1
|
Bai S, Luo H, Tong H, Wu Y, Yuan Y. Advances on transfer and maintenance of large DNA in bacteria, fungi, and mammalian cells. Biotechnol Adv 2024; 76:108421. [PMID: 39127411 DOI: 10.1016/j.biotechadv.2024.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/07/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Advances in synthetic biology allow the design and manipulation of DNA from the scale of genes to genomes, enabling the engineering of complex genetic information for application in biomanufacturing, biomedicine and other areas. The transfer and subsequent maintenance of large DNA are two core steps in large scale genome rewriting. Compared to small DNA, the high molecular weight and fragility of large DNA make its transfer and maintenance a challenging process. This review outlines the methods currently available for transferring and maintaining large DNA in bacteria, fungi, and mammalian cells. It highlights their mechanisms, capabilities and applications. The transfer methods are categorized into general methods (e.g., electroporation, conjugative transfer, induced cell fusion-mediated transfer, and chemical transformation) and specialized methods (e.g., natural transformation, mating-based transfer, virus-mediated transfection) based on their applicability to recipient cells. The maintenance methods are classified into genomic integration (e.g., CRISPR/Cas-assisted insertion) and episomal maintenance (e.g., artificial chromosomes). Additionally, this review identifies the major technological advantages and disadvantages of each method and discusses the development for large DNA transfer and maintenance technologies.
Collapse
Affiliation(s)
- Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Han Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Hanze Tong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China. @tju.edu.cn
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Prasher P, Sharma M, Agarwal V, Singh SK, Gupta G, Dureja H, Dua K. Cationic cycloamylose based nucleic acid nanocarriers. Chem Biol Interact 2024; 395:111000. [PMID: 38614318 DOI: 10.1016/j.cbi.2024.111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Nucleic acid delivery by viral and non-viral methods has been a cornerstone for the contemporary gene therapy aimed at correcting the defective genes, replacing of the missing genes, or downregulating the expression of anomalous genes is highly desirable for the management of various diseases. Ostensibly, it becomes paramount for the delivery vectors to intersect the biological barriers for accessing their destined site within the cellular environment. However, the lipophilic nature of biological membranes and their potential to limit the entry of large sized, charged, hydrophilic molecules thus presenting a sizeable challenge for the cellular integration of negatively charged nucleic acids. Furthermore, the susceptibility of nucleic acids towards the degrading enzymes (nucleases) in the lysosomes present in cytoplasm is another matter of concern for their cellular and nuclear delivery. Hence, there is a pressing need for the identification and development of cationic delivery systems which encapsulate the cargo nucleic acids where the charge facilitates their cellular entry by evading the membrane barriers, and the encapsulation shields them from the enzymatic attack in cytoplasm. Cycloamylose bearing a closed loop conformation presents a robust candidature in this regard owing to its remarkable encapsulating tendency towards nucleic acids including siRNA, CpG DNA, and siRNA. The presence of numerous hydroxyl groups on the cycloamylose periphery provides sites for its chemical modification for the introduction of cationic groups, including spermine, (3-Chloro-2 hydroxypropyl) trimethylammonium chloride (Q188), and diethyl aminoethane (DEAE). The resulting cationic cycloamylose possesses a remarkable transfection efficiency and provides stability to cargo oligonucleotides against endonucleases, in addition to modulating the undesirable side effects such as unwanted immune stimulation. Cycloamylose is known to interact with the cell membranes where they release certain membrane components such as phospholipids and cholesterol thereby resulting in membrane destabilization and permeabilization. Furthermore, cycloamylose derivatives also serve as formulation excipients for improving the efficiency of other gene delivery systems. This review delves into the various vector and non-vector-based gene delivery systems, their advantages, and limitations, eventually leading to the identification of cycloamylose as an ideal candidate for nucleic acid delivery. The synthesis of cationic cycloamylose is briefly discussed in each section followed by its application for specific delivery/transfection of a particular nucleic acid.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India.
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, 124001, India
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
Wongwiwat W, Fournier B, Bassano I, Bayoumy A, Elgueta Karstegl C, Styles C, Bridges R, Lenoir C, BoutBoul D, Moshous D, Neven B, Kanda T, Morgan RG, White RE, Latour S, Farrell PJ. Epstein-Barr Virus Genome Deletions in Epstein-Barr Virus-Positive T/NK Cell Lymphoproliferative Diseases. J Virol 2022; 96:e0039422. [PMID: 35612313 PMCID: PMC9215254 DOI: 10.1128/jvi.00394-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
The main target cells for Epstein-Barr virus (EBV) infection and persistence are B lymphocytes, although T and NK cells can also become infected. In this paper, we characterize the EBV present in 21 pediatric and adult patients who were treated in France for a range of diseases that involve infection of T or NK cells. Of these 21 cases, 5 pediatric patients (21%) and 11 adult patients (52%) were of Caucasian origin. In about 30% of the cases, some of the EBV genomes contain a large deletion. The deletions are different in every patient but tend to cluster near the BART region of the viral genome. Detailed investigation of a family in which several members have persistent T or NK cell infection by EBV indicates that the virus genome deletions arise or are selected independently in each individual patient. Genome sequence polymorphisms in the EBV in these T or NK cell diseases reflect the geographic origin of the patient and not a distinct type of EBV (the 21 cases studied included examples of both type 1 and type 2 EBV infection). Using virus produced from type 1 or type 2 EBV genomes cloned in bacterial artificial chromosome (BAC) vectors, we demonstrate infection of T cells in cord blood from healthy donors. Our results are consistent with transient infection of some T cells being part of normal asymptomatic infection by EBV in young children. IMPORTANCE EBV contributes to several types of human cancer. Some cancers and nonmalignant lymphoproliferative diseases involving T or NK cells contain EBV. These diseases are relatively frequent in Japan and China and have been shown sometimes to have deletions in the EBV genome in the disease cells. We identify further examples of deletions within the EBV genome associated with T or NK cell diseases, and we provide evidence that the virus genomes with these deletions are most likely selected in the individual cases, rather than being transmitted between people during infection. We demonstrate EBV infection of cord blood T cells by highly characterized, cloned EBV genomes and suggest that transient infection of T cells may be part of normal asymptomatic infection by EBV in young children.
Collapse
Affiliation(s)
- Wiyada Wongwiwat
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Institut Imagine, Paris, France
- Department of Pediatric Immunology, Hematology, and Rheumatology, Necker-Enfants-Malades Hospital, APHP, Paris, France
- Université de Paris, Paris, France
| | - Irene Bassano
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Amr Bayoumy
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Claudio Elgueta Karstegl
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Christine Styles
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ray Bridges
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Institut Imagine, Paris, France
| | - David BoutBoul
- Université de Paris, Paris, France
- Department of Clinical Immunology, Saint-Louis Hospital, APHP, Paris, France
| | - Despina Moshous
- Department of Pediatric Immunology, Hematology, and Rheumatology, Necker-Enfants-Malades Hospital, APHP, Paris, France
- Université de Paris, Paris, France
| | - Bénédicte Neven
- Department of Pediatric Immunology, Hematology, and Rheumatology, Necker-Enfants-Malades Hospital, APHP, Paris, France
| | - Teru Kanda
- Division of Microbiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Rhys G. Morgan
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Robert E. White
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Institut Imagine, Paris, France
- Université de Paris, Paris, France
| | - Paul J. Farrell
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Simna SP, Han Z. Prospects Of Non-Coding Elements In Genomic Dna Based Gene Therapy. Curr Gene Ther 2021; 22:89-103. [PMID: 33874871 DOI: 10.2174/1566523221666210419090357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
Gene therapy has made significant development since the commencement of the first clinical trials a few decades ago and has remained a dynamic area of research regardless of obstacles such as immune response and insertional mutagenesis. Progression in various technologies like next-generation sequencing (NGS) and nanotechnology has established the importance of non-coding segments of a genome, thereby taking gene therapy to the next level. In this review, we have summarized the importance of non-coding elements, highlighting the advantages of using full-length genomic DNA loci (gDNA) compared to complementary DNA (cDNA) or minigene, currently used in gene therapy. The focus of this review is to provide an overview of the advances and the future of potential use of gDNA loci in gene therapy, expanding the therapeutic repertoire in molecular medicine.
Collapse
Affiliation(s)
- S P Simna
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| |
Collapse
|
5
|
Zheng M, Mitra RN, Weiss ER, Han Z. Rhodopsin Genomic Loci DNA Nanoparticles Improve Expression and Rescue of Retinal Degeneration in a Model for Retinitis Pigmentosa. Mol Ther 2019; 28:523-535. [PMID: 31879189 DOI: 10.1016/j.ymthe.2019.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
The use of gene therapy may allow replacement of the defective gene. Minigenes, such as cDNAs, are often used. However, these may not express normal physiological genetic profiles due to lack of crucial endogenous regulatory elements. We constructed DNA nanoparticles (NPs) that contain either the mouse or human full-length rhodopsin genomic locus, including endogenous promoters, all introns, and flanking regulatory sequences of the 15-16 kb genomic rhodopsin DNA inserts. We transduced the NPs into primary retinal cell cultures from the rhodopsin knockout (RKO) mouse in vitro and into the RKO mouse in vivo and compared the effects on different functions to plasmid cDNA NP counterparts that were driven by ubiquitous promoters. Our results demonstrate that genomic DNA vectors resulted in long-term high levels of physiological transgene expression over a period of 5 months. In contrast, the cDNA counterparts exhibited low levels of expression with sensitivity to the endoplasmic reticulum (ER) stress mechanism using the same transgene copy number both in vitro and in vivo. This study demonstrates for the first time the transducing of the rhodopsin genomic locus using compacted DNA NPs.
Collapse
Affiliation(s)
- Min Zheng
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rajendra N Mitra
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Wade-Martins R. Developing extrachromosomal gene expression vector technologies: an overview. Methods Mol Biol 2011; 738:1-17. [PMID: 21431716 DOI: 10.1007/978-1-61779-099-7_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Extrachromosomal, or episomal, vectors offer a number of advantages for therapeutic and scientific applications compared to integrating vectors. Extrachromosomal vectors persist in the nucleus without the requirement to integrate into the host genome, hence avoiding the recent concerns surrounding the genotoxic effects of vector integration. By avoiding integration, episomal vectors avoid vector rearrangement, which can occur at integration, and also avoid any effect of surrounding DNA activity on transgene expression ("position effect"). Extrachromosomal vectors offer a very high transgene capacity, allowing either the incorporation of large promoter and regulatory elements into an expression cassette, or the use of complete genomic loci of up to 100 kb or larger as transgenes. Whole genomic loci transgenes offer an elegant means to express genes under physiological and developmental-stage regulation, to express multiple transcript variants from a single locus, and to express multiple genes from a single tract of genomic DNA. The combined advantages of episomal vectors of prolonged transgene persistence in the absence of vector integration, avoiding silencing by flanking heterochromatin, and high capacity, facilitating delivery and expression of genomic DNA transgenes, will be reviewed here and potential therapeutic and scientific uses outlined.
Collapse
Affiliation(s)
- Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Abstract
Since its emergence onto the gene therapy scene nearly 25 years ago, the replication-defective Herpes Simplex Virus Type-1 (HSV-1) amplicon has gained significance as a versatile gene transfer platform due to its extensive transgene capacity, widespread cellular tropism, minimal immunogenicity, and its amenability to genetic manipulation. Herein, we detail the recent advances made with respect to the design of the HSV amplicon, its numerous in vitro and in vivo applications, and the current impediments this virus-based gene transfer platform faces as it navigates a challenging path towards future clinical testing.
Collapse
|
8
|
Lufino MMP, Edser PAH, Wade-Martins R. Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 2008; 16:1525-38. [PMID: 18628754 DOI: 10.1038/mt.2008.156] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recent developments in extrachromosomal vector technology have offered new ways of designing safer, physiologically regulated vectors for gene therapy. Extrachromosomal, or episomal, persistence in the nucleus of transduced cells offers a safer alternative to integrating vectors which have become the subject of safety concerns following serious adverse events in recent clinical trials. Extrachromosomal vectors do not cause physical disruption in the host genome, making these vectors safe and suitable tools for several gene therapy targets, including stem cells. Moreover, the high insert capacity of extrachromosomal vectors allows expression of a therapeutic transgene from the context of its genomic DNA sequence, providing an elegant way to express normal splice variants and achieve physiologically regulated levels of expression. Here, we describe past and recent advances in the development of several different extrachromosomal systems, discuss their retention mechanisms, and evaluate their use as expression vectors to deliver and express genomic DNA loci. We also discuss a variety of delivery systems, viral and nonviral, which have been used to deliver episomal vectors to target cells in vitro and in vivo. Finally, we explore the potential for the delivery and expression of extrachromosomal transgenes in stem cells. The long-term persistence of extrachromosomal vectors combined with the potential for stem cell proliferation and differentiation into a wide range of cell types offers an exciting prospect for therapeutic interventions.
Collapse
Affiliation(s)
- Michele M P Lufino
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
9
|
Pich D, Humme S, Spindler MP, Schepers A, Hammerschmidt W. Conditional gene vectors regulated in cis. Nucleic Acids Res 2008; 36:e83. [PMID: 18566006 PMCID: PMC2490737 DOI: 10.1093/nar/gkn273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-integrating gene vectors, which are stably and extrachromosomally maintained in transduced cells would be perfect tools to support long-term expression of therapeutic genes but preserve the genomic integrity of the cellular host. Small extrachromosomal plasmids share some of these ideal characteristics but are primarily based on virus blueprints. These plasmids are dependent on viral trans-acting factors but they can replicate their DNA molecules in synchrony with the chromosome of the cellular host and segregate to daughter cells in an autonomous fashion. On the basis of the concept of the latent origin of DNA replication of Epstein-Barr virus, oriP, we devised novel derivatives, which exclusively rely on an artificial replication factor for both nuclear retention and replication of plasmid DNA. In addition, an allosteric switch regulates the fate of the plasmid molecules, which are rapidly lost upon addition of doxycycline. Conditional maintenance of these novel plasmid vectors allows the reversible transfer of genetic information into target cells for the first time.
Collapse
Affiliation(s)
- Dagmar Pich
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
10
|
Hettich E, Janz A, Zeidler R, Pich D, Hellebrand E, Weissflog B, Moosmann A, Hammerschmidt W. Genetic design of an optimized packaging cell line for gene vectors transducing human B cells. Gene Ther 2006; 13:844-56. [PMID: 16421600 DOI: 10.1038/sj.gt.3302714] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral gene vectors often rely on packaging cell lines, which provide the necessary factors in trans for the formation of virus-like particles. Previously, we reported on a first-generation packaging cell line for gene vectors, which are based on the B-lymphotropic Epstein-Barr virus (EBV), a human gamma-herpesvirus. This 293HEK-derived packaging cell line harbors a helper virus genome with a genetic modification that prevents the release of helper virions, but efficiently packages vector plasmids into virus-like particles with transducing capacity for human B cells. Here, we extended this basic approach towards a non-transforming, virus-free packaging cell line, which harbors an EBV helper virus genome with seven genetic alterations. In addition, we constructed a novel gene vector plasmid, which is devoid of a prokaryotic antibiotic resistance gene, and thus more suitable for in vivo applications in human gene therapy. We demonstrate in this paper that EBV-based gene vectors can be efficiently generated with this much-improved packaging cell line to provide helper virus-free gene vector stocks with transducing capacity for established human B-cell lines and primary B cells.
Collapse
Affiliation(s)
- E Hettich
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ren C, Zhao M, Yang X, Li D, Jiang X, Wang L, Shan W, Yang H, Zhou L, Zhou W, Zhang H. Establishment and Applications of Epstein-Barr Virus-Based Episomal Vectors in Human Embryonic Stem Cells. Stem Cells 2006; 24:1338-47. [PMID: 16410388 DOI: 10.1634/stemcells.2005-0338] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human embryonic stem (hES) cells are capable of unlimited cell proliferation yet maintain the potential to differentiate into many cell types. Here we reported an Epstein-Barr virus (EBV)-based vector system used to improve transfection efficiency in hES cells. Plasmids containing oriP, the latent replication origin of EBV, can be propagated stably as episomal DNA in human cells that express the EBV nuclear antigen 1 (EBNA1), which binds to oriP and functions as the trans-acting replication initiator. It was reported that the EBV replicon could harbor a DNA fragment of up to 330 kilobase pairs. Plasmids containing an enhanced green fluorescent protein (EGFP)/puromycin resistance gene cassette along with or without oriP were used to transfect hES cells that stably express EBNA1. The presence of oriP moderately increased the transient transfection efficiency and more importantly it elevated the stable transfection efficiency by approximately 1,000-fold as compared with oriP-minus plasmids. The oriP plasmid as episomal DNA and green fluorescent protein expression in hES cells was maintained for months in the presence of drug selection and gradually lost (2%-4% per cell doubling) in the absence of selection. The presence of EBNA1 did not interfere with the hES cell properties or differentiation we tested and could maintain stable EGFP expression during differentiation. In addition to transgene expression, the EBV vector system could effectively enhance the RNA interference efficiency in hES cells. Thus, the EBV vector system that allows a large DNA insert and sustained expression of transgene or small hairpin RNA will enhance basic and translational research using hES cells.
Collapse
Affiliation(s)
- Caiping Ren
- Cancer Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha 410078, Hunan, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Barzon L, Stefani AL, Pacenti M, Palù G. Versatility of gene therapy vectors through viruses. Expert Opin Biol Ther 2005; 5:639-62. [PMID: 15934840 DOI: 10.1517/14712598.5.5.639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several viruses have been engineered for gene therapy applications, and the specific properties of each viral vector have been exploited to target a variety of inherited and acquired diseases. Preclinical and clinical studies demonstrated that viral vectors are highly versatile tools capable of efficient transfer of foreign genetic information into almost all cell types and tissues. Gene therapy applications depend on vector characteristics, such as host range, cell- or tissue-specific targeting, genome integration, efficiency and duration of transgene expression, packaging capacity, and suitability for scale-up production. This review discusses the advances in the development of viral vectors, with particular emphasis on how knowledge of virus biology has been exploited to design a variety of vectors with improved safety characteristics and efficiency, potentially suitable for a large number of gene therapy applications.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Via Gabelli 63, I-35121 Padova, Italy.
| | | | | | | |
Collapse
|
13
|
Basu J, Willard HF. Artificial and engineered chromosomes: non-integrating vectors for gene therapy. Trends Mol Med 2005; 11:251-8. [PMID: 15882613 DOI: 10.1016/j.molmed.2005.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Non-integrating gene-delivery platforms demonstrate promise as potentially ideal gene-therapy vector systems. Although several approaches are under development, there is little consensus as to what constitutes a true 'artificial' versus an 'engineered' human chromosome. Recent progress must be evaluated in light of significant technical challenges that remain before such vectors achieve clinical utility. Here, we examine the principal classes of non-integrating vectors, ranging from episomes to engineered mini-chromosomes to true human artificial chromosomes. We compare their potential as practical gene-transfer platforms and summarize recent advances towards eventual applications in gene therapy. Although chromosome-engineering technology has advanced considerably within recent years, difficulties in establishing composition of matter and effective vector delivery currently prevent artificial or engineered chromosomes being accepted as viable gene-delivery platforms.
Collapse
Affiliation(s)
- Joydeep Basu
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
14
|
Richardson C, Brennan P, Powell M, Prince S, Chen YH, Spiller OB, Rowe M. Susceptibility of B lymphocytes to adenovirus type 5 infection is dependent upon both coxsackie–adenovirus receptor and αvβ5 integrin expression. J Gen Virol 2005; 86:1669-1679. [PMID: 15914844 DOI: 10.1099/vir.0.80806-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human lymphocytes are resistant to genetic modification, particularly from recombinant adenoviruses, thus hampering the analysis of gene function using adenoviral vectors. This study engineered an Epstein–Barr virus-transformed B-lymphoblastoid cell line permissive to adenovirus infection and elucidated key roles for both the coxsackie–adenovirus receptor and αvβ5 integrin in mediating entry of adenoviruses into these cells. The work identified a strategy for engineering B cells to become susceptible to adenovirus infection and showed that such a strategy could be useful for the introduction of genes to alter lymphoblastoid-cell gene expression.
Collapse
Affiliation(s)
- Ciarán Richardson
- Infection and Immunity, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Paul Brennan
- Infection and Immunity, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Martin Powell
- Infection and Immunity, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Stuart Prince
- Infection and Immunity, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Yun-Hsiang Chen
- Biomolecular Sciences Building, School of Biology, University of St Andrews, St Andrews, UK
| | - O Brad Spiller
- Virus Receptor and Immune Evasion Group, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Martin Rowe
- Infection and Immunity, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
15
|
Oehmig A, Fraefel C, Breakefield XO. Update on herpesvirus amplicon vectors. Mol Ther 2005; 10:630-43. [PMID: 15451447 DOI: 10.1016/j.ymthe.2004.06.641] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 06/17/2004] [Indexed: 12/29/2022] Open
Affiliation(s)
- Angelika Oehmig
- Department of Neurology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
16
|
Bowers WJ, Mastrangelo MA, Stanley HA, Casey AE, Milo LJ, Federoff HJ. HSV amplicon-mediated Aβ vaccination in Tg2576 mice: differential antigen-specific immune responses. Neurobiol Aging 2005; 26:393-407. [PMID: 15653168 DOI: 10.1016/j.neurobiolaging.2004.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 04/12/2004] [Accepted: 04/12/2004] [Indexed: 11/21/2022]
Abstract
Given the participation of amyloid beta (Abeta) in Alzheimer's disease (AD) pathogenesis the derivation of experimental therapeutics to prevent Abeta fibrillogenesis and/or enhance removal of parenchymal amyloid deposits represent viable disease-modifying approaches. Active Abeta-based immunotherapies have shown promise in mouse AD models, but application in human trials was accompanied by moderate brain inflammation in a subset of patients. Immune-shaping vaccine platforms may mitigate adverse effects. Herein, we describe the use of herpes simplex virus (HSV)-derived amplicons to elicit distinctive immune responses against Abeta. Two vaccine vectors were constructed: one expressing Abeta1-42 alone (HSVAbeta), and a second expressing Abeta1-42 fused with the molecular adjuvant tetanus toxin Fragment C (HSVAbeta/TtxFC). Peripheral administration of these vaccines augmented humoral responses to Abeta and reduced CNS Abeta deposition in Tg2576 AD mice. Interestingly and unexpectedly, HSVAbeta vaccination was uniquely toxic and incited the expression of pro-inflammatory molecule transcripts within the hippocampi of Tg2576 mice, suggesting that this paradigm may serve as a relevant model to study Abeta vaccine-elicited CNS inflammatory syndromes.
Collapse
Affiliation(s)
- William J Bowers
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
17
|
Calderwood MA, White RE, Whitehouse A. Development of herpesvirus-based episomally maintained gene delivery vectors. Expert Opin Biol Ther 2005; 4:493-505. [PMID: 15102599 DOI: 10.1517/14712598.4.4.493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Successful gene therapy aims to deliver and express therapeutic genes to cure or slow the progression of disease. However, a major obstacle in the application of gene therapy has been the development of the vectors used to deliver heterologous DNA to the cell or tissue of choice. A number of viral- and non-viral-based vector systems have undergone clinical trials with varying success. However, at present, no vector system possesses the full complement of properties that are generally believed necessary in an ideal gene delivery system. Therefore, alongside attempts to improve current gene delivery vectors, the identification and evaluation of new viral vectors is crucial for the long-term success of gene therapy. Herpesviruses are large DNA viruses which possess a number of advantages as gene delivery vectors. These relate to an ability to package large DNA insertions and establish lifelong latent infections in which the genomic material exists as a stable episome. This review aims to highlight the potential of herpesvirus vectors, in particular an alternative vector system based on herpesvirus saimiri (HVS). HVS is capable of infecting a range of human cell lines with high efficiencies, and the viral genome persists as high copy number, circular, non-integrated episomes which segregate to progeny following cell division. This allows the virus-based vector to stably transduce a dividing cell population and provide sustained transgene expression for an extended period of time both in vitro and in vivo. Moreover, the insertion of a bacterial artificial chromosome cassette into the HVS genome simplifies the incorporation of large amounts of heterologous DNA for gene delivery. These properties offer characteristics similar to an artificial chromosome combined with an efficient delivery system and merit its continual development as a possible gene delivery vector for the future.
Collapse
|
18
|
Illenye S, Heintz NH. Functional analysis of bacterial artificial chromosomes in mammalian cells: mouse Cdc6 is associated with the mitotic spindle apparatus. Genomics 2004; 83:66-75. [PMID: 14667810 DOI: 10.1016/s0888-7543(03)00205-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacterial artificial chromosomes (BACs) provide a well-characterized resource for studying the functional organization of genes and other large chromosomal domains. To facilitate functional studies in cell cultures, we have developed a simple approach for generating stable cell lines with variable copy numbers of any BAC. Here we describe hamster cell lines with BAC transgenes that express mouse Cdc6 at levels that correlate with BAC copy number; show that mouse Cdc6 is regulated normally during the cell cycle, binds chromatin, and is degraded during apoptosis; and report a novel fraction of Cdc6 that associates with the spindle apparatus during mitosis. With RNA interference to assess genetic complementation by BAC alleles, this system will facilitate functional studies on large chromosomal domains at variable copy number in mammalian cell models.
Collapse
Affiliation(s)
- Sharon Illenye
- Department of Pathology and Vermont Cancer Center, University of Vermont College of Medicine, Burlington 05405, USA
| | | |
Collapse
|
19
|
Kanda T, Yajima M, Ahsan N, Tanaka M, Takada K. Production of high-titer Epstein-Barr virus recombinants derived from Akata cells by using a bacterial artificial chromosome system. J Virol 2004; 78:7004-15. [PMID: 15194777 PMCID: PMC421639 DOI: 10.1128/jvi.78.13.7004-7015.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 02/25/2004] [Indexed: 11/20/2022] Open
Abstract
An Epstein-Barr virus (EBV) genome in Burkitt's lymphoma-derived cell line Akata was cloned into a bacterial artificial chromosome (BAC) vector. The BAC clone, designated AK-BAC, was rapidly and precisely modified by means of efficient homologous recombination in Escherichia coli. This system was used to produce recombinant EBVs with transgenes. An expression cassette of green fluorescent protein (GFP) was inserted into AK-BAC, and the resultant BAC clone, AK-BAC-GFP, was transfected into Akata cells. We found that transfected BAC plasmids efficiently formed episomes in EBV-positive Akata cells. Mixtures of wild-type and AK-BAC-GFP viruses were then produced and used to infect EBV-negative Akata cells. We obtained cell clones that harbored only AK-BAC-GFP but no wild-type episome. These cell clones produced infectious viruses after stimulating virus production, and the recombinant viruses of AK-BAC-GFP efficiently immortalized primary B lymphocytes. We further revised the method so that any kind of cDNA could be rapidly inserted into the unique I-PpoI site that had been artificially introduced into AK-BAC. The AK-BAC system will have a broad range of applications, such as genetic analyses of various viral gene products and development of viral vectors for human gene therapy.
Collapse
Affiliation(s)
- Teru Kanda
- Center for Virus Vector Development, Institute for Genetic Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-0815, Japan.
| | | | | | | | | |
Collapse
|
20
|
White RE, Wade-Martins R, Hart SL, Frampton J, Huey B, Desai-Mehta A, Cerosaletti KM, Concannon P, James MR. Functional delivery of large genomic DNA to human cells with a peptide-lipid vector. J Gene Med 2004; 5:883-892. [PMID: 14533197 DOI: 10.1002/jgm.420] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Nonviral gene transfer vectors have the potential to deliver much larger DNA constructs than current viral vectors but suffer from a low transfection efficiency. The LID vector, composed of Lipofectin (L), an integrin-targeting peptide (I) and DNA (D), is a highly efficient synthetic vector, both in vitro and in vivo, which may allow the transfer of genomic loci for gene therapy. METHODS Transfection efficiencies were quantitated using the green fluorescent protein (GFP) reporter. Expression of a large genomic locus (NBS1 [Nijmegen breakage syndrome], encoding nibrin) was assessed by immunofluorescence. RESULTS We report a systematic study of the parameters influencing delivery of BAC-based plasmids ranging in size from 12 to 242 kb using the LID vector. We showed 60% of cells were transfected with the smaller plasmids while plasmids up to 242 kb were consistently delivered to over 10% of cells. The number of transfected cells was related to number of plasmids in the transfection complex independent of plasmid size. Atomic force microscopy showed that LID particle size increased with plasmid size consistent with one plasmid molecule per particle. When LID vectors were used to deliver the NBS1 gene as a 143 kb construct to primary NBS cells, at least 57% of cells expressing GFP also expressed functional nibrin. CONCLUSIONS We show that LID vectors represent a promising tool for the transfer of complete genomic loci.
Collapse
Affiliation(s)
- Robert E White
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Richard Wade-Martins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Stephen L Hart
- Molecular Immunology Unit, Institute of Child Health, University College London, 30 Guildford St., London WC1N 1EH, UK
| | - Jon Frampton
- Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Bryan Huey
- Department of Materials, Parks Road, Oxford, UK
| | - Ami Desai-Mehta
- Molecular Genetics Program, Virginia Mason Research Centre, and Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Karen M Cerosaletti
- Molecular Genetics Program, Virginia Mason Research Centre, and Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Patrick Concannon
- Molecular Genetics Program, Virginia Mason Research Centre, and Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael R James
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
21
|
White RE, Calderwood MA, Whitehouse A. Generation and precise modification of a herpesvirus saimiri bacterial artificial chromosome demonstrates that the terminal repeats are required for both virus production and episomal persistence. J Gen Virol 2003; 84:3393-3403. [PMID: 14645920 DOI: 10.1099/vir.0.19387-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Herpesvirus saimiri (HVS) is the prototype gamma-2 herpesvirus, and shares considerable homology with the human gammaherpesviruses Kaposi's sarcoma-associated herpesvirus and Epstein–Barr virus. The generation of herpesvirus mutants is a key facet in the study of virus biology. The use of F-factor-based bacterial artificial chromosomes (BACs) to clone and modify the genomes of herpesviruses has enhanced the variety, precision and simplicity of mutant production. Here we describe the cloning of the genome of HVS non-transforming strain A11-S4 into a BAC. The cloning of the BAC elements disrupts open reading frame (ORF) 15 but the HVS-BAC can still replicate at levels similar to wild-type virus, and can persistently infect fibroblasts. The HVS-BAC was modified by RecA-mediated recombination initially to substitute reporter genes and also to delete the terminal repeats (TR). After deletion of the TR, the HVS-BAC fails to enter a productive virus lytic cycle, and cannot establish a persistent episomal infection when transfected into fibroblast cell lines. This shows that while ORF 15 is dispensable for virus function in vitro, the TR is required for both virus latency and lytic virus production. In addition, the HVS-BAC promises to be a valuable tool that can be used for the routine and precise production and analysis of viral mutants to further explore gammaherpesvirus biology.
Collapse
Affiliation(s)
- Robert E White
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Calderwood
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
22
|
Wade-Martins R, Saeki Y, Chiocca EA. Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells. Mol Ther 2003; 7:604-12. [PMID: 12718903 DOI: 10.1016/s1525-0016(03)00060-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability to deliver efficiently a complete genomic DNA locus to human and rodent cells will likely find widespread application in functional genomic studies and novel gene therapy protocols. In contrast to a cDNA expression cassette, the use of a complete genomic DNA locus delivers a transgene intact with its native promoter, the exons, all the intervening introns, and the regulatory regions. The presence of flanking, noncoding genomic DNA sequences could prove critical for prolonged and appropriate gene expression. We have recently developed a technology for the rapid conversion of bacterial artificial chromosome (BAC) clones into high-capacity herpes simplex virus-based amplicon vectors. Here, we express the human low-density lipoprotein receptor (LDLR), mutated in familial hypercholesterolemia (FH), from a 135-kb BAC insert. The infectious LDLR genomic locus vectors were shown to express at physiologically appropriate levels in three contexts. First, the LDLR locus was expressed appropriately in the ldl(-/-)a7 Chinese hamster ovary (CHO) cell line immediately following infectious delivery; second, the locus was maintained within a replicating episomal vector and expressed at broadly physiological levels in CHO cells for 3 months following infectious delivery; and third, the locus was efficiently expressed in human fibroblasts derived from FH patients. Finally, we show that the infectious LDLR locus retains classical expression regulation by sterol levels in human cells. This long-term expression and physiological regulation of LDLR prepares the way for in vivo functional studies of infectious delivery of BAC inserts.
Collapse
Affiliation(s)
- Richard Wade-Martins
- Molecular Neuro-Oncology Laboratories, Neurosurgery Service, Massachusetts General Hospital-East and Harvard Medical School, Building 149, 13th Street, Charlestown 02129, USA
| | | | | |
Collapse
|
23
|
Narayanan K, Warburton PE. DNA modification and functional delivery into human cells using Escherichia coli DH10B. Nucleic Acids Res 2003; 31:e51. [PMID: 12711696 PMCID: PMC154239 DOI: 10.1093/nar/gng051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a approximately 200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd(-) rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies.
Collapse
Affiliation(s)
- Kumaran Narayanan
- Department of Human Genetics, Box 1498, Mount Sinai School of Medicine, 1425 Madison Avenue, East Building 14-52A, New York, NY 10029, USA
| | | |
Collapse
|