1
|
Cheah HL, Citartan M, Lee LP, Ahmed SA, Salleh MZ, Teh LK, Tang TH. Exploring the transcription start sites and other genomic features facilitates the accurate identification and annotation of small RNAs across multiple stress conditions in Mycobacterium tuberculosis. Funct Integr Genomics 2024; 24:160. [PMID: 39264475 DOI: 10.1007/s10142-024-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Mycobacterium tuberculosis (MTB) is a pathogen that is known for its ability to persist in harsh environments and cause chronic infections. Understanding the regulatory networks of MTB is crucial for developing effective treatments. Small regulatory RNAs (sRNAs) play important roles in gene expression regulation in all kingdoms of life, and their classification based solely on genomic location can be imprecise due to the computational-based prediction of protein-coding genes in bacteria, which often neglects segments of mRNA such as 5'UTRs, 3'UTRs, and intercistronic regions of operons. To address this issue, our study simultaneously discovered genomic features such as TSSs, UTRs, and operons together with sRNAs in the M. tuberculosis H37Rv strain (ATCC 27294) across multiple stress conditions. Our analysis identified 1,376 sRNA candidates and 8,173 TSSs in MTB, providing valuable insights into its complex regulatory landscape. TSS mapping enabled us to classify these sRNAs into more specific categories, including promoter-associated sRNAs, 5'UTR-derived sRNAs, 3'UTR-derived sRNAs, true intergenic sRNAs, and antisense sRNAs. Three of these sRNA candidates were experimentally validated using 3'-RACE-PCR: predictedRNA_0240, predictedRNA_0325, and predictedRNA_0578. Future characterization and validation are necessary to fully elucidate the functions and roles of these sRNAs in MTB. Our study is the first to simultaneously unravel TSSs and sRNAs in MTB and demonstrate that the identification of other genomic features, such as TSSs, UTRs, and operons, allows for more accurate and specific classification of sRNAs.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Monash University Malaysia Genomics Platform, School of Science, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Li-Pin Lee
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Siti Aminah Ahmed
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
2
|
Mutations in Ehrlichia chaffeensis Genes ECH_0660 and ECH_0665 Cause Transcriptional Changes in Response to Zinc or Iron Limitation. J Bacteriol 2021; 203:e0002721. [PMID: 33875547 PMCID: PMC8316085 DOI: 10.1128/jb.00027-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis causes human monocytic ehrlichiosis by replicating within phagosomes of monocytes/macrophages. A function disruption mutation within the pathogen's ECH_0660 gene, which encodes a phage head-to-tail connector protein, resulted in the rapid clearance of the pathogen in vivo, while aiding in induction of sufficient immunity in a host to protect against wild-type infection challenge. In this study, we describe the characterization of a cluster of seven genes spanning from ECH_0659 to ECH_0665, which contained four genes encoding bacterial phage proteins, including the ECH_0660 gene. Assessment of the promoter region upstream of the first gene of the seven genes (ECH_0659) in Escherichia coli demonstrated transcriptional enhancement under zinc and iron starvation conditions. Furthermore, transcription of the seven genes was significantly higher under zinc and iron starvation conditions for E. chaffeensis carrying a mutation in the ECH_0660 gene compared to the wild-type pathogen. In contrast, for the ECH_0665 gene mutant with the function disruption, transcription from the genes was mostly similar to that of the wild type or was moderately downregulated. Recently, we reported that this mutation caused a minimal impact on the pathogen's in vivo growth, as it persisted similarly to the wild type. The current study is the first to describe how zinc and iron contribute to E. chaffeensis biology. Specifically, we demonstrated that the functional disruption in the gene encoding the phage head-to-tail connector protein in E. chaffeensis results in the enhanced transcription of seven genes, including those encoding phage proteins, under zinc and iron limitation. IMPORTANCE Ehrlichia chaffeensis, a tick-transmitted bacterium, causes human monocytic ehrlichiosis by replicating within phagosomes of monocytes/macrophages. A function disruption mutation within the pathogen's gene encoding a phage head-to-tail connector protein resulted in the rapid clearance of the pathogen in vivo, while aiding in induction of sufficient immunity in a host to protect against wild-type infection challenge. In the current study, we investigated if the functional disruption in the phage head-to-tail connector protein gene caused transcriptional changes resulting from metal ion limitations. This is the first study describing how zinc and iron may contribute to E. chaffeensis replication.
Collapse
|
3
|
Skouri-Panet F, Benzerara K, Cosmidis J, Férard C, Caumes G, De Luca G, Heulin T, Duprat E. In Vitro and in Silico Evidence of Phosphatase Diversity in the Biomineralizing Bacterium Ramlibacter tataouinensis. Front Microbiol 2018; 8:2592. [PMID: 29375498 PMCID: PMC5768637 DOI: 10.3389/fmicb.2017.02592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial phosphatase activity can trigger the precipitation of metal-phosphate minerals, a process called phosphatogenesis with global geochemical and environmental implications. An increasing diversity of phosphatases expressed by diverse microorganisms has been evidenced in various environments. However, it is challenging to link the functional properties of genomic repertoires of phosphatases with the phosphatogenesis capabilities of microorganisms. Here, we studied the betaproteobacterium Ramlibacter tataouinensis (Rta), known to biomineralize Ca-phosphates in the environment and the laboratory. We investigated the functional repertoire of this biomineralization process at the cell, genome and molecular level. Based on a mineralization assay, Rta is shown to hydrolyse the phosphoester bonds of a wide range of organic P molecules. Accordingly, its genome has an unusually high diversity of phosphatases: five genes belonging to two non-homologous families, phoD and phoX, were detected. These genes showed diverse predicted cis-regulatory elements. Moreover, they encoded proteins with diverse structural properties according to molecular models. Heterologously expressed PhoD and PhoX in Escherichia coli had different profiles of substrate hydrolysis. As evidenced for Rta cells, recombinant E. coli cells induced the precipitation of Ca-phosphate mineral phases, identified as poorly crystalline hydroxyapatite. The phosphatase genomic repertoire of Rta (containing phosphatases of both the PhoD and PhoX families) was previously evidenced as prevalent in marine oligotrophic environments. Interestingly, the Tataouine sand from which Rta was isolated showed similar P-depleted, but Ca-rich conditions. Overall, the diversity of phosphatases in Rta allows the hydrolysis of a broad range of organic P substrates and therefore the release of orthophosphates (inorganic phosphate) under diverse trophic conditions. Since the release of orthophosphates is key to the achievement of high saturation levels with respect to hydroxyapatite and the induction of phosphatogenesis, Rta appears as a particularly efficient driver of this process as shown experimentally.
Collapse
Affiliation(s)
- Fériel Skouri-Panet
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Karim Benzerara
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Julie Cosmidis
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Céline Férard
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Géraldine Caumes
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Gilles De Luca
- Laboratoire d'Écologie Microbienne de la Rhizosphère et Environnements Extrêmes, UMR 7265, Aix Marseille Univ, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Saint-Paul-lez-Durance, France
| | - Thierry Heulin
- Laboratoire d'Écologie Microbienne de la Rhizosphère et Environnements Extrêmes, UMR 7265, Aix Marseille Univ, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Saint-Paul-lez-Durance, France
| | - Elodie Duprat
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| |
Collapse
|
4
|
Vallecillo AJ, Parada C, Morales P, Espitia C. Rhodococcus erythropolis as a host for expression, secretion and glycosylation of Mycobacterium tuberculosis proteins. Microb Cell Fact 2017; 16:12. [PMID: 28103877 PMCID: PMC5248525 DOI: 10.1186/s12934-017-0628-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022] Open
Abstract
Background Glycosylation is one of the most abundant posttranslational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. There is growing evidence about the importance of these modifications in host bacteria interactions in tuberculosis. It is known, that the sugars present in some Mycobacterium tuberculosis glycoproteins play an important role in both humoral and cellular immune response against the pathogen. Since this modification is lost in the recombinant proteins expressed in Escherichia coli, it is fundamental to search for host bacteria with the capacity to modify the foreign proteins. Amongst the bacteria that are likely to have this possibility are some members of Rhodococcus genus which are Gram-positive bacteria, with high GC-content and genetically very close related to M. tuberculosis. Results In this work, apa, pstS1 and lprG genes that coding for M. tuberculosis glycoproteins were cloned and expressed in Rhodococcus erythropolis. All recombinant proteins were mannosylated as demonstrated by their interaction with mannose binding lectin Concanavalin A. In addition, as native proteins recombinants Apa and PstS1 were secreted to the culture medium in contrast with LprG that was retained in the cell wall. Conclusions Together these results, point out R. erythropolis, as a new host for expression of M. tuberculosis glycoproteins.
Collapse
Affiliation(s)
- Antonio J Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico.,Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, C.P. 010220, Cuenca, Azu., Ecuador
| | - Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico
| | - Pedro Morales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico.
| |
Collapse
|
5
|
REMap: Operon map of M. tuberculosis based on RNA sequence data. Tuberculosis (Edinb) 2016; 99:70-80. [PMID: 27450008 DOI: 10.1016/j.tube.2016.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 12/18/2022]
Abstract
A map of the transcriptional organization of genes of an organism is a basic tool that is necessary to understand and facilitate a more accurate genetic manipulation of the organism. Operon maps are largely generated by computational prediction programs that rely on gene conservation and genome architecture and may not be physiologically relevant. With the widespread use of RNA sequencing (RNAseq), the prediction of operons based on actual transcriptome sequencing rather than computational genomics alone is much needed. Here, we report a validated operon map of Mycobacterium tuberculosis, developed using RNAseq data from both the exponential and stationary phases of growth. At least 58.4% of M. tuberculosis genes are organized into 749 operons. Our prediction algorithm, REMap (RNA Expression Mapping of operons), considers the many cases of transcription coverage of intergenic regions, and avoids dependencies on functional annotation and arbitrary assumptions about gene structure. As a result, we demonstrate that REMap is able to more accurately predict operons, especially those that contain long intergenic regions or functionally unrelated genes, than previous operon prediction programs. The REMap algorithm is publicly available as a user-friendly tool that can be readily modified to predict operons in other bacteria.
Collapse
|
6
|
The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol Mol Biol Rev 2015; 78:372-417. [PMID: 25184559 DOI: 10.1128/mmbr.00007-14] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed.
Collapse
|
7
|
Uplekar S, Rougemont J, Cole ST, Sala C. High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis. Nucleic Acids Res 2012; 41:961-77. [PMID: 23222129 PMCID: PMC3553938 DOI: 10.1093/nar/gks1260] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches: strand-specific RNA-seq, to survey the global transcriptome, and ChIP-seq, to monitor the genome-wide dynamics of RNA polymerase (RNAP) and the anti-terminator NusA. Although NusA does not bind directly to DNA, but rather to RNAP and/or to the nascent transcript, we demonstrate that NusA interacts with RNAP ubiquitously throughout the chromosome, and that its profile mirrors RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the data sets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to align.
Collapse
Affiliation(s)
- Swapna Uplekar
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
8
|
Abstract
Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases.
Collapse
|
9
|
Espitia C, Servín-González L, Mancilla R. New insights into protein O-mannosylation in actinomycetes. MOLECULAR BIOSYSTEMS 2010; 6:775-81. [PMID: 20567761 DOI: 10.1039/b916394h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycosylation is a common post-translational modification of surface exposed proteins and lipids present in all kingdoms of life. Information derived from bacterial genome sequencing, together with proteomic and genomic analysis has allowed the identification of the enzymatic glycosylation machinery. Among prokaryotes, O-mannosylation of proteins has been found in the actinomycetes and resembles protein O-mannosylation in fungi and higher eukaryotes. In this review we summarize the main features of the biosynthetic pathway of O-mannosylation in prokaryotes with special emphasis on the actinomycetes, as well as the biological role of the glycosylated target proteins.
Collapse
Affiliation(s)
- Clara Espitia
- Departamento de Inmunologia, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México
| | | | | |
Collapse
|
10
|
Phosphate-dependent behavior of the archaeon Halobacterium salinarum strain R1. J Bacteriol 2009; 191:3852-60. [PMID: 19363117 DOI: 10.1128/jb.01642-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphate is essential for life on earth, since it is an integral part of important biomolecules. The mechanisms applied by bacteria and eukarya to combat phosphate limitation are fairly well understood. However, it is not known how archaea sense phosphate limitation or which genes are regulated upon limitation. We conducted a microarray analysis to explore the phosphate-dependent gene expression of Halobacterium salinarum strain R1. We identified a set of 17 genes whose transcript levels increased up to several hundredfold upon phosphate limitation. Analysis of deletion mutants showed that this set of genes, the PHO stimulon, is very likely independent of signaling via two-component systems. Our experiments further indicate that PHO stimulon induction might be dependent on the intracellular phosphate concentration, which turned out to be subject to substantial changes. Finally, the study revealed that H. salinarum exhibits a phosphate-directed chemotaxis, which is induced by phosphate starvation.
Collapse
|
11
|
Sanchez A, Espinosa P, Esparza MA, Colon M, Bernal G, Mancilla R. Mycobacterium tuberculosis 38-kDa lipoprotein is apoptogenic for human monocyte-derived macrophages. Scand J Immunol 2009; 69:20-8. [PMID: 19140873 DOI: 10.1111/j.1365-3083.2008.02193.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mycobacterium tuberculosis is the main aetiologic agent of tuberculosis, a disease of great concern in less-developed regions. Apoptosis is a conspicuous event in macrophages infected in vitro with mycobacteria, a phenomenon also observed in vivo in granulomas of patients with tuberculosis. To determine its significance, it is important to define the mycobacterial moieties involved and how they cause apoptosis. Here we show that the 38-kDa lipoprotein induces macrophage caspase-dependent apoptosis involving TNF-alpha and FasL and, interestingly, with the upregulation of cell-death receptors TNFR1, TNFR2 and Fas. A role for the Toll-like receptor 2 was also demonstrated. In conclusion, the ability to induce apoptosis of host cells is another property of the 38-kDa lipoprotein, a molecule that has focused attention for being an immunodominant antigen that participates in phosphate transport.
Collapse
Affiliation(s)
- A Sanchez
- Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City
| | | | | | | | | | | |
Collapse
|
12
|
González-Zamorano M, Mendoza-Hernández G, Xolalpa W, Parada C, Vallecillo AJ, Bigi F, Espitia C. Mycobacterium tuberculosis Glycoproteomics Based on ConA-Lectin Affinity Capture of Mannosylated Proteins. J Proteome Res 2009; 8:721-33. [DOI: 10.1021/pr800756a] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Margarita González-Zamorano
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Guillermo Mendoza-Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Wendy Xolalpa
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Antonio J. Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Fabiana Bigi
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| |
Collapse
|
13
|
Wehmeier S, Varghese AS, Gurcha SS, Tissot B, Panico M, Hitchen P, Morris HR, Besra GS, Dell A, Smith MCM. Glycosylation of the phosphate binding protein, PstS, in Streptomyces coelicolor by a pathway that resembles protein O-mannosylation in eukaryotes. Mol Microbiol 2008; 71:421-33. [PMID: 19017269 DOI: 10.1111/j.1365-2958.2008.06536.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously mutations in a putative protein O-mannosyltransferase (SCO3154, Pmt) and a polyprenol phosphate mannose synthase (SCO1423, Ppm1) were found to cause resistance to phage, phiC31, in the antibiotic producing bacteria Streptomyces coelicolor A3(2). It was proposed that these two enzymes were part of a protein O-glycosylation pathway that was necessary for synthesis of the phage receptor. Here we provide the evidence that Pmt and Ppm1 are indeed both required for protein O-glycosylation. The phosphate binding protein PstS was found to be glycosylated with a trihexose in the S. coelicolor parent strain, J1929, but not in the pmt(-) derivative, DT1025. Ppm1 was necessary for the transfer of mannose to endogenous polyprenol phosphate in membrane preparations of S. coelicolor. A mutation in ppm1 that conferred an E218V substitution in Ppm1 abolished mannose transfer and glycosylation of PstS. Mass spectrometry analysis of extracted lipids showed the presence of a glycosylated polyprenol phosphate (PP) containing nine repeated isoprenyl units (C(45)-PP). S. coelicolor membranes were also able to catalyse the transfer of mannose to peptides derived from PstS, indicating that these could be targets for Pmt in vivo.
Collapse
Affiliation(s)
- S Wehmeier
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Differential regulation of high-affinity phosphate transport systems of Mycobacterium smegmatis: identification of PhnF, a repressor of the phnDCE operon. J Bacteriol 2007; 190:1335-43. [PMID: 18083811 DOI: 10.1128/jb.01764-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The uptake of phosphate into the cell via high-affinity, phosphate-specific transport systems has been studied with several species of mycobacteria. All of these species have been shown to contain several copies of such transport systems, which are synthesized in response to phosphate limitation. However, the mechanisms leading to the expression of the genes encoding these transporters have not been studied. This study reports on the investigation of the regulation of the pstSCAB and the phnDCE operons of Mycobacterium smegmatis. The phn locus contains an additional gene, phnF, encoding a GntR-like transcriptional regulator. Expression analyses of a phnF deletion mutant demonstrated that PhnF acts as a repressor of the phnDCE operon but does not affect the expression of pstSCAB. The deletion of pstS, which is thought to cause the constitutive expression of genes regulated by the two-component system SenX3-RegX3, led to the constitutive expression of the transcriptional fusions pstS-lacZ, phnD-lacZ, and phnF-lacZ, suggesting that phnDCE and phnF are conceivably new members of the SenX3-RegX3 regulon of M. smegmatis. Two presumptive binding sites for PhnF in the intergenic region between phnD and phnF were identified and shown to be required for the repression of phnD and phnF, respectively. We propose a model in which the transcription of pstSCAB is controlled by the two-component SenX3-RegX3 system, while phnDCE and phnF are subject to dual control by SenX3-RegX3 and PhnF.
Collapse
|
15
|
Roback P, Beard J, Baumann D, Gille C, Henry K, Krohn S, Wiste H, Voskuil M, Rainville C, Rutherford R. A predicted operon map for Mycobacterium tuberculosis. Nucleic Acids Res 2007; 35:5085-95. [PMID: 17652327 PMCID: PMC1976454 DOI: 10.1093/nar/gkm518] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prediction of operons in Mycobacterium tuberculosis (MTB) is a first step toward understanding the regulatory network of this pathogen. Here we apply a statistical model using logistic regression to predict operons in MTB. As predictors, our model incorporates intergenic distance and the correlation of gene expression calculated for adjacent gene pairs from over 474 microarray experiments with MTB RNA. We validate our findings with known examples from the literature and experimentation. From this model, we rank each potential operon pair by the strength of evidence for cotranscription, choose a classification threshold with a true positive rate of over 90% at a false positive rate of 9.1%, and use it to construct an operon map for the MTB genome.
Collapse
Affiliation(s)
- P. Roback
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - J. Beard
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - D. Baumann
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - C. Gille
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - K. Henry
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - S. Krohn
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - H. Wiste
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - M.I. Voskuil
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - C. Rainville
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - R. Rutherford
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
- *To whom correspondence should be addressed.+1 206 296 2501+1 206 296 5634
| |
Collapse
|
16
|
Rehren G, Walters S, Fontan P, Smith I, Zárraga AM. Differential gene expression between Mycobacterium bovis and Mycobacterium tuberculosis. Tuberculosis (Edinb) 2007; 87:347-59. [PMID: 17433778 PMCID: PMC2080781 DOI: 10.1016/j.tube.2007.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/31/2007] [Accepted: 02/20/2007] [Indexed: 12/23/2022]
Abstract
The high sequence identity among the Mycobacterium bovis and Mycobacterium tuberculosis genomes contrasts with the physiological differences reported between these pathogens, suggesting that variations in gene expression may be involved. In this study, microarray hybridization was used to compare the total transcriptome of M. bovis and M. tuberculosis, during the exponential phase of growth. Differential expression was detected in 258 genes, representing a 6% of the total genome. Variable genes were grouped according to functional categories. The main variations were found in genes encoding proteins involved in intermediary metabolism and respiration, cell wall processes, and hypothetical proteins. It is noteworthy that, compared to M. tuberculosis, the expression of a higher number of transcriptional regulators were detected in M. bovis. Likewise, in M. tuberculosis we found a higher expression of the PE/PPE genes, some of which code for cell wall related proteins. Also, in both pathogens we detected the expression of a number of genes not annotated in the M. tuberculosis H37Rv or M. bovis 2122 genomes, but annotated in the M. tuberculosis CDC1551 genome. Our results provide new evidence concerning differences in gene expression between both pathogens, and confirm previous hypotheses inferred from genome comparisons and proteome analysis. This study may shed some new light on our understanding of the mechanisms relating to differences in gene expression and pathogenicity in mycobacteria.
Collapse
Affiliation(s)
- Germán Rehren
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | |
Collapse
|
17
|
Monds RD, Newell PD, Schwartzman JA, O'Toole GA. Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Appl Environ Microbiol 2006; 72:1910-24. [PMID: 16517638 PMCID: PMC1393216 DOI: 10.1128/aem.72.3.1910-1924.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pho regulon integrates the sensing of environmental inorganic phosphate (Pi) availability with coregulation of gene expression, mediating an adaptive response to Pi limitation. Many aspects of the Pho regulon have been addressed in studies of Escherichia coli; however, it is unclear how transferable this knowledge is to other bacterial systems. Here, we report work to discern the conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. We demonstrate by mutational studies that PhoB/PhoR and the Pst system have conserved functions in the regulation of Pi-induced phosphatase activities, as well as expression of other Pi-regulated genes. A genetic screen was carried out to isolate factors that affect Pho-regulated phosphatase activity. We identified the Pho-regulated phosphatases PhoX and PhoD and present evidence that these enzymes are exported via the Tat system. The phoX and phoD genes were shown to be members of the Pho regulon by reverse transcription-PCR, as well as by functional assessment of putative PhoB binding sites (Pho boxes). Our data also suggested that at least one other non-Tat-secreted Pho-regulated phosphatase exists. From the genetic screen, numerous siderophore mutants that displayed severe defects in Pho-activated phosphatase activity were isolated. Subsequently, iron was shown to be important for modulating the activity of Pho-regulated phosphatases, but it does not regulate this activity at the level of transcription. We also identify and demonstrate a novel role in siderophore production and Pho-regulated phosphatase activity for ApaH, the hydrolase for the nucleotide-signaling molecule AppppA. Finally, numerous mutations in multiple cellular pathways were recovered that may be required for maximal induction of the Pho regulon under Pi-limiting conditions.
Collapse
Affiliation(s)
- Russell D Monds
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
18
|
Sulzenbacher G, Canaan S, Bordat Y, Neyrolles O, Stadthagen G, Roig-Zamboni V, Rauzier J, Maurin D, Laval F, Daffé M, Cambillau C, Gicquel B, Bourne Y, Jackson M. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J 2006; 25:1436-44. [PMID: 16541102 PMCID: PMC1440309 DOI: 10.1038/sj.emboj.7601048] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 02/20/2006] [Indexed: 11/09/2022] Open
Abstract
Cell envelope lipids play an important role in the pathogenicity of mycobacteria, but the mechanisms by which they are transported to the outer membrane of these prokaryotes are largely unknown. Here, we provide evidence that LppX is a lipoprotein required for the translocation of complex lipids, the phthiocerol dimycocerosates (DIM), to the outer membrane of Mycobacterium tuberculosis. Abolition of DIM transport following disruption of the lppX gene is accompanied by an important attenuation of the virulence of the tubercle bacillus. The crystal structure of LppX unveils an U-shaped beta-half-barrel dominated by a large hydrophobic cavity suitable to accommodate a single DIM molecule. LppX shares a similar fold with the periplasmic molecular chaperone LolA and the outer membrane lipoprotein LolB, which are involved in the localization of lipoproteins to the outer membrane of Gram-negative bacteria. Based on the structure and although an indirect participation of LppX in DIM transport cannot yet be ruled out, we propose LppX to be the first characterized member of a family of structurally related lipoproteins that carry lipophilic molecules across the mycobacterial cell envelope.
Collapse
Affiliation(s)
| | - Stéphane Canaan
- AFMB, CNRS UMR 6098, Marseille Cedex, France
- Laboratoire d'Enzymologie Interfaciale et de Physiologie de la Lipolyse CNRS UPR 9025, Marseille Cedex, France
| | - Yann Bordat
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris Cedex, France
| | - Olivier Neyrolles
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris Cedex, France
| | - Gustavo Stadthagen
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris Cedex, France
| | | | - Jean Rauzier
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris Cedex, France
| | | | - Françoise Laval
- Département ‘Mécanismes Moléculaires des Infections Mycobactériennes', Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Université Paul Sabatier, Toulouse Cedex, France
| | - Mamadou Daffé
- Département ‘Mécanismes Moléculaires des Infections Mycobactériennes', Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Université Paul Sabatier, Toulouse Cedex, France
| | | | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris Cedex, France
| | - Yves Bourne
- AFMB, CNRS UMR 6098, Marseille Cedex, France
- AFMB, CNRS UMR 6098, Case 932 Campus de Luminy, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France. Tel.: +33 4 91 82 55 66; Fax: +33 4 91 26 67 20; E-mail:
| | - Mary Jackson
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris Cedex, France
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France. Tel.: +33 1 45 68 88 77; Fax: +33 1 45 68 88 43; E-mail:
| |
Collapse
|
19
|
Lee KS, Park JK, Lim JH, Kim SY, Shin AR, Yang CS, Oh JH, Kwon YM, Song CH, Jo EK, Kim HJ. Identification of Proteins Induced at Hypoxic and Low pH Conditions inMycobacterium tuberculosisH37Rv. ACTA ACUST UNITED AC 2006. [DOI: 10.4167/jbv.2006.36.2.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kil-Soo Lee
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Jeong-Kyu Park
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Jae-Hyun Lim
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Su-Young Kim
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - A-Rum Shin
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Chul-Su Yang
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Jae-Hee Oh
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Yu-Mi Kwon
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| |
Collapse
|
20
|
Lara M, Servín-González L, Singh M, Moreno C, Cohen I, Nimtz M, Espitia C. Expression, secretion, and glycosylation of the 45- and 47-kDa glycoprotein of Mycobacterium tuberculosis in Streptomyces lividans. Appl Environ Microbiol 2004; 70:679-85. [PMID: 14766542 PMCID: PMC348798 DOI: 10.1128/aem.70.2.679-685.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding the 45/47 kDa glycoprotein (Rv1860) of Mycobacterium tuberculosis was expressed in Streptomyces lividans under its own promoter and under the thiostrepton-inducible Streptomyces promoter PtipA. The recombinant protein was released into the culture medium and, like the native protein, migrated as a double band at 45 and 47 kDa in sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) gels. However, in contrast to the native protein, only the 47-kDa recombinant protein could be labeled with concanavalin A (ConA). Carbohydrate digestion with jack bean alpha-D-mannosidase resulted in a reduction in the molecular mass of the recombinant protein upper band and completely eliminated ConA binding. Two-dimensional gel electrophoresis revealed only one isoelectric point for the recombinant protein. Comparative fingerprinting analysis of the individually purified upper and lower recombinant protein bands, treated under the same conditions with specific proteases, resulted in similar peptide patterns, and the peptides had the same N-terminal sequence, suggesting that migration of the recombinant protein as two bands in SDS-PAGE gels could be due to differences in glycosylation. Mass spectrometry analysis of the recombinant protein indicated that as in native protein, both the N-terminal and C-terminal domains of the recombinant protein are glycosylated. Furthermore, it was determined that antibodies of human tuberculosis patients reacted mainly against the carbohydrate residues of the glycoprotein. Altogether, these observations show that expression of genes for mycobacterial antigens in S. lividans is very useful for elucidation of the functional role and molecular mechanisms of glycosylation in bacteria.
Collapse
Affiliation(s)
- Martha Lara
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., México
| | | | | | | | | | | | | |
Collapse
|
21
|
Ishige T, Krause M, Bott M, Wendisch VF, Sahm H. The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 2003; 185:4519-29. [PMID: 12867461 PMCID: PMC165763 DOI: 10.1128/jb.185.15.4519-4529.2003] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphate (P(i)) starvation stimulon of Corynebacterium glutamicum was characterized by global gene expression analysis by using DNA microarrays. Hierarchical cluster analysis of the genes showing altered expression 10 to 180 min after a shift from P(i)-sufficient to P(i)-limiting conditions led to identification of five groups comprising 92 genes. Four of these groups included genes which are not directly involved in P metabolism and changed expression presumably due to the reduced growth rate observed after the shift or to the exchange of medium. One group, however, comprised 25 genes, most of which are obviously related to phosphorus (P) uptake and metabolism and exhibited 4- to >30-fold-greater expression after the shift to P(i) limitation. Among these genes, the RNA levels of the pstSCAB (ABC-type P(i) uptake system), glpQ (glycerophosphoryldiester phosphodiesterase), ugpAEBC (ABC-type sn-glycerol 3-phosphate uptake system), phoH (unknown function), nucH (extracellular nuclease), and Cgl0328 (5'-nucleotidase or related esterase) genes were increased, and pstSCAB exhibited a faster response than the other genes. Transcriptional fusion analyses revealed that elevated expression of pstSCAB and ugpAEBC was primarily due to transcriptional regulation. Several genes also involved in P uptake and metabolism were not affected by P(i) starvation; these included the genes encoding a PitA-like P(i) uptake system and a putative Na(+)-dependent P(i) transporter and the genes involved in the metabolism of pyrophosphate and polyphosphate. In summary, a global, time-resolved picture of the response of C. glutamicum to P(i) starvation was obtained.
Collapse
Affiliation(s)
- Takeru Ishige
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
22
|
Michell SL, Whelan AO, Wheeler PR, Panico M, Easton RL, Etienne AT, Haslam SM, Dell A, Morris HR, Reason AJ, Herrmann JL, Young DB, Hewinson RG. The MPB83 antigen from Mycobacterium bovis contains O-linked mannose and (1-->3)-mannobiose moieties. J Biol Chem 2003; 278:16423-32. [PMID: 12517764 DOI: 10.1074/jbc.m207959200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis and Mycobacterium bovis, the causative agents of human and bovine tuberculosis, have been reported to express a range of surface and secreted glycoproteins, although only one of these has been subjected to detailed structural analysis. We describe the use of a genetic system, in conjunction with lectin binding, to characterize the points of attachment of carbohydrate moieties to the polypeptide backbone of a second mycobacterial glycoprotein, antigen MPB83 from M. bovis. Biochemical and structural analysis of the native MPB83 protein and derived peptides demonstrated the presence of 3 mannose units attached to two threonine residues. Mannose residues were joined by a (1 --> 3) linkage, in contrast to the (1 --> 2) linkage previously observed in antigen MPT32 from M. tuberculosis and the (1 --> 2) and (1 --> 6) linkages in other mycobacterial glycolipids and polysaccharides. The identification of glycosylated antigens within the M. tuberculosis complex raises the possibility that the carbohydrate moiety of these glycoproteins might be involved in pathogenesis, either by interaction with mannose receptors on host cells, or as targets or modulators of the cell-mediated immune response. Given such a possibility characterization of mycobacterial glycoproteins is a step toward understanding their functional role and elucidating the mechanisms of mycobacterial glycosylation.
Collapse
Affiliation(s)
- Stephen L Michell
- TB Research Group, Department of Bacterial Diseases, Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|