1
|
Rider PJF, Dulin H, Uche IK, McGee MC, Huang W, Kousoulas KG, Hai R. A Herpes Simplex Virus Type-1-Derived Influenza Vaccine Induces Balanced Adaptive Immune Responses and Protects Mice From Lethal Influenza Virus Challenge. J Med Virol 2024; 96:e70067. [PMID: 39568407 DOI: 10.1002/jmv.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Influenza virus is a major respiratory viral pathogen responsible for the deaths of hundreds of thousands worldwide each year. Current vaccines provide protection primarily by inducing strain-specific antibody responses with the requirement of a match between vaccine strains and circulating strains. It has been suggested that anti-influenza T-cell responses, in addition to antibody responses may provide the broadest protection against different flu strains. Therefore, to address this urgent need, it is desirable to develop a vaccine candidate with an ability to induce balanced adaptive immunity including cell mediated immune responses. Here, we explored the potential of VC2, a well-characterized Herpes Simplex Virus type 1 vaccine vector, as a live attenuated influenza vaccine candidate. We generated a recombinant VC2 virus expressing the influenza A hemagglutinin protein. We show that this virus is capable of generating potent and specific anti-influenza humoral and cell-mediated immune responses. We further show that a single vaccination with the VC2-derived influenza vaccine protects mice from lethal challenge with influenza virus. Our data support the continued development of VC2-derived influenza vaccines for protection of human populations from both seasonal and pandemic strains of influenza. Finally, our results support the potential of VC2-derived vaccines as a platform for the rapid development of vaccines against emerging and established pathogens, particularly respiratory pathogens.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Adaptive Immunity
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mice
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Mice, Inbred BALB C
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Immunity, Cellular
- Disease Models, Animal
- Humans
- Survival Analysis
- Genetic Vectors/immunology
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Harrison Dulin
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Ifeanyi K Uche
- Division of Biotechnology and Molecular Medicine Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Vilaboa N, Bloom DC, Canty W, Voellmy R. A Broad Influenza Vaccine Based on a Heat-Activated, Tissue-Restricted Replication-Competent Herpesvirus. Vaccines (Basel) 2024; 12:703. [PMID: 39066341 PMCID: PMC11281492 DOI: 10.3390/vaccines12070703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Vaccination with transiently activated replication-competent controlled herpesviruses (RCCVs) expressing influenza A virus hemagglutinins broadly protects mice against lethal influenza virus challenges. The non-replicating RCCVs can be activated to transiently replicate with high efficiency. Activation involves a brief heat treatment to the epidermal administration site in the presence of a drug. The drug co-control is intended as a block to inadvertent reactivation in the nervous system and, secondarily, viremia under adverse conditions. While the broad protective effects observed raise an expectation that RCCVs may be developed as universal flu vaccines, the need for administering a co-activating drug may dampen enthusiasm for such a development. To replace the drug co-control, we isolated keratin gene promoters that were active in skin cells but inactive in nerve cells and other cells in vitro. In a mouse model of lethal central nervous system (CNS) infection, the administration of a recombinant that had the promoter of the infected cell protein 8 (ICP8) gene of a wild-type herpes simplex virus 1 (HSV-1) strain replaced by a keratin promoter did not result in any clinical signs, even at doses of 500 times wild-type virus LD50. Replication of the recombinant was undetectable in brain homogenates. Second-generation RCCVs expressing a subtype H1 hemagglutinin (HA) were generated in which the infected cell protein 4 (ICP4) genes were controlled by a heat switch and the ICP8 gene by the keratin promoter. In mice, these RCCVs replicated efficiently and in a heat-controlled fashion in the epidermal administration site. Immunization with the activated RCCVs induced robust neutralizing antibody responses against influenza viruses and protected against heterologous and cross-group influenza virus challenges.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain;
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - David C. Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (W.C.)
| | - William Canty
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (W.C.)
| | | |
Collapse
|
3
|
Bloom DC, Lilly C, Canty W, Vilaboa N, Voellmy R. Very Broadly Effective Hemagglutinin-Directed Influenza Vaccines with Anti-Herpetic Activity. Vaccines (Basel) 2024; 12:537. [PMID: 38793788 PMCID: PMC11125745 DOI: 10.3390/vaccines12050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
A universal vaccine that generally prevents influenza virus infection and/or illness remains elusive. We have been exploring a novel approach to vaccination involving replication-competent controlled herpesviruses (RCCVs) that can be deliberately activated to replicate efficiently but only transiently in an administration site in the skin of a subject. The RCCVs are derived from a virulent wild-type herpesvirus strain that has been engineered to contain a heat shock promoter-based gene switch that controls the expression of, typically, two replication-essential viral genes. Additional safety against inadvertent replication is provided by an appropriate secondary mechanism. Our first-generation RCCVs can be activated at the administration site by a mild local heat treatment in the presence of an antiprogestin. Here, we report that epidermal vaccination with such RCCVs expressing a hemagglutinin or neuraminidase of an H1N1 influenza virus strain protected mice against lethal challenges by H1N1 virus strains representing 75 years of evolution. Moreover, immunization with an RCCV expressing a subtype H1 hemagglutinin afforded full protection against a lethal challenge by an H3N2 influenza strain, and an RCCV expressing a subtype H3 hemagglutinin protected against a lethal challenge by an H1N1 strain. Vaccinated animals continued to gain weight normally after the challenge. Protective effects were even observed in a lethal influenza B virus challenge. The RCCV-based vaccines induced robust titers of in-group, cross-group and even cross-type neutralizing antibodies. Passive immunization suggested that observed vaccine effects were at least partially antibody-mediated. In summary, RCCVs expressing a hemagglutinin induce robust and very broad cross-protective immunity against influenza.
Collapse
Affiliation(s)
- David C. Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - Cameron Lilly
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - William Canty
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain;
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER de Bioingenieria, Biomateriales y Nanomedicina, 28046 Madrid, Spain
| | | |
Collapse
|
4
|
Groeneveldt C, van den Ende J, van Montfoort N. Preexisting immunity: Barrier or bridge to effective oncolytic virus therapy? Cytokine Growth Factor Rev 2023; 70:1-12. [PMID: 36732155 DOI: 10.1016/j.cytogfr.2023.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Oncolytic viruses (OVs) represent a highly promising treatment strategy for a wide range of cancers, by mediating both the direct killing of tumor cells as well as mobilization of antitumor immune responses. As many OVs circulate in the human population, preexisting OV-specific immune responses are prevalent. Indeed, neutralizing antibodies (NAbs) are abundantly present in the human population for commonly used OVs, such as Adenovirus type 5 (Ad5), Herpes Simplex Virus-1 (HSV-1), Vaccinia virus, Measles virus, and Reovirus. This review discusses (pre)clinical evidence regarding the effect of preexisting immunity against OVs on two distinct aspects of OV therapy; OV infection and spread, as well as the immune response induced upon OV therapy. Combined, this review provides evidence that consideration of preexisting immunity is crucial in realizing the full potential of the highly promising therapeutic implementation of OVs. Future investigation of current gaps in knowledge highlighted in this review should yield a more complete understanding of this topic, ultimately allowing for better and more personalized OV therapies.
Collapse
Affiliation(s)
- Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Jasper van den Ende
- Master Infection & Immunity, Utrecht University, 3584 CS Utrecht, the Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| |
Collapse
|
5
|
Jenner AL, Smalley M, Goldman D, Goins WF, Cobbs CS, Puchalski RB, Chiocca EA, Lawler S, Macklin P, Goldman A, Craig M. Agent-based computational modeling of glioblastoma predicts that stromal density is central to oncolytic virus efficacy. iScience 2022; 25:104395. [PMID: 35637733 PMCID: PMC9142563 DOI: 10.1016/j.isci.2022.104395] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
Oncolytic viruses (OVs) are emerging cancer immunotherapy. Despite notable successes in the treatment of some tumors, OV therapy for central nervous system cancers has failed to show efficacy. We used an ex vivo tumor model developed from human glioblastoma tissue to evaluate the infiltration of herpes simplex OV rQNestin (oHSV-1) into glioblastoma tumors. We next leveraged our data to develop a computational, model of glioblastoma dynamics that accounts for cellular interactions within the tumor. Using our computational model, we found that low stromal density was highly predictive of oHSV-1 therapeutic success, suggesting that the efficacy of oHSV-1 in glioblastoma may be determined by stromal-to-tumor cell regional density. We validated these findings in heterogenous patient samples from brain metastatic adenocarcinoma. Our integrated modeling strategy can be applied to suggest mechanisms of therapeutic responses for central nervous system cancers and to facilitate the successful translation of OVs into the clinic.
Collapse
Affiliation(s)
- Adrianne L. Jenner
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC, Canada
| | - Munisha Smalley
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles S. Cobbs
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Ralph B. Puchalski
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Aaron Goldman
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC, Canada
| |
Collapse
|
6
|
Jahan N, Ghouse SM, Martuza RL, Rabkin SD. In Situ Cancer Vaccination and Immunovirotherapy Using Oncolytic HSV. Viruses 2021; 13:v13091740. [PMID: 34578321 PMCID: PMC8473045 DOI: 10.3390/v13091740] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) can be genetically altered to acquire oncolytic properties so that oncolytic HSV (oHSV) preferentially replicates in and kills cancer cells, while sparing normal cells, and inducing anti-tumor immune responses. Over the last three decades, a better understanding of HSV genes and functions, and improved genetic-engineering techniques led to the development of oHSV as a novel immunovirotherapy. The concept of in situ cancer vaccination (ISCV) was first introduced when oHSV was found to induce a specific systemic anti-tumor immune response with an abscopal effect on non-injected tumors, in the process of directly killing tumor cells. Thus, the use of oHSV for tumor vaccination in situ is antigen-agnostic. The research and development of oHSVs have moved rapidly, with the field of oncolytic viruses invigorated by the FDA/EMA approval of oHSV talimogene laherparepvec in 2015 for the treatment of advanced melanoma. Immunovirotherapy can be enhanced by arming oHSV with immunomodulatory transgenes and/or using them in combination with other chemotherapeutic and immunotherapeutic agents. This review offers an overview of the development of oHSV as an agent for ISCV against solid tumors, describing the multitude of different oHSVs and their efficacy in immunocompetent mouse models and in clinical trials.
Collapse
Affiliation(s)
- Nusrat Jahan
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Shanawaz M. Ghouse
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Robert L. Martuza
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
7
|
Oncolytic Herpes Simplex Virus-Based Therapies for Cancer. Cells 2021; 10:cells10061541. [PMID: 34207386 PMCID: PMC8235327 DOI: 10.3390/cells10061541] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
With the increased worldwide burden of cancer, including aggressive and resistant cancers, oncolytic virotherapy has emerged as a viable therapeutic option. Oncolytic herpes simplex virus (oHSV) can be genetically engineered to target cancer cells while sparing normal cells. This leads to the direct killing of cancer cells and the activation of the host immunity to recognize and attack the tumor. Different variants of oHSV have been developed to optimize its antitumor effects. In this review, we discuss the development of oHSV, its antitumor mechanism of action and the clinical trials that have employed oHSV variants to treat different types of tumor.
Collapse
|
8
|
Muñoz-Alía MÁ, Nace RA, Tischer A, Zhang L, Bah ES, Auton M, Russell SJ. MeV-Stealth: A CD46-specific oncolytic measles virus resistant to neutralization by measles-immune human serum. PLoS Pathog 2021; 17:e1009283. [PMID: 33534834 PMCID: PMC7886131 DOI: 10.1371/journal.ppat.1009283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/16/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
The frequent overexpression of CD46 in malignant tumors has provided a basis to use vaccine-lineage measles virus (MeV) as an oncolytic virotherapy platform. However, widespread measles seropositivity limits the systemic deployment of oncolytic MeV for the treatment of metastatic neoplasia. Here, we report the development of MeV-Stealth, a modified vaccine MeV strain that exhibits oncolytic properties and escapes antimeasles antibodies in vivo. We engineered this virus using homologous envelope glycoproteins from the closely-related but serologically non-cross reactive canine distemper virus (CDV). By fusing a high-affinity CD46 specific single-chain antibody fragment (scFv) to the CDV-Hemagglutinin (H), ablating its tropism for human nectin-4 and modifying the CDV-Fusion (F) signal peptide we achieved efficient retargeting to CD46. A receptor binding affinity of ~20 nM was required to trigger CD46-dependent intercellular fusion at levels comparable to the original MeV H/F complex and to achieve similar antitumor efficacy in myeloma and ovarian tumor-bearing mice models. In mice passively immunized with measles-immune serum, treatment of ovarian tumors with MeV-Stealth significantly increased overall survival compared with treatment with vaccine-lineage MeV. Our results show that MeV-Stealth effectively targets and lyses CD46-expressing cancer cells in mouse models of ovarian cancer and myeloma, and evades inhibition by human measles-immune serum. MeV-Stealth could therefore represent a strong alternative to current oncolytic MeV strains for treatment of measles-immune cancer patients. Vaccine strains of the measles virus (MeV) have been shown to be promising anti-cancer agents because of the frequent overexpression of the host-cell receptor CD46 in human malignancies. However, anti-MeV antibodies in the human population severely restrict the use of MeV as an oncolytic agent. Here, we engineered a neutralization-resistant MeV vaccine, MeV-Stealth, by replacing its envelope glycoproteins with receptor-targeted glycoproteins from wild-type canine distemper virus. By fully-retargeting the new envelope to the receptor CD46, we found that in mouse models of ovarian cancer and myeloma MeV-Stealth displayed oncolytic properties similar to the parental MeV vaccine. Furthermore, we found that passive immunization with measles-immune human serum did not eliminate the oncolytic potency of the MeV-Stealth, whereas it did destroy the potency of the parental MeV strain. The virus we here report may be considered a suitable oncolytic agent for the treatment of MeV-immune patients.
Collapse
Affiliation(s)
- Miguel Ángel Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (MÁM-A); (SJR)
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alexander Tischer
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eugene S. Bah
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Matthew Auton
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (MÁM-A); (SJR)
| |
Collapse
|
9
|
Zhang S, Rabkin SD. The discovery and development of oncolytic viruses: are they the future of cancer immunotherapy? Expert Opin Drug Discov 2020; 16:391-410. [PMID: 33232188 DOI: 10.1080/17460441.2021.1850689] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Despite diverse treatment modalities and novel therapies, many cancers and patients are not effectively treated. Cancer immunotherapy has recently achieved breakthrough status yet is not effective in all cancer types or patients and can generate serious adverse effects. Oncolytic viruses (OVs) are a promising new therapeutic modality that harnesses virus biology and host interactions to treat cancer. OVs, genetically engineered or natural, preferentially replicate in and kill cancer cells, sparing normal cells/tissues, and mediating anti-tumor immunity.Areas covered: This review focuses on OVs as cancer therapeutic agents from a historical perspective, especially strategies to boost their immunotherapeutic activities. OVs offer a multifaceted platform, whose activities are modulated based on the parental virus and genetic alterations. In addition to direct viral effects, many OVs can be armed with therapeutic transgenes to also act as gene therapy vectors, and/or combined with other drugs or therapies.Expert opinion: OVs are an amazingly versatile and malleable class of cancer therapies. They tend to target cellular and host physiology as opposed to specific genetic alterations, which potentially enables broad responsiveness. The biological complexity of OVs have hindered their translation; however, the recent approval of talimogene laherparepvec (T-Vec) has invigorated the field.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Samuel D Rabkin
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene 2019; 38:4467-4479. [PMID: 30755732 DOI: 10.1038/s41388-019-0737-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/20/2023]
Abstract
Oncolytic herpes simplex viruses are proving to be effective in clinical trials against a number of cancers. Here, R-115, an oncolytic herpes simplex virus retargeted to human erbB-2, fully virulent in its target cells, and armed with murine interleukin-12 was evaluated in a murine model of glioblastoma. We show that a single R-115 injection in established tumors resulted, in about 30% of animals, in the complete eradication of the tumor, otherwise invariably lethal. The treatment also induced a significant improvement in the overall median survival time of mice and a resistance to recurrence from the same neoplasia. Such a high degree of protection was unprecedented; it was not observed before following treatments with the commonly used, mutated/attenuated oncolytic viruses. This is the first study providing the evidence of benefits offered by a fully virulent, retargeted, and armed herpes simplex virus in the treatment of glioblastoma and paves the way for clinical translation.
Collapse
|
11
|
Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G. Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Virotherapies. Trends Immunol 2017; 39:209-221. [PMID: 29275092 DOI: 10.1016/j.it.2017.11.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses (OVs) represent a new class of cancer immunotherapeutics. Administration of OVs to cancer-bearing hosts induces two distinct immunities: antiviral and antitumor. While antitumor immunity is beneficial, antiviral immune responses are often considered detrimental for the efficacy of OV-based therapy. The existing dogma postulates that anti-OV immune responses restrict viral replication and spread, and thus reduce direct OV-mediated killing of cancer cells. Accordingly, a myriad of therapeutic strategies aimed at mitigating anti-OV immune responses is presently being tested. Here, we advocate that OV-induced antiviral immune responses hold intrinsic anticancer benefits and are essential for establishing clinically desired antitumor immunity. Thus, to achieve the optimal efficacy of OV-based cancer immunotherapies, strategic management of anti-OV immune responses is of critical importance.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, NS, Canada; Department of Biology, Dalhousie University, NS, Canada; Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada; These authors contributed equally to this work
| | - Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; These authors contributed equally to this work
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick W Lee
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, NS, Canada; Share senior co-authorship.
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Share senior co-authorship.
| |
Collapse
|
12
|
Russell SJ, Peng KW. Oncolytic Virotherapy: A Contest between Apples and Oranges. Mol Ther 2017; 25:1107-1116. [PMID: 28392162 DOI: 10.1016/j.ymthe.2017.03.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
Viruses can be engineered or adapted for selective propagation in neoplastic tissues and further modified for therapeutic transgene expression to enhance their antitumor potency and druggability. Oncolytic viruses (OVs) can be administered locally or intravenously and spread to a variable degree at sites of tumor growth. OV-infected tumor cells die in situ, releasing viral and tumor antigens that are phagocytosed by macrophages, transported to regional lymph nodes, and presented to antigen-reactive T cells, which proliferate before dispersing to kill uninfected tumor cells at distant sites. Several OVs are showing clinical promise, and one of them, talimogene laherparepvec (T-VEC), was recently granted marketing approval for intratumoral therapy of nonresectable metastatic melanoma. T-VEC also appears to substantially enhance clinical responsiveness to checkpoint inhibitor antibody therapy. Here, we examine the T-VEC paradigm and review some of the approaches currently being pursued to develop the next generation of OVs for both local and systemic administration, as well as for use in combination with other immunomodulatory agents.
Collapse
Affiliation(s)
- Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Grigg C, Blake Z, Gartrell R, Sacher A, Taback B, Saenger Y. Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers. Semin Oncol 2016; 43:638-646. [PMID: 28061981 DOI: 10.1053/j.seminoncol.2016.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/22/2016] [Indexed: 01/14/2023]
Abstract
Talimogene laherparepvec (T-Vec) is the first live virus to be approved by the US Food and Drug Administration for the treatment of cancer. This engineered version of herpes simplex virus type 1 (HSV-1) is the product of decades of preclinical work aimed at identifying and modifying aspects of the viral genome involved in virulence and immunogenicity. T-Vec preferentially infects and lyses tumor cells and, in some cases, induces a systemic immune response against the tumor. These properties have translated into significant and durable clinical responses, particularly in advanced melanoma. Many unanswered questions remain, including how to augment these clinical responses and which other tumor types may respond to oncolytic therapy. Here, we review the development of T-Vec, our current understanding of its impact on the tumor immune micro-environment, and its safety and efficacy in clinical trials for melanoma and other cancers.
Collapse
Affiliation(s)
- Claud Grigg
- Hematology/Oncology, New York-Presbyterian/Columbia University Medical Center, New York, NY
| | - Zoë Blake
- Hematology/Oncology, Columbia University Medical Center, New York, NY
| | - Robyn Gartrell
- Hematology/Oncology, Columbia University Medical Center, New York, NY
| | - Adrian Sacher
- Hematology/Oncology, New York-Presbyterian/Columbia University Medical Center, New York, NY
| | - Bret Taback
- Hematology/Oncology, New York-Presbyterian/Columbia University Medical Center, New York, NY
| | - Yvonne Saenger
- Hematology/Oncology, New York-Presbyterian/Columbia University Medical Center, New York, NY.
| |
Collapse
|
14
|
Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30017-1. [PMID: 26436135 PMCID: PMC4589755 DOI: 10.1038/mto.2015.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV) to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors.
Collapse
|
15
|
Replication-Competent Controlled Herpes Simplex Virus. J Virol 2015; 89:10668-79. [PMID: 26269179 DOI: 10.1128/jvi.01667-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED We present the development and characterization of a replication-competent controlled herpes simplex virus 1 (HSV-1). Replication-essential ICP4 and ICP8 genes of HSV-1 wild-type strain 17syn+ were brought under the control of a dually responsive gene switch. The gene switch comprises (i) a transactivator that is activated by a narrow class of antiprogestins, including mifepristone and ulipristal, and whose expression is mediated by a promoter cassette that comprises an HSP70B promoter and a transactivator-responsive promoter and (ii) transactivator-responsive promoters that drive the ICP4 and ICP8 genes. Single-step growth experiments in different cell lines demonstrated that replication of the recombinant virus, HSV-GS3, is strictly dependent on an activating treatment consisting of administration of a supraphysiological heat dose in the presence of an antiprogestin. The replication-competent controlled virus replicates with an efficiency approaching that of the wild-type virus from which it was derived. Essentially no replication occurs in the absence of activating treatment or if HSV-GS3-infected cells are exposed only to heat or antiprogestin. These findings were corroborated by measurements of amounts of viral DNA and transcripts of the regulated ICP4 gene and the glycoprotein C (gC) late gene, which was not regulated. Similar findings were made in experiments with a mouse footpad infection model. IMPORTANCE The alphaherpesviruses have long been considered vectors for recombinant vaccines and oncolytic therapies. The traditional approach uses vector backbones containing attenuating mutations that restrict replication to ensure safety. The shortcoming of this approach is that the attenuating mutations tend to limit both the immune presentation and oncolytic properties of these vectors. HSV-GS3 represents a novel type of vector that, when activated, replicates with the efficiency of a nonattenuated virus and whose safety is derived from deliberate, stringent regulation of multiple replication-essential genes. By directing activating heat to the region of virus administration, replication is strictly confined to infected cells within this region. The requirement for antiprogestin provides an additional level of safety, ensuring that virus replication cannot be triggered inadvertently. Replication-competent controlled vectors such as HSV-GS3 may have the potential to be superior to conventional attenuated HSV vaccine and oncolytic vectors without sacrificing safety.
Collapse
|
16
|
Voellmy R, Bloom DC, Vilaboa N. A novel approach for addressing diseases not yielding to effective vaccination? Immunization by replication-competent controlled virus. Expert Rev Vaccines 2015; 14:637-51. [PMID: 25676927 DOI: 10.1586/14760584.2015.1013941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vaccination involves inoculation of a subject with a disabled disease-causing microbe or parts thereof. While vaccination has been highly successful, we still lack sufficiently effective vaccines for important infectious diseases. We propose that a more complete immune response than that elicited from a vaccine may be obtained from immunization with a disease-causing virus modified to subject replication-essential genes to the control of a gene switch activated by non-lethal heat in the presence of a drug-like compound. Upon inoculation, strictly localized replication of the virus would be triggered by a heat dose administered to the inoculation site. Activated virus would transiently replicate with an efficiency approaching that of the disease-causing virus and express all viral antigens. It may also vector heterologous antigens or control co-infecting microbes.
Collapse
Affiliation(s)
- Richard Voellmy
- Department of Physiological Sciences, University of Florida College of Veterinary Sciences, Gainesville, FL, USA
| | | | | |
Collapse
|
17
|
Neoadjuvant in situ gene-mediated cytotoxic immunotherapy improves postoperative outcomes in novel syngeneic esophageal carcinoma models. Cancer Gene Ther 2011; 18:871-83. [PMID: 21869822 PMCID: PMC3215998 DOI: 10.1038/cgt.2011.56] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Esophageal carcinoma is the most rapidly increasing tumor in the United States and has a dismal 15% 5-year survival. Immunotherapy has been proposed to improve patient outcomes; however, no immunocompetent esophageal carcinoma model exists to date to test this approach. We developed two mouse models of esophageal cancer by inoculating immunocompetent mice with syngeneic esophageal cell lines transformed by cyclin-D1 or mutant HRASG12V and loss of p53. Similar to humans, surgery and adjuvant chemotherapy (cisplatin and 5-fluorouracil) demonstrated limited efficacy. Gene-mediated cyototoxic immunotherapy (adenoviral vector carrying the herpes simplex virus thymidine kinase gene in combination with the prodrug ganciclovir; AdV-tk/GCV) demonstrated high levels of in vitro transduction and efficacy. Using in vivo syngeneic esophageal carcinoma models, combining surgery, chemotherapy and AdV-tk/GCV improved survival (P=0.007) and decreased disease recurrence (P<0.001). Mechanistic studies suggested that AdV-tk/GCV mediated a direct cytotoxic effect and an increased intra-tumoral trafficking of CD8 T cells (8.15% vs 14.89%, P=0.02). These data provide the first preclinical evidence that augmenting standard of care with immunotherapy may improve outcomes in the management of esophageal carcinoma.
Collapse
|
18
|
Browne AW, Leddon JL, Currier MA, Williams JP, Frischer JS, Collins MH, Ahn CH, Cripe TP. Cancer screening by systemic administration of a gene delivery vector encoding tumor-selective secretable biomarker expression. PLoS One 2011; 6:e19530. [PMID: 21589655 PMCID: PMC3092745 DOI: 10.1371/journal.pone.0019530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/31/2011] [Indexed: 12/31/2022] Open
Abstract
Cancer biomarkers facilitate screening and early detection but are known for only a few cancer types. We demonstrated the principle of inducing tumors to secrete a serum biomarker using a systemically administered gene delivery vector that targets tumors for selective expression of an engineered cassette. We exploited tumor-selective replication of a conditionally replicative Herpes simplex virus (HSV) combined with a replication-dependent late viral promoter to achieve tumor-selective biomarker expression as an example gene delivery vector. Virus replication, cytotoxicity and biomarker production were low in quiescent normal human foreskin keratinocytes and high in cancer cells in vitro. Following intravenous injection of virus >90% of tumor-bearing mice exhibited higher levels of biomarker than non-tumor-bearing mice and upon necropsy, we detected virus exclusively in tumors. Our strategy of forcing tumors to secrete a serum biomarker could be useful for cancer screening in high-risk patients, and possibly for monitoring response to therapy. In addition, because oncolytic vectors for tumor specific gene delivery are cytotoxic, they may supplement our screening strategy as a "theragnostic" agent. The cancer screening approach presented in this work introduces a paradigm shift in the utility of gene delivery which we foresee being improved by alternative vectors targeting gene delivery and expression to tumors. Refining this approach will usher a new era for clinical cancer screening that may be implemented in the developed and undeveloped world.
Collapse
Affiliation(s)
- Andrew W. Browne
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Physician Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jennifer L. Leddon
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Physician Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Mark A. Currier
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jon P. Williams
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jason S. Frischer
- Division of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Margaret H. Collins
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Chong H. Ahn
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Timothy P. Cripe
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
19
|
Abstract
Oncolytic virotherapy is an emerging experimental treatment platform for cancer therapy. Oncolytic viruses are replicative-competent viruses that are engineered to replicate selectively in cancer cells with specified oncogenic phenotypes. Multiple DNA and RNA viruses have been clinically tested in a variety of tumors. This review will provide a brief description of these novel anticancer biologics and will summarize the results of clinical investigation. To date oncolytic virotherapy has shown to be safe, and has generated clinical responses in tumors that are resistant to chemotherapy or radiotherapy. The major challenge for researchers is to maximize the efficacy of these viral therapeutics, and to establish stable systemic delivery mechanisms.
Collapse
|
20
|
Gaston DC, Whitley RJ, Parker JN. Engineered herpes simplex virus vectors for antitumor therapy and vaccine delivery. Future Virol 2011. [DOI: 10.2217/fvl.11.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetically modified herpes simplex viruses (HSVs) have been exploited for both antitumor therapy and vaccine delivery. These mutant viruses retain their ability to replicate and lyse permissive cells, including many tumor types, and are referred to as oncolytic HSVs. In addition, deletion of nonessential genes permits the introduction of foreign genes to augment the antitumor effect by either immune stimulation, targeting for select tumors, or expression of tumor or vaccine antigens. This article reviews the development of oncolytic HSVs as an anticancer therapy, as well as the application of HSV-1 vectors for delivery of targeted antigens or as vaccine adjuvants. The impact of these novel vectors with respect to enhanced antitumor activity and development of antitumor vaccination strategies is discussed.
Collapse
Affiliation(s)
- David C Gaston
- Medical Scientist Training Program, Department of Cell Biology, CHB 130, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Richard J Whitley
- Departments of Pediatrics, Microbiology, Medicine & Neurosurgery, CHB 303, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jacqueline N Parker
- Departments of Pediatrics & Cell Biology, CHB 118B, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
21
|
Hammill AM, Conner J, Cripe TP. Oncolytic virotherapy reaches adolescence. Pediatr Blood Cancer 2010; 55:1253-63. [PMID: 20734404 DOI: 10.1002/pbc.22724] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/01/2010] [Indexed: 01/11/2023]
Abstract
Lytic viruses kill cells as a consequence of their normal replication life cycle. The idea of harnessing viruses to kill cancer cells arose over a century ago, before viruses were even discovered, from medical case reports of infections associated with cancer remissions. Since then, there has been no shortage of hype, hope, or fear regarding the prospect of oncolytic virotherapy for cancer. Early developments in the field included encouraging antitumor efficacy both in animal studies in the 1920s-1940s and in human clinical trials in the 1950s-1970s. Despite its long-standing history, oncolytic virotherapy was an idea ahead of its time. Without needed advances in molecular biology, virology, immunology, and clinical research ethics, early clinical trials resulted in infectious complications and were fraught with controversial research conduct, so that enthusiasm in the medical community waned. Oncolytic virotherapy is now experiencing a major growth spurt, having sustained numerous laboratory advances and undergone multiple encouraging adult clinical trials, and is now witnessing the emergence of pediatric trials. Here we review the history and salient biology of the field, including preclinical and clinical data, with a special emphasis on those agents now being tested in pediatric cancer patients.
Collapse
Affiliation(s)
- Adrienne M Hammill
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
22
|
Friedman GK, Pressey JG, Reddy AT, Markert JM, Gillespie GY. Herpes simplex virus oncolytic therapy for pediatric malignancies. Mol Ther 2009; 17:1125-35. [PMID: 19367259 DOI: 10.1038/mt.2009.73] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite improving survival rates for children with cancer, a subset of patients exist with disease resistant to traditional therapies such as surgery, chemotherapy, and radiation. These patients require newer, targeted treatments used alone or in combination with more traditional approaches. Oncolytic herpes simplex virus (HSV) is one of these newer therapies that offer promise for several difficult to treat pediatric malignancies. The potential benefit of HSV therapy in pediatric solid tumors including brain tumors, neuroblastomas, and sarcomas is reviewed along with the many challenges that need to be addressed prior to moving oncolytic HSV therapy from the laboratory to the beside in the pediatric population.
Collapse
Affiliation(s)
- Gregory K Friedman
- Department of Pediatrics, Children's Hospital of Alabama, University of Alabama at Birmingham, USA.
| | | | | | | | | |
Collapse
|
23
|
Li H, Dutuor A, Fu X, Zhang X. Induction of strong antitumor immunity by an HSV-2-based oncolytic virus in a murine mammary tumor model. J Gene Med 2007; 9:161-9. [PMID: 17266169 DOI: 10.1002/jgm.1005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oncolytic viruses have shown considerable promise for the treatment of solid tumors. In previous studies, we demonstrated that a novel oncolytic virus (FusOn-H2), constructed by replacing the serine/threonine protein kinase (PK) domain of the ICP10 gene of type 2 herpes simplex virus (HSV-2) with the gene encoding the green fluorescent protein, can selectively replicate in and thus lyse tumor cells. 4T1 tumor cells are weakly immunogenic and the mammary tumors derived from them aggressively metastasize to different parts of body, thus providing an attractive model for evaluating anticancer agents. We thus tested the antitumor effect of FusOn-H2 in this tumor model, in comparisons with several other oncolytic HSVs derived from HSV-1, including a nonfusogenic HSV-1 (Baco-1) and a doubly fusogenic virus (Synco-2D). Our results show that FusOn-H2 and Synco-2D have greater oncolytic activity in vitro than Baco-1. Moreover, FusOn-H2 induced strong T cell responses against primary and metastatic mammary tumors in vivo, and splenocytes adoptively transferred from FusOn-H2-treated mice effectively prevented metastasis in naïve mice bearing implanted mammary tumors. We conclude that the HSV-2-based FusOn-H2 oncolytic virus may be an effective agent for the treatment of both primary and metastatic breast cancer.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
24
|
Barzon L, Stefani AL, Pacenti M, Palù G. Versatility of gene therapy vectors through viruses. Expert Opin Biol Ther 2005; 5:639-62. [PMID: 15934840 DOI: 10.1517/14712598.5.5.639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several viruses have been engineered for gene therapy applications, and the specific properties of each viral vector have been exploited to target a variety of inherited and acquired diseases. Preclinical and clinical studies demonstrated that viral vectors are highly versatile tools capable of efficient transfer of foreign genetic information into almost all cell types and tissues. Gene therapy applications depend on vector characteristics, such as host range, cell- or tissue-specific targeting, genome integration, efficiency and duration of transgene expression, packaging capacity, and suitability for scale-up production. This review discusses the advances in the development of viral vectors, with particular emphasis on how knowledge of virus biology has been exploited to design a variety of vectors with improved safety characteristics and efficiency, potentially suitable for a large number of gene therapy applications.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Via Gabelli 63, I-35121 Padova, Italy.
| | | | | | | |
Collapse
|
25
|
Rueger MA, Winkeler A, Miletic H, Kaestle C, Richter R, Schneider G, Hilker R, Heneka MT, Ernestus RI, Hampl JA, Fraefel C, Jacobs AH. Variability in infectivity of primary cell cultures of human brain tumors with HSV-1 amplicon vectors. Gene Ther 2005; 12:588-96. [PMID: 15674397 DOI: 10.1038/sj.gt.3302462] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated the variability in infectivity of cells in primary brain tumor samples from different patients using an HSV-1 amplicon vector. We studied the infectivity of HSV-1 amplicon vectors in tumor samples derived from neurosurgical resections of 20 patients. Cells were infected with a definite amount of HSV-1 amplicon vector HSV-GFP. Transduction efficiency in primary tumor cell cultures was compared to an established human glioma line. Moreover, duration of transgene expression was monitored in different tumor cell types. All primary cell cultures were infectable with HSV-GFP with variable transduction efficiencies ranging between 3.0 and 42.4% from reference human Gli36 Delta EGFR glioma cells. Transduction efficiency was significantly greater in anaplastic gliomas and meningiomas (26.7+/-17.4%) compared to more malignant tumor types (glioblastomas, metastases; 11.2+/-8.5%; P=0.05). To further investigate the possible underlying mechanism of this variability, nectin-1/HevC expression was analyzed and was found to contribute, at least in part, to this variability in infectability. The tumor cells expressed the exogenous gene for 7 to 61 days with significant shorter expression in glioblastomas (18+/-13 d) compared to anaplastic gliomas (42+/-24 d; P<0.05). Interindividual variability of infectivity by HSV-1 virions might explain, at least in part, why some patients enrolled in gene therapy for glioblastoma in the past exhibited a sustained response to HSV-1-based gene- and virus therapy. Infectivity of primary tumor samples from respective patients should be tested to enable the development of efficient and safe herpes vector-based gene and virus therapy for clinical application.
Collapse
Affiliation(s)
- M A Rueger
- Department of Neurology, University of Cologne, Max-Planck Institute for Neurological Research, Center for Molecular Medicine, European Molecular Imaging Laboratory, Cologne 50931, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Molecular research has vastly advanced our understanding of the mechanism of cancer growth and spread. Targeted approaches utilizing molecular science have yielded provocative results in the treatment of cancer. Oncolytic viruses genetically programmed to replicate within cancer cells and directly induce toxic effect via cell lysis or apoptosis are currently being explored in the clinic. Safety has been confirmed and despite variable efficacy results several dramatic responses have been observed with some oncolytic viruses. This review summarizes results of clinical trials with oncolytic viruses in cancer.
Collapse
Affiliation(s)
- Eugene Lin
- Mary Crowley Medical Research Center, Dallas, Texas, USA
| | | |
Collapse
|
27
|
Broberg EK, Peltoniemi J, Nygårdas M, Vahlberg T, Röyttä M, Hukkanen V. Spread and replication of and immune response to gamma134.5-negative herpes simplex virus type 1 vectors in BALB/c mice. J Virol 2004; 78:13139-52. [PMID: 15542666 PMCID: PMC525003 DOI: 10.1128/jvi.78.23.13139-13152.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that intracranial infection of herpes simplex virus type 1 (HSV-1) vector R8306 expressing interleukin-4 (IL-4) can abolish symptoms of experimental autoimmune encephalomyelitis, which is used as a model for human multiple sclerosis (Broberg et al., Gene Ther. 8:769-777, 2001). The aim of the current study was to search for means other than intracranial injection to deliver HSV-derived vectors to the central nervous system of mice. We also aimed to study the replication efficiency of these vectors in nervous system tissues and to elucidate the effects of the viruses on the immune response. We studied the spread and replication of the following viruses with deletions in neurovirulence gene gamma(1)34.5: R3616, R849 (lacZ transgene), R3659 (alpha-tk), R8306 (murine IL-4 transgene), and R8308 (murine IL-10 transgene). The samples were taken from trigeminal ganglia and brains of BALB/c mice after corneal, intralabial, and intranasal infection, and the viral load was examined by viral culture, HSV DNA PCR, and VP16 reverse transcription (RT)-PCR. The results show that (i) intranasal infection was the most efficient means of spread to the central nervous system (CNS) besides intracranial injection; (ii) the viruses did not grow in the culture from the brain samples, but the viral DNA persisted even until day 21 postinfection; (iii) viral replication, as observed by VP16 mRNA RT-PCR, occurred mainly on days 4 and 7 postinfection in trigeminal ganglia and to a low extent in brain; (iv) R3659, R8306, and R8308 showed reactivation from the trigeminal ganglia in explant cultures; (v) in the brain, the vectors spread to the midbrain more efficiently than to other brain areas; and (vi) the deletions in the R3659 genome significantly limited the ability of this virus to replicate in the nervous system. The immunological studies show that (i) the only recombinant to induce IL-4 mRNA expression in the brain was R8306, the gamma interferon response was very low in the brain for R3659 and R8306, and the IL-23p19 response to R8306 decreased by day 21 postinfection, unlike for the other viruses; (ii) Deltagamma(1)34.5 HSV vectors modulated the subsets of the splenocytes differently depending on the transgene; (iii) R3659 infection of the nervous system induces expression and production of cytokines from the stimulated splenocytes; and (iv) HSV vectors expressing IL-4 or IL-10 induce expression and production of both of the Th2-type cytokines from splenocytes. We conclude that the intranasal route of infection is a possible means of delivery of Deltagamma(1)34.5 HSV vectors to the CNS in addition to intracranial infection, although replication in the CNS remains minimal. The DNA of the HSV vectors is able to reside in the brain for at least 3 weeks. The features of the immune response to the vectors must be considered and may be exploited in gene therapy experiments with these vectors.
Collapse
Affiliation(s)
- Eeva K Broberg
- Department of Virology, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|
28
|
Broberg EK, Salmi AA, Hukkanen V. IL-4 is the key regulator in herpes simplex virus-based gene therapy of BALB/c experimental autoimmune encephalomyelitis. Neurosci Lett 2004; 364:173-8. [PMID: 15196670 DOI: 10.1016/j.neulet.2004.04.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Revised: 04/16/2004] [Accepted: 04/17/2004] [Indexed: 10/26/2022]
Abstract
Local delivery of cytokines or other immunomodulatory components has been applied as a potential therapy for experimental autoimmune encephalomyelitis (EAE), which is used as a model of human multiple sclerosis. We have used herpes simplex virus-based vectors expressing Th2 cytokines IL-4 and IL-10 and have previously shown a significant abolishment of disease symptoms by the virus expressing IL-4 (R8306), but not by the one expressing IL-10 (R8308). In the present study, the aim was to investigate the local and systemic cytokine response after HSV-based gene therapy. We show that the local expression of IL-4 from an HSV vector delivered to the brain converts the cytokine environment from the disease-promoting Th1-prominent to the disease-limiting IL-4 expressing type. We measured the expression of cytokines IL-4, IL-10, IFN-gamma, IL-12p35, IL-12p40 and the novel IL-23p19 from the brain by quantitative LightCycler RT-PCR. We also investigated the systemic cytokine response from the mouse sera. The results indicate that an increase in the Th2 cytokine IL-4 is observed if the diseased mice are treated with IL-4-expressing virus R8306. Surprisingly, the IL-23 expression of R8306 treated mice was at the same level as in the untreated EAE mice. On the contrary, in the R8308 (IL-10 expression) treated mice, the expression of IL-23 was decreased (P < 0.05). We conclude that the favorable effect of IL-4 on the disease development is more important than the downregulation of the Th1 type cytokines (like IL-23), and that IL-4 would be the key mediator of disease abolishment during gene therapy using these vectors.
Collapse
Affiliation(s)
- Eeva K Broberg
- Department of Virology, University of Turku, Kiinamyllynkatu 13, FIN-20520, Finland.
| | | | | |
Collapse
|
29
|
Abstract
Treatment of cancer is limited by toxicity to normal tissue with standard approaches (chemotherapy, surgery and radiotherapy). The use of selective replicating viral vectors may enable the targeting of gene-modified viruses to malignant tissue without toxic effect. Studies of these vectors have demonstrated tumour-selective replication and minimal evidence of replication in normal tissue. The most advanced clinical results reported involve gene-modified adenoviral vectors. Several completed, histologically confirmed responses to local/regional injection have been induced, particularly in recurrent squamous cell carcinoma involving the head and neck region. Dose limiting toxicity above 10(13) viral particles per injection has been observed. Anti-tumour effect is demonstrable in animal models without evidence of significant toxicity when these vectors are used alone or in combination with chemotherapy, radiation therapy or as gene delivery vehicles. Preliminary clinical trials, particularly with E1B-deleted adenoviruses, report evidence of clinical activity in comparison with expected historical responses. Enhancement in replication selectivity to malignant tissue is also demonstrated preclinically and clinically with an E1B-deleted adenovirus utilising a prostate-specific antigen promoter. Other selective replicating viral vectors such as herpes simplex virus and vaccinia virus have also been explored clinically and suggest evidence of activity in patients with cancer. Modifications may one day enable more aggressive use of these new and exciting therapeutics as systemic gene delivery vehicles.
Collapse
|
30
|
Hu JCC, Coffin RS. Oncolytic herpes simplex virus for tumor therapy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 55:165-84. [PMID: 12968536 DOI: 10.1016/s0074-7742(03)01007-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Jennifer C C Hu
- Cancer Cell Biology, Hammersmith Hospital Campus, Imperial College School of Medicine, London W12 0NN, United Kingdom
| | | |
Collapse
|
31
|
Pardoe I, Dargan D. PREPS and L-particles: a new approach to virus-like particle vaccines. Expert Rev Vaccines 2002; 1:427-32. [PMID: 12901580 DOI: 10.1586/14760584.1.4.427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conventional virus-like particles are usually composed of a single structural protein which spontaneously assembles into particles. L-particles, a little-known type of virus-like particle, are produced as part of the natural infectious process of many, if not all, alpha-herpesviruses. L-particles lack the nucleocapsid present in the infectious virion but contain all of the virus envelope and tegument proteins. L-particles contain no virus DNA and are noninfectious, though they are biologically competent, since they are capable of delivering viral envelope and tegument proteins to cells. When cells are infected with herpes simplex virus Type 1 under conditions where viral DNA synthesis is blocked, previral DNA replication enveloped particles are produced. These are similar to L-particles, but differ slightly in protein composition. This article reviews the available data regarding these vaccine candidates and explores the wide-ranging potential applications, including vaccine candidates against infectious diseases and cancer, as well as a protein delivery vector.
Collapse
|
32
|
Varghese S, Rabkin SD. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther 2002; 9:967-78. [PMID: 12522436 DOI: 10.1038/sj.cgt.7700537] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Indexed: 12/29/2022]
Abstract
Oncolytic herpes simplex virus type 1 (HSV-1) vectors are emerging as an effective and powerful therapeutic approach for cancer. Replication-competent HSV-1 vectors with mutations in genes that affect viral replication, neuropathogenicity, and immune evasiveness have been developed and tested for their safety and efficacy in a variety of mouse models. Evidence to-date following administration into the brain attests to their safety, an important observation in light of the neuropathogenicity of the virus. Phase I clinical traits of three vectors, G207, 1716, and NV1020, are either ongoing or completed, with no adverse events attributed to the virus. These and other HSV-1 vectors are effective against a myriad of solid tumors in mice, including glioma, melanoma, breast, prostate, colon, ovarian, and pancreatic cancer. Enhancement of activity was observed when HSV-1 vectors were used in combination with traditional therapies such as radiotherapy and chemotherapy, providing an attractive strategy to pursue in the clinic. Oncolytic HSV-1 vectors expressing "suicide" genes (thymidine kinase, cytosine deaminase, rat cytochrome P450) or immunostimulatory genes (IL-12, GM-CSF, etc.) have been constructed to maximize tumor destruction through multimodal therapeutic mechanisms. Further advances in virus delivery and tumor specificity should improve the likelihood for successful translation to the clinic.
Collapse
Affiliation(s)
- Susan Varghese
- Molecular Neurosurgery Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
33
|
Nemunaitis J, Edelman J. Selectively replicating viral vectors. Cancer Gene Ther 2002; 9:987-1000. [PMID: 12522438 DOI: 10.1038/sj.cgt.7700547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Indexed: 01/26/2023]
Affiliation(s)
- John Nemunaitis
- US Oncology, Inc., Collins Building, 5th Floor, Dallas, Texas 75246, USA.
| | | |
Collapse
|
34
|
Lee MJ, Cho SS, You JR, Lee Y, Kang BD, Choi JS, Park JW, Suh YL, Kim JA, Kim DK, Park JS. Intraperitoneal gene delivery mediated by a novel cationic liposome in a peritoneal disseminated ovarian cancer model. Gene Ther 2002; 9:859-66. [PMID: 12080380 DOI: 10.1038/sj.gt.3301704] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2001] [Accepted: 02/19/2002] [Indexed: 01/22/2023]
Abstract
We have previously synthesized a new cationic liposome that displays high efficiency and low toxicity, 3 beta[l-ornithinamide-carbamoyl] cholesterol (O-Chol), using solid-phase synthesis. In this study, O-Chol was applied to in vitro and in vivo models of ovarian cancer. Intraperitoneal gene delivery for peritoneal disseminated ovarian cancer in nude mice was achieved using a stable chloramphenicol acetyl transferase (CAT)-expressing ovarian cancer cell line (OV-CA-2774/CAT), which allowed us to quantify the exact tumor burden of organs. When luciferase and beta-galactosidase genes were used as reporter genes, O-Chol showed better efficiency than other commercial transfection reagents such as lipofectin, lipofectAMINE, DC-Chol, and FuGENE 6, both in vitro and in vivo. Moreover, the transfection efficiency of this new cationic lipid reagent remained high in serum-containing medium and under serum-free conditions. Furthermore, in vivo transfection with O-Chol showed high levels of gene expression specific to peritoneal tumor cells. Consequently, the O-Chol:DNA lipoplex appears to offer potential advantages over other commercial transfection reagents because of (1) its higher level of gene expression in vitro and in vivo; (2) its reduced susceptibility to serum inhibition; and (3) its highly selective transfection into tumor cells. These results suggest that the O-Chol:DNA lipoplex is a promising tool in gene therapy for patients with peritoneal disseminated ovarian cancer.
Collapse
Affiliation(s)
- M-J Lee
- School of Chemistry, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Blank SV, Rubin SC, Coukos G, Amin KM, Albelda SM, Molnar-Kimber KL. Replication-selective herpes simplex virus type 1 mutant therapy of cervical cancer is enhanced by low-dose radiation. Hum Gene Ther 2002; 13:627-39. [PMID: 11916486 DOI: 10.1089/10430340252837224] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1)-based oncolytic treatment is a promising therapeutic approach for malignancy. Recombinant strains of HSV-1 containing mutations in the ICP 34.5 protein have been shown to replicate preferentially in rapidly proliferating malignant cells, resulting in a direct cytolytic effect. We assessed the efficacy of multimutated HSV-1 strains on human cervical cancer, and then used these viruses in combination with radiation therapy, the standard treatment for cervical cancer. The HSV-1 mutants 4009, 7020, 3616, and G207 induced significant lysis of three established human cervical cancer cell lines in vitro in a dose-dependent manner. G207 intratumoral treatment of established subcutaneous C33a tumors in severe combined immunodeficient (SCID) mice significantly reduced tumor burden by 50%. Weekly and triweekly treatments improved efficacy and inhibited flank tumor growth in an administration frequency-dependent manner without toxicity. Combination therapy of a low dose of radiation (1.5 or 3 Gy) and replication-selective HSV mutants infection exhibited increased antitumor effects against cervical cancer cells in vitro. The in vivo effect of G207 combined with low-dose radiation was studied in Me180 xenografts in athymic mice. Treatment of established Me180 tumor nodules with 3 Gy followed by intratumoral G207 administration greatly improved efficacy, resulting in 42% complete eradication of tumor. In conclusion, single and multiple intratumoral injections of G207 significantly reduced tumor burden in xenogeneic models of cervical cancer, and the addition of low-dose radiation further potentiated the effect. These results suggest that replication-selective HSV-1 mutants may be potent oncolytic agents for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Stephanie V Blank
- Department of Obstetrics and Gynecology, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Viral vectors have been widely used as gene delivery vehicles for both experimental and clinical investigations. Although these vectors are capable of achieving high gene transduction efficiency in vitro, one of the major limitations facing the therapeutic viral vectors is that the preexisting host anti-vector immunity can substantially reduce their transduction efficiency in vivo. This is especially of concern when the therapeutic remedy requires repeated systemic administration. Here we report the delivery of herpes simplex virus (HSV) derived vectors through liposome formulation. In these studies, we have prepared HSV vectors in three different forms for liposome formulation: purified viral DNA (obtained from a bacterial artificial chromosome containing an infectious HSV genome), HSV capsids, and intact viral particles. All three forms of HSV were readily transfected into cultured cells and infectious virus was efficiently generated. Furthermore, introduction of HSV vectors as DNA/liposome complexes improved in vivo transduction efficiency, by effectively evading the host anti-HSV immunity during systemic administration. We conclude that viral vectors such as HSV can be systemically delivered through liposome formulation for safe and repeated administration for gene transduction or oncolytic purposes.
Collapse
Affiliation(s)
- X Fu
- Center for Cell and Gene Therapy, Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|