:1395-406. [PMID: 12603743 DOI: 10.1046/j.1365-2958.2003.03383.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wzz proteins regulate the degree of polymerization of the O antigen (Oag) subunits in lipopolysaccharide (LPS) biosynthesis. Although the pathogenic relevance of Oag is well recognized, the significance of Oag chain length regulation is not well defined. In this report, Salmonella typhimurium was shown to possess two functional wzz genes resulting in a bimodal Oag length distribution. In addition to the previously described wzzST that results in long (L) modal length LPS with 16-35 Oag repeat units (RUs), we now report that wzzfepE, a homologue of Escherichia coli fepE, is responsible for the production of very long (VL) modal length LPS Oag, estimated to contain> 100 Oag RUs. Analysis of a series of isogenic S. typhimurium C5 mutants found that the presence of either wzz gene (and hence either modal length) was sufficient for complement resistance and virulence in the mouse model of infection, suggesting a degree of redundancy in the role of these two wzz genes and their respective Oag modal lengths. In contrast, the wzzST/wzzfepE double mutant, with relatively short, random-length Oag, displayed enhanced susceptibility to complement and was highly attenuated in the mouse. This clearly demonstrates the molecular genetic basis for the longer LPS Oag chains previously identified as the basis of complement resistance in Salmonella. The presence of wzzfepE homologues in the genomic sequences of strains of Escherichia coli, Shigella flexneri and multiple serovars of Salmonella suggests that bimodality of LPS Oag is a common phenomenon in the Enterobacteriaceae.
Collapse
Affiliation(s)
- Gerald L Murray
- Department of Molecular Biosciences, The University of Adelaide, Adelaide, South Australia, Australia, 5005
| | | | | |
Collapse
|
19
|
Izquierdo L, Merino S, Coderch N, Regué M, Tomás JM. ThewavBgene ofVibrio choleraeand thewaaEofKlebsiella pneumoniaecodify for a β-1,4-glucosyltransferase involved in the transfer of a glucose residue to the l-glycero-d-manno-heptose I in the lipopolysaccharide inner core. FEMS Microbiol Lett 2002. [DOI: 10.1111/j.1574-6968.2002.tb11437.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Nesper J, Schild S, Lauriano CM, Kraiss A, Klose KE, Reidl J. Role of Vibrio cholerae O139 surface polysaccharides in intestinal colonization. Infect Immun 2002; 70:5990-6. [PMID: 12379674 PMCID: PMC130371 DOI: 10.1128/iai.70.11.5990-5996.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since the first occurrence of O139 Vibrio cholerae as a cause of cholera epidemics, this serogroup has been investigated intensively, and it has been found that its pathogenicity is comparable to that of O1 El Tor strains. O139 isolates express a thin capsule, composed of a polymer of repeating units structurally identical to the lipopolysaccharide (LPS) O side chain. In this study, we investigated the role of LPS O side chain and capsular polysaccharide (CPS) in intestinal colonization by with genetically engineered mutants. We constructed CPS-negative, CPS/LPS O side chain-negative, and CPS-positive/LPS O side chain-negative mutants. Furthermore, we constructed two mutants with defects in LPS core oligosaccharide (OS) assembly. Loss of LPS O side chain or CPS resulted in a approximately 30-fold reduction in colonization of the infant mouse small intestine, indicating that the presence of both LPS O side chain and CPS is important during the colonization process. The strain lacking both CPS and LPS O side chain and a CPS-positive, LPS O side chain-negative core OS mutant were both essentially unable to colonize. To characterize the role of surface polysaccharides in survival in the host intestine, resistance to several antimicrobial substances was investigated in vitro. These investigations revealed that the presence of CPS protects the cell against attack of the complement system and that an intact core OS is necessary for survival in the presence of bile.
Collapse
Affiliation(s)
- Jutta Nesper
- Zentrum für Infektionsforschung, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The facultative human pathogen Vibrio cholerae can be isolated from estuarine and aquatic environments. V. cholerae is well recognized and extensively studied as the causative agent of the human intestinal disease cholera. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Today, cholera still remains a burden mainly for underdeveloped countries, which cannot afford to establish or to maintain necessary hygienic and medical facilities. Especially in these environments, cholera is responsible for significant mortality and economic damage. During the last three decades, intensive research has been undertaken to unravel the virulence properties and to study the epidemiology of this significant human pathogen. More recently, researchers have been elucidating the environmental lifestyle of V. cholerae. This review provides an overview of the current knowledge of both the host- and environment-specific physiological attributes of V. cholerae.
Collapse
Affiliation(s)
- Joachim Reidl
- Zentrum für Infektionsforschung, Universität Würzburg, Würzburg, Germany.
| | | |
Collapse
|
22
|
Nesper J, Kraiss A, Schild S, Blass J, Klose KE, Bockemühl J, Reidl J. Comparative and genetic analyses of the putative Vibrio cholerae lipopolysaccharide core oligosaccharide biosynthesis (wav) gene cluster. Infect Immun 2002; 70:2419-33. [PMID: 11953379 PMCID: PMC127954 DOI: 10.1128/iai.70.5.2419-2433.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Revised: 01/22/2002] [Accepted: 02/06/2002] [Indexed: 12/18/2022] Open
Abstract
We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence.
Collapse
Affiliation(s)
- Jutta Nesper
- Zentrum für Infektionsforschung, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|