1
|
Candotti F. Gene transfer into hematopoietic stem cells as treatment for primary immunodeficiency diseases. Int J Hematol 2014; 99:383-92. [DOI: 10.1007/s12185-014-1524-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/13/2014] [Indexed: 01/20/2023]
|
2
|
You JS, Lincoln HC, Kim CR, Frey JW, Goodman CA, Zhong XP, Hornberger TA. The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. J Biol Chem 2013; 289:1551-63. [PMID: 24302719 DOI: 10.1074/jbc.m113.531392] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The activation of mTOR signaling is essential for mechanically induced changes in skeletal muscle mass, and previous studies have suggested that mechanical stimuli activate mTOR (mammalian target of rapamycin) signaling through a phospholipase D (PLD)-dependent increase in the concentration of phosphatidic acid (PA). Consistent with this conclusion, we obtained evidence which further suggests that mechanical stimuli utilize PA as a direct upstream activator of mTOR signaling. Unexpectedly though, we found that the activation of PLD is not necessary for the mechanically induced increases in PA or mTOR signaling. Motivated by this observation, we performed experiments that were aimed at identifying the enzyme(s) that promotes the increase in PA. These experiments revealed that mechanical stimulation increases the concentration of diacylglycerol (DAG) and the activity of DAG kinases (DGKs) in membranous structures. Furthermore, using knock-out mice, we determined that the ζ isoform of DGK (DGKζ) is necessary for the mechanically induced increase in PA. We also determined that DGKζ significantly contributes to the mechanical activation of mTOR signaling, and this is likely driven by an enhanced binding of PA to mTOR. Last, we found that the overexpression of DGKζ is sufficient to induce muscle fiber hypertrophy through an mTOR-dependent mechanism, and this event requires DGKζ kinase activity (i.e. the synthesis of PA). Combined, these results indicate that DGKζ, but not PLD, plays an important role in mechanically induced increases in PA and mTOR signaling. Furthermore, this study suggests that DGKζ could be a fundamental component of the mechanism(s) through which mechanical stimuli regulate skeletal muscle mass.
Collapse
Affiliation(s)
- Jae-Sung You
- From the Program in Cellular and Molecular Biology and
| | | | | | | | | | | | | |
Collapse
|
3
|
Punwani D, Simon K, Choi Y, Dutra A, Gonzalez-Espinosa D, Pak E, Naradikian M, Song CH, Zhang J, Bodine DM, Puck JM. Transcription factor zinc finger and BTB domain 1 is essential for lymphocyte development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1253-64. [PMID: 22753936 PMCID: PMC3401355 DOI: 10.4049/jimmunol.1200623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Absent T lymphocytes were unexpectedly found in homozygotes of a transgenic mouse from an unrelated project. T cell development did not progress beyond double-negative stage 1 thymocytes, resulting in a hypocellular, vestigial thymus. B cells were present, but NK cell number and B cell isotype switching were reduced. Transplantation of wild-type hematopoietic cells corrected the defect, which was traced to a deletion involving five contiguous genes at the transgene insertion site on chromosome 12C3. Complementation using bacterial artificial chromosome transgenesis implicated zinc finger BTB-POZ domain protein 1 (Zbtb1) in the immunodeficiency, confirming its role in T cell development and suggesting involvement in B and NK cell differentiation. Targeted disruption of Zbtb1 recapitulated the T(-)B(+)NK(-) SCID phenotype of the original transgenic animal. Knockouts for Zbtb1 had expanded populations of bone marrow hematopoietic stem cells and also multipotent and early lymphoid lineages, suggesting a differentiation bottleneck for common lymphoid progenitors. Expression of mRNA encoding Zbtb1, a predicted transcription repressor, was greatest in hematopoietic stem cells, thymocytes, and pre-B cells, highlighting its essential role in lymphoid development.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Lymphocyte Subsets/cytology
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- NIH 3T3 Cells
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/metabolism
- Precursor Cells, T-Lymphoid/cytology
- Precursor Cells, T-Lymphoid/immunology
- Precursor Cells, T-Lymphoid/metabolism
- RNA, Messenger/biosynthesis
- Repressor Proteins/deficiency
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Zinc Fingers/immunology
Collapse
Affiliation(s)
- Divya Punwani
- Dept. of Pediatrics, University of California San Francisco, San Francisco, CA 91413; USA
| | - Karen Simon
- National Human Genome Research Institute, NIH, Bethesda, MD 20892; USA
| | - Youngnim Choi
- Dept. of Oromaxillofacial Infection & Immunity, School of Dentistry, Seoul National University, Seoul, Korea 28 Yungun-dong, Jongno-gu, Seoul 110-74928
| | - Amalia Dutra
- National Human Genome Research Institute, NIH, Bethesda, MD 20892; USA
| | | | - Evgenia Pak
- National Human Genome Research Institute, NIH, Bethesda, MD 20892; USA
| | - Martin Naradikian
- Dept. of Pediatrics, University of California San Francisco, San Francisco, CA 91413; USA
- University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104; USA
| | - Chang-Hwa Song
- Dept. of Pediatrics, University of California San Francisco, San Francisco, CA 91413; USA
- Dept. of Microbiology, College of Medicine, Chungnam National University, South Korea
| | - Jenny Zhang
- Dept. of Pediatrics, University of California San Francisco, San Francisco, CA 91413; USA
| | - David M. Bodine
- National Human Genome Research Institute, NIH, Bethesda, MD 20892; USA
| | - Jennifer M. Puck
- Dept. of Pediatrics, University of California San Francisco, San Francisco, CA 91413; USA
| |
Collapse
|
4
|
Linterman KS, Palmer DN, Kay GW, Barry LA, Mitchell NL, McFarlane RG, Black MA, Sands MS, Hughes SM. Lentiviral-mediated gene transfer to the sheep brain: implications for gene therapy in Batten disease. Hum Gene Ther 2011; 22:1011-20. [PMID: 21595499 DOI: 10.1089/hum.2011.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs; Batten disease) are inherited neurodegenerative lysosomal storage diseases with common clinical features of blindness and seizures culminating in premature death. Gene-therapy strategies for these diseases depend on whether the missing activity is a secreted lysosomal protein taken up by neighboring cells, or an intramembrane protein that requires careful targeting. Therapies are best developed in animal models with large complex human-like brains. Lentiviral-mediated gene delivery to neural cell cultures from normal sheep and sheep affected with an NCL resulted in green fluorescent protein (GFP) expression in neurons and neuroblasts, more efficiently than in astrocytes. Similar transgene expression was obtained from two constitutive promoters, the viral MND promoter and the human EF1α promoter. In vivo studies showed stable and persistent GFP expression throughout the cell bodies, axons, and dendrites from intracortical injections and indicated ependymal and subependymal transduction. The sheep showed no ill effects from the injections. These data support continuing gene-therapy trials in the sheep models of Batten disease.
Collapse
Affiliation(s)
- Kathryn S Linterman
- Department of Biochemistry, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
De Ravin SS, Malech HL. Partially corrected X-linked severe combined immunodeficiency: long-term problems and treatment options. Immunol Res 2009; 43:223-42. [PMID: 18979075 DOI: 10.1007/s12026-008-8073-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rapid progress has been made from the identification of the molecular defects causing X-linked severe combined immune deficiency (X-SCID) to the development of cutting-edge therapeutic approaches such as hematopoietic stem cell transplant and gene therapy for XSCID. Successful treatment of XSCID has created a new population of patients, many of whom are now adolescents and young adults and are facing a variety of chronic problems secondary to partial correction of their underlying disease. This review focuses on the clinical challenges facing these patients (and their caregivers) and provides an overview of some of the treatment options available, including gene therapy.
Collapse
Affiliation(s)
- Suk See De Ravin
- Genetic Immunotherapy, Laboratory of Host Defense, National Institutes of Health, Building 10, Room 5-3816, 5 West Labs CRC, 10 Center Drive MSC1456, Bethesda, MD 20892-1456, USA.
| | | |
Collapse
|
6
|
Amorosi S, Russo I, Amodio G, Garbi C, Vitiello L, Palamaro L, Adriani M, Vigliano I, Pignata C. The Cellular Amount of the Common γ-Chain Influences Spontaneous or Induced Cell Proliferation. THE JOURNAL OF IMMUNOLOGY 2009; 182:3304-9. [DOI: 10.4049/jimmunol.0802400] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Miyake K, Miyake N, Shimada T. Development of targeted gene transfer into human primary T lymphocytes and macrophages using high-titer recombinant HIV vectors. J Biotechnol 2007; 129:532-8. [PMID: 17307270 DOI: 10.1016/j.jbiotec.2007.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/06/2006] [Accepted: 01/03/2007] [Indexed: 12/21/2022]
Abstract
Primary human lymphocytes and macrophages are an important target cells for human immunodeficiency virus (HIV). For targeted gene transfer into CD4(+) lymphocytes and macrophages, we constructed HIV vectors with envelope glycoprotein (gp120) from the T-cell tropic BH10 strain and the macrophage tropic SF162, and developed an improved strategy for preparation of high-titer HIV vectors. Among several possible procedures, we found that ultrafiltration using CENTRIPREP columns was highly effective to concentrate HIV particles. The titer could be increased four orders of magnitudes. The total recovery was more than 80%. No replication-competent cytopathic HIV was detected in concentrated vector preparation. Using the high-titer HIV vector carrying the enhanced green fluorescent protein (EGFP) gene, we transduced human primary lymphocytes and macrophages. FACS analysis showed that the T-cell tropic vector could transduce 40-80% of CD4(+) T-cells stimulated with IL2 plus PHA and 20-50% of unstimulated cells. The macrophage tropic vector was shown to transduce approximately 20% of terminally differentiated macrophages. These results represent the initial report of targeted gene transfer into terminally differentiated macrophages. These results also indicate that these HIV vectors are useful for the manipulation of gene expression in HIV infectable cells and the development of gene therapy targeting lymphocytes and macrophages.
Collapse
Affiliation(s)
- Koichi Miyake
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo 113-8602, Japan.
| | | | | |
Collapse
|
8
|
Gemmell E, Yamazaki K, Seymour GJ. The role of T cells in periodontal disease: homeostasis and autoimmunity. Periodontol 2000 2007; 43:14-40. [PMID: 17214833 DOI: 10.1111/j.1600-0757.2006.00173.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Erica Gemmell
- Oral Biology and Pathology, School of Dentistry, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
9
|
Will E, Bailey J, Schuesler T, Modlich U, Balcik B, Burzynski B, Witte D, Layh-Schmitt G, Rudolph C, Schlegelberger B, von Kalle C, Baum C, Sorrentino BP, Wagner LM, Kelly P, Reeves L, Williams DA. Importance of murine study design for testing toxicity of retroviral vectors in support of phase I trials. Mol Ther 2007; 15:782-91. [PMID: 17299409 DOI: 10.1038/sj.mt.6300083] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although retroviral vectors are one of the most widely used vehicles for gene transfer, there is no uniformly accepted pre-clinical model defined to assess their safety, in particular their risk related to insertional mutagenesis. In the murine pre-clinical study presented here, 40 test and 10 control mice were transplanted with ex vivo manipulated bone marrow cells to assess the long-term effects of the transduction of hematopoietic cells with the retroviral vector MSCV-MGMT(P140K)wc. Test mice had significant gene marking 8-12 months post-transplantation with an average of 0.93 vector copies per cell and 41.5% of peripheral blood cells expressing the transgene MGMT(P140K), thus confirming persistent vector expression. Unexpectedly, six test mice developed malignant lymphoma. No vector was detected in the tumor cells of five animals with malignancies, indicating that the malignancies were not caused by insertional mutagenesis or MGMT(P140K) expression. Mice from a concurrent study with a different transgene also revealed additional cases of vector-negative lymphomas of host origin. We conclude that the background tumor formation in this mouse model complicates safety determination of retroviral vectors and propose an improved study design that we predict will increase the relevance and accuracy of interpretation of pre-clinical mouse studies.
Collapse
Affiliation(s)
- Elke Will
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Woods NB, Bottero V, Schmidt M, von Kalle C, Verma IM. Is IL2RG oncogenic in T-cell development?: X-SCID transgene leukaemogenicity (reply). Nature 2006. [DOI: 10.1038/nature05220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Rodrigues T, Carvalho A, Roldão A, Carrondo MJT, Alves PM, Cruz PE. Screening anion-exchange chromatographic matrices for isolation of onco-retroviral vectors. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 837:59-68. [PMID: 16697280 DOI: 10.1016/j.jchromb.2006.03.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/01/2006] [Accepted: 03/30/2006] [Indexed: 11/25/2022]
Abstract
The adsorption kinetics of retroviral vectors to several chromatographic media, DEAE FF, Streamlinetrade mark Q XL and CHTtrade mark Ceramic Hydroxyapatite, in batch mode was investigated. The effects of buffer type, pH and operational temperature were studied. A mathematical model describing viral adsorption kinetics that considers viral degradation in solution was developed. The best results, either in terms of speed and extent of adsorbed infectious particles, were obtained with DEAE FF and Streamlinetrade mark Q XL. Fixed-bed chromatography was further investigated using DEAE FF, Q XL and Q FF, for validation of the batch adsorption process. Fixed-bed DEAE FF and Q XL proved to be good candidates for purification of MoMLV derived vectors due to resulting high yields, 53+/-13% and 51+/-7%, respectively, while removing more than 99% of protein and 90% of the DNA contaminants.
Collapse
|
12
|
Swan CH, Bühler B, Steinberger P, Tschan MP, Barbas CF, Torbett BE. T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery. Gene Ther 2006; 13:1480-92. [PMID: 16738691 DOI: 10.1038/sj.gt.3302801] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CCR5 is the chemokine co-receptor for R5-tropic human immunodeficiency virus type 1 (HIV-1) isolates most often associated with primary infection. We have developed an HIV-1 self-inactivating vector, CAD-R5, containing a CCR5 single-chain antibody (intrabody) gene, which when expressed in T-cell lines and primary CD4+ T cells disrupts CCR5 cell surface expression and provides protection from R5-tropic isolate exposure. Furthermore, CAD-R5 intrabody expression in primary CD4+ T cells supports significant growth and enrichment over time during HIV-1-pulsed dendritic cell-T-cell interactions. These results indicate that CCR5 intrabody-expressing CD4+ T cells are refractory against this highly efficient primary route of infection. CD34+ cells transduced with the CAD-R5 vector gave rise to CD4+ and CD8+ thymocytes in non-obese diabetic (NOD)/ severely combined-immunodeficient (SCID)-human thymus/liver (hu thy/liv) mice, suggesting that CCR5 intrabody expression can be maintained throughout differentiation without obvious cellular effects. CD4+ T cells isolated from NOD/SCID-hu thy/liv mice were resistant to R5-tropic HIV-1 challenge demonstrating the maintenance of protection. Our findings demonstrate delivery of anti-HIV-1 activity through CCR5 intrabodies in primary CD4+ T cells and CD34+ cell-derived T-cell progeny. Thus, gene delivery strategies that provide a selective survival and growth advantage for T effector cells may provide a therapeutic benefit for HIV-1-infected individuals who have failed conventional therapies.
Collapse
Affiliation(s)
- C H Swan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
13
|
Gemmell E, Drysdale KE, Seymour GJ. Gene expression in splenic CD4 and CD8 cells from BALB/c mice immunized with Porphyromonas gingivalis. J Periodontol 2006; 77:622-33. [PMID: 16584343 DOI: 10.1902/jop.2006.050211] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND T cells are fundamental in the pathogenesis of periodontal disease. Suppression of cell-mediated responses is associated with disease progression together with the concomitant increase in plaque pathogens including Porphyromonas gingivalis. The aim of the present study was to examine gene expression in T cells in response to P. gingivalis in mice. METHODS BALB/c mice were given weekly intraperitoneal injections of P. gingivalis outer-membrane antigens with Freund's incomplete adjuvant for 3 weeks, whereas control mice received phosphate buffered saline (PBS) and adjuvant only. Splenic CD4 and CD8 subpopulations were isolated by magnetic cell separation and their responses investigated using microarray analysis. RESULTS Most genes coded for enzymes concerned with metabolic pathways. Only five and 28 genes, respectively, were upregulated in CD4 and CD8 cells extracted from P. gingivalis-immunized mice, including immunoglobulin (Ig) heavy-chain genes for IgG1 and IgG2a in CD4 cells. In contrast, 1,141 and 1,175 genes, respectively, were downregulated. A total of 60 and 65 genes, respectively, coded for immune response proteins or those relevant to periodontal disease pathogenesis. The overlap of genes in the two subsets was 21%. One of the major effects, apart from T-cell function suppression, was the shift away from Th1 responses, although there was also a downregulation of two genes and upregulation of one Th2-response gene. Genes downregulated included those encoding cytokines, proteins involved in Ig binding, antigen presentation, innate immunity, extracellular matrix, and cell adhesion molecules that could result in dysregulation in the progressive periodontal lesion. CONCLUSIONS Early findings in humans demonstrated that periodontopathic bacteria induce immunosuppressive effects on T cells. The present study has shown that P. gingivalis had a predominant downregulatory effect on gene expression in CD4 and CD8 T cells in mice.
Collapse
Affiliation(s)
- Erica Gemmell
- Oral Biology and Pathology, School of Dentistry, The University of Queensland, Brisbane, Australia.
| | | | | |
Collapse
|
14
|
Woods NB, Bottero V, Schmidt M, von Kalle C, Verma IM. Gene therapy: therapeutic gene causing lymphoma. Nature 2006; 440:1123. [PMID: 16641981 DOI: 10.1038/4401123a] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 03/28/2006] [Indexed: 01/06/2023]
Abstract
The development of T-cell leukaemia following the otherwise successful treatment of three patients with X-linked severe combined immune deficiency (X-SCID) in gene-therapy trials using haematopoietic stem cells has led to a re-evaluation of this approach. Using a mouse model for gene therapy of X-SCID, we find that the corrective therapeutic gene IL2RG itself can act as a contributor to the genesis of T-cell lymphomas, with one-third of animals being affected. Gene-therapy trials for X-SCID, which have been based on the assumption that IL2RG is minimally oncogenic, may therefore pose some risk to patients.
Collapse
Affiliation(s)
- Niels-Bjarne Woods
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
15
|
Baum C, von Kalle C, Staal FJT, Li Z, Fehse B, Schmidt M, Weerkamp F, Karlsson S, Wagemaker G, Williams DA. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 2004; 9:5-13. [PMID: 14741772 DOI: 10.1016/j.ymthe.2003.10.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recently, unusual forms of leukemias have developed as complications following retroviral transfer of potentially therapeutic genes into hematopoietic cells. A crucial component in the pathogenesis of these complications was the upregulation of a cellular proto-oncogene by random insertion of the retroviral gene transfer vector. These findings have great implications for the genetic manipulation of somatic stem cells in medicine. This review discusses the extent to which the random oncogene activation may have required disease-specific stimuli of the transgene and the hematopoietic milieu to become leukemogenic. Based on these considerations, we propose approaches to risk prediction and prevention.
Collapse
Affiliation(s)
- Christopher Baum
- Department of Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Otsu M, Steinberg M, Ferrand C, Merida P, Rebouissou C, Tiberghien P, Taylor N, Candotti F, Noraz N. Reconstitution of lymphoid development and function in ZAP-70-deficient mice following gene transfer into bone marrow cells. Blood 2002; 100:1248-56. [PMID: 12149205 DOI: 10.1182/blood-2002-01-0247] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the ZAP-70 protein tyrosine kinase gene result in a severe combined immunodeficiency (SCID) characterized by a selective inability to produce CD8(+) T cells and a signal transduction defect in peripheral CD4(+) cells. Transplantation of genetically modified hematopoietic progenitor cells that express the wild-type ZAP-70 gene may provide significant benefit to some of these infants. The feasibility of stem cell gene correction for human ZAP-70 deficiency was assessed using a ZAP-70 knock-out model. ZAP-70-deficient murine bone marrow progenitor cells were transduced with a retroviral vector expressing the human ZAP-70 gene. Engraftment of these cells in irradiated ZAP-70-deficient animals resulted in the development of mature CD4(+) and CD8(+) T cells. In marked contrast, both populations were absent in ZAP-70(-/-) mice undergoing transplantation with bone marrow progenitor cells transduced with a control vector. Importantly, ZAP-70-reconstituted T cells proliferated in response to T-cell receptor stimulation. Moreover, these ZAP-70-expressing T cells demonstrated a diverse T-cell receptor repertoire as monitored by the relative usage of each T-cell receptor beta chain hypervariable region subfamily. The presence of ZAP-70 in B cells did not affect either lipopolysaccharide- or lipopolysaccharide/interleukin-4-mediated immunoglobulin isotype switching. Altogether, these data indicate that retroviral-mediated gene transfer of the ZAP-70 gene may prove to have a therapeutic benefit for patients with ZAP-70-SCID.
Collapse
Affiliation(s)
- Makoto Otsu
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tsai EJ, Malech HL, Kirby MR, Hsu AP, Seidel NE, Porada CD, Zanjani ED, Bodine DM, Puck JM. Retroviral transduction of IL2RG into CD34(+) cells from X-linked severe combined immunodeficiency patients permits human T- and B-cell development in sheep chimeras. Blood 2002; 100:72-9. [PMID: 12070011 DOI: 10.1182/blood.v100.1.72] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X-linked severe combined immunodeficiency (XSCID) is caused by mutations of the common gamma chain of cytokine receptors, gamma(c). Because bone marrow transplantation (BMT) for XSCID does not provide complete immune reconstitution for many patients and because of the natural selective advantage conferred on lymphoid progenitors by the expression of normal gamma(c), XSCID is a good candidate disease for therapeutic retroviral gene transfer to hematopoietic stem cells. We studied XSCID patients who have persistent defects in B-cell and/or combined B- and T-cell function despite having received T cell-depleted haploidentical BMT. We compared transduction of autologous B-cell lines and granulocyte colony-stimulating factor-mobilized peripheral CD34(+) cells from these patients using an MFGS retrovirus vector containing the gamma(c) gene IL2RG pseudotyped with amphotropic, gibbon ape leukemia virus, or RD114 envelopes. Transduced B-cell lines and peripheral CD34(+) cells demonstrated provirus integration and new cell-surface gamma(c) expression. The chimeric sheep model was exploited to test development of XSCID CD34(+) cells into mature myeloid and lymphoid lineages. Transduced and untransduced XSCID CD34(+) cells injected into developing sheep fetuses gave rise to myeloid cells. However, only transduced gamma progenitors from XSCID patients developed into T and B cells. These results suggest that gene transfer to autologous peripheral CD34(+) cells using MFGS-gc retrovirus may benefit XSCID patients with persistent T- and B-cell deficits despite prior BMT.
Collapse
Affiliation(s)
- Emily J Tsai
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|