1
|
Yassaghi Y, Nazerian Y, Niazi F, Niknejad H. Advancements in cell-based therapies for thermal burn wounds: a comprehensive systematic review of clinical trials outcomes. Stem Cell Res Ther 2024; 15:277. [PMID: 39227861 PMCID: PMC11373270 DOI: 10.1186/s13287-024-03901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Burn trauma is one of the major causes of morbidity and mortality worldwide. The standard management of burn wounds consists of early debridement, dressing changes, surgical management, and split-thickness skin autografts (STSGs). However, there are limitations for the standard management that inclines us to find alternative treatment approaches, such as innovative cell-based therapies. We aimed to systematically review the different aspects of cell-based treatment approaches for burn wounds in clinical trials. METHODS A systematic search through PubMed, Medline, Embase, and Cochrane Library databases was carried out using a combination of keywords, including "Cell transplantation", "Fibroblast", "Keratinocyte", "Melanocyte", or "Stem Cell" with "Burn", "Burn wound", or "Burn injury". Firstly, titles and abstracts of the studies existing in these databases until "February 2024" were screened. Then, the selected studies were read thoroughly, and considering the inclusion and exclusion criteria, final articles were included in this systematic review. Moreover, a manual search was performed through the reference lists of the included studies to minimize the risk of missing reports. RESULTS Overall, 30 clinical trials with 970 patients were included in our study. Considering the type of cells, six studies used keratinocytes, nine used fibroblasts, eight used combined keratinocytes and fibroblasts, one study used combined keratinocytes and melanocytes, five used combined keratinocytes and fibroblasts and melanocytes, and one study used mesenchymal stem cells (MSCs). Evaluation of the preparation type in these studies showed that cultured method was used in 25 trials, and non-cultured method in 5 trials. Also, the graft type of 17 trials was allogeneic, and of 13 other trials was autologous. CONCLUSIONS Our study showed that employing cell-based therapies for the treatment of burn wounds have significant results in clinical studies and are promising approaches that can be considered as alternative treatments in many cases. However, choosing appropriate cell-based treatment for each burn wound is essential and depends on the situation of each patient.
Collapse
Affiliation(s)
- Younes Yassaghi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Feizollah Niazi
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wartalski K, Wiater J, Maciak P, Pastuła A, Lis GJ, Samiec M, Trzcińska M, Duda M. Anabolic Steroids Activate the NF-κB Pathway in Porcine Ovarian Putative Stem Cells Independently of the ZIP-9 Receptor. Int J Mol Sci 2024; 25:2833. [PMID: 38474077 DOI: 10.3390/ijms25052833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Boldenone (Bdn) and nandrolone (Ndn) are anabolic androgenic steroids (AASs) that, as our previous studies have shown, may increase the risk of neoplastic transformation of porcine ovarian putative stem cells (poPSCs). The NF-κB pathway may be important in the processes of carcinogenesis and tumour progression. Therefore, in this work, we decided to test the hypothesis of whether Bdn and Ndn can activate the NF-κB pathway by acting through the membrane androgen receptor ZIP-9. For this purpose, the expression profiles of both genes involved in the NF-κB pathway and the gene coding for the ZIP-9 receptor were checked. The expression and localization of proteins of this pathway in poPSCs were also examined. Additionally, the expression of the ZIP-9 receptor and the concentration of the NF-κB1 and 2 protein complex were determined. Activation of the NF-κB pathway was primarily confirmed by an increase in the relative abundances of phosphorylated forms of RelA protein and IκBα inhibitor. Reduced quantitative profiles pinpointed not only for genes representing this pathway but also for unphosphorylated proteins, and, simultaneously, decreased concentration of the NF-κB1 and 2 complex may indicate post-activation silencing by negative feedback. However, the remarkably and sustainably diminished expression levels noticed for the SLC39A9 gene and ZIP-9 protein suggest that this receptor does not play an important role in the regulation of the NF-κB pathway.
Collapse
Affiliation(s)
- Kamil Wartalski
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland
| | - Jerzy Wiater
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland
| | - Patrycja Maciak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Agnieszka Pastuła
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Grzegorz J Lis
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland
| | - Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| |
Collapse
|
3
|
Elia E, Brownell D, Chabaud S, Bolduc S. Tissue Engineering for Gastrointestinal and Genitourinary Tracts. Int J Mol Sci 2022; 24:ijms24010009. [PMID: 36613452 PMCID: PMC9820091 DOI: 10.3390/ijms24010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with the help of peristalsis brought by muscle contraction. In the case of the gastrointestinal tract, solid or liquid food must circulate to be digested and absorbed and the waste products eliminated. In the case of the urinary tract, the urine produced by the kidneys must flow to the bladder, where it is stored until its elimination from the body. Finally, in the case of the vagina, it must allow the evacuation of blood during menstruation, accommodate the male sexual organ during coitus, and is the natural way to birth a child. The present review describes the anatomy, pathologies, and treatments of such organs, emphasizing tissue engineering strategies.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - David Brownell
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 42282)
| |
Collapse
|
4
|
Thamm K, Möbus K, Towers R, Baertschi S, Wetzel R, Wobus M, Segeletz S. A chemically defined biomimetic surface for enhanced isolation efficiency of high-quality human mesenchymal stromal cells under xenogeneic/serum-free conditions. Cytotherapy 2022; 24:1049-1059. [PMID: 35931601 DOI: 10.1016/j.jcyt.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are one of the most frequently used cell types in regenerative medicine and cell therapy. Generating sufficient cell numbers for MSC-based therapies is constrained by (i) their low abundance in tissues of origin, which imposes the need for significant ex vivo cell expansion; (ii) donor-specific characteristics, including MSC frequency/quality, that decline with disease state and increasing age; and (iii) cellular senescence, which is promoted by extensive cell expansion and results in decreased therapeutic functionality. The final yield of a manufacturing process is therefore primarily determined by the applied isolation procedure and its efficiency in isolating therapeutically active cells from donor tissue. To date, MSCs are predominantly isolated using media supplemented with either serum or its derivatives, which poses safety and consistency issues. METHODS To overcome these limitations while enabling robust MSC production with constant high yield and quality, the authors developed a chemically defined biomimetic surface coating called isoMATRIX (denovoMATRIX GmbH, Dresden, Germany) and tested its performance during isolation of MSCs. RESULTS The isoMATRIX facilitates the isolation of significantly higher numbers of MSCs in xenogeneic (xeno)/serum-free and chemically defined conditions. The isolated cells display a smaller cell size and higher proliferation rate than those derived from a serum-containing isolation procedure and a strong immunomodulatory capacity. The high proliferation rates can be maintained up to 5 passages after isolation and cells even benefit from a switch towards a proliferation-specific MSC matrix (myMATRIX MSC) (denovoMATRIX GmbH, Dresden, Germany). CONCLUSION In sum, isoMATRIX promotes enhanced xeno/serum-free and chemically defined isolation of human MSCs and supports consistent and reliable cell performance for improved stem cell-based therapies.
Collapse
Affiliation(s)
| | - Kristin Möbus
- Universitätskrankenhaus Carl Gustav Carus der Technischen Universität Dresden, Dresden, Germany
| | - Russell Towers
- Universitätskrankenhaus Carl Gustav Carus der Technischen Universität Dresden, Dresden, Germany
| | | | | | - Manja Wobus
- Universitätskrankenhaus Carl Gustav Carus der Technischen Universität Dresden, Dresden, Germany
| | | |
Collapse
|
5
|
Salemi S, Prange JA, Baumgartner V, Mohr-Haralampieva D, Eberli D. Adult stem cell sources for skeletal and smooth muscle tissue engineering. Stem Cell Res Ther 2022; 13:156. [PMID: 35410452 PMCID: PMC8996587 DOI: 10.1186/s13287-022-02835-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2023] Open
Abstract
INTRODUCTION Tissue engineering is an innovative field with enormous developments in recent years. These advances are not only in the understanding of how stem cells can be isolated, cultured and manipulated but also in their potential for clinical applications. Thus, tissue engineering when applied to skeletal and smooth muscle cells is an area that bears high benefit for patients with muscular diseases or damage. Most of the recent research has been focused on use of adult stem cells. These cells have the ability to rejuvenate and repair damaged tissues and can be derived from different organs and tissue sources. Recently there are several different types of adult stem cells, which have the potential to function as a cell source for tissue engineering of skeletal and smooth muscles. However, to build neo-tissues there are several challenges which have to be addressed, such as the selection of the most suitable stem cell type, isolation techniques, gaining control over its differentiation and proliferation process. CONCLUSION The usage of adult stem cells for muscle engineering applications is promising. Here, we summarize the status of research on the use of adult stem cells for cell transplantation in experimental animals and humans. In particular, the application of skeletal and smooth muscle engineering in pre-clinical and clinical trials will be discussed.
Collapse
Affiliation(s)
- Souzan Salemi
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Jenny A. Prange
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Valentin Baumgartner
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Deana Mohr-Haralampieva
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| | - Daniel Eberli
- grid.412004.30000 0004 0478 9977Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952 Schlieren, Switzerland
| |
Collapse
|
6
|
Azar J, Bahmad HF, Daher D, Moubarak MM, Hadadeh O, Monzer A, Al Bitar S, Jamal M, Al-Sayegh M, Abou-Kheir W. The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update. Int J Mol Sci 2021; 22:7667. [PMID: 34299287 PMCID: PMC8303386 DOI: 10.3390/ijms22147667] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Organoids represent one of the most important advancements in the field of stem cells during the past decade. They are three-dimensional in vitro culturing models that originate from self-organizing stem cells and can mimic the in vivo structural and functional specificities of body organs. Organoids have been established from multiple adult tissues as well as pluripotent stem cells and have recently become a powerful tool for studying development and diseases in vitro, drug screening, and host-microbe interaction. The use of stem cells-that have self-renewal capacity to proliferate and differentiate into specialized cell types-for organoids culturing represents a major advancement in biomedical research. Indeed, this new technology has a great potential to be used in a multitude of fields, including cancer research, hereditary and infectious diseases. Nevertheless, organoid culturing is still rife with many challenges, not limited to being costly and time consuming, having variable rates of efficiency in generation and maintenance, genetic stability, and clinical applications. In this review, we aim to provide a synopsis of pluripotent stem cell-derived organoids and their use for disease modeling and other clinical applications.
Collapse
Affiliation(s)
- Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Darine Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Mohamed Jamal
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 66566, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| |
Collapse
|
7
|
Wartalski K, Gorczyca G, Wiater J, Tabarowski Z, Duda M. Porcine ovarian cortex-derived putative stem cells can differentiate into endothelial cells in vitro. Histochem Cell Biol 2021; 156:349-362. [PMID: 34269874 PMCID: PMC8550686 DOI: 10.1007/s00418-021-02016-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Endothelial cells (ECs), the primary component of the vasculature, play a crucial role in neovascularization. However, the number of endogenous ECs is inadequate for both experimental purposes and clinical applications. Porcine ovarian putative stem cells (poPSCs), although not pluripotent, are characterized by great plasticity. Therefore, this study aimed to investigate whether poPSCs have the potential to differentiate into cells of endothelial lineage. poPSCs were immunomagnetically isolated from postnatal pig ovaries based on the presence of SSEA-4 protein. Expression of mesenchymal stem cells (MSCs) markers after pre-culture, both at the level of mRNA: ITGB1, THY, and ENG and corresponding protein: CD29, CD90, and CD105 were significantly higher compared to the control ovarian cortex cells. To differentiate poPSCs into ECs, inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied. After 14 days, poPSC differentiation into ECs was confirmed by immunofluorescence staining for vascular endothelial cadherin (VECad) and vascular endothelial growth factor receptor-2 (VEGFR-2). Semi-quantitative WB analysis of these proteins confirmed their high abundance. Additionally, qRT-PCR showed that mRNA expression of corresponding marker genes: CDH5, KDR was significantly higher compared with undifferentiated poPSCs. Finally, EC functional status was confirmed by the migration test that revealed that they were capable of positive chemotaxis, while tube formation assay demonstrated their ability to develop capillary networks. In conclusion, our results provided evidence that poPSCs may constitute the MSC population in the ovary and confirmed that they might be a potential source of ECs for tissue engineering.
Collapse
Affiliation(s)
- Kamil Wartalski
- Faculty of Medicine, Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034, Krakow, Poland
| | - Gabriela Gorczyca
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Endocrinology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland
| | - Jerzy Wiater
- Faculty of Medicine, Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034, Krakow, Poland
| | - Zbigniew Tabarowski
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Experimental Hematology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland
| | - Małgorzata Duda
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Endocrinology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland.
| |
Collapse
|
8
|
Wartalski K, Gorczyca G, Wiater J, Tabarowski Z, Palus-Chramiec K, Setkowicz Z, Duda M. Efficient generation of neural-like cells from porcine ovarian putative stem cells - morphological characterization and evaluation of their electrophysiological properties. Theriogenology 2020; 155:256-268. [PMID: 32810809 DOI: 10.1016/j.theriogenology.2020.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
Abstract
Until recently, the mammalian ovary was considered to consist of fully differentiated tissues, but evidence for the presence of adult stem cells in this organ appeared. The differentiation potential of these cells, referred to as putative stem cells, is not well defined. Porcine ovarian putative stem cells (poPSCs) were immunomagnetically isolated from postnatal pig ovaries based on the presence of the SSEA-4 surface marker protein. First, they were cultured in the undifferentiated state. After the third passage, a novel 7-day culture method inducing their differentiation into neural-like cells by the addition of forskolin (FSK), retinoic acid (RA) and basic fibroblast growth factor (bFGF) to the culture medium was applied. After 7 days, poPSCs successfully differentiated into neural-like cells, as evidenced by neural morphology and the presence of the neuronal markers nestin, NeuN, and GFAP, as confirmed by immunofluorescence, western blot, and real-time PCR. Electrophysiological analysis of potassium and sodium channel activity (patch clamp) confirmed that they indeed differentiated into neurons. The plasticity of poPSCs offers an excellent opportunity, especially in the field of neuroscience, since they can differentiate into neurons or glial cells. Although poPSCs might not be pluripotent cells, they also escape the rigid classification framework of adult stem cells.
Collapse
Affiliation(s)
- Kamil Wartalski
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland; Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - Gabriela Gorczyca
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Jerzy Wiater
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland; Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Zbigniew Tabarowski
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Zuzanna Setkowicz
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
9
|
Hassanpour M, Rezabakhsh A, Pezeshkian M, Rahbarghazi R, Nouri M. Distinct role of autophagy on angiogenesis: highlights on the effect of autophagy in endothelial lineage and progenitor cells. Stem Cell Res Ther 2018; 9:305. [PMID: 30409213 PMCID: PMC6225658 DOI: 10.1186/s13287-018-1060-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy plays a critical role in the dynamic growth of each cell through different conditions. It seems that this intracellular mechanism acts as a two-edged sword against the numerous cell insults. Previously, autophagy was described in the context of cell activity and behavior, but little knowledge exists related to the role of autophagy in endothelial cells, progenitors, and stem cells biology from different tissues. Angiogenic behavior of endothelial lineage and various stem cells are touted as an inevitable feature in the restoration of different damaged tissues and organs. This capacity was found to be dictated by autophagy signaling pathway. This review article highlights the fundamental role of cell autophagic response in endothelial cells function, stem cells dynamic, and differentiation rate. It seems that elucidation of the mechanisms related to pro- and/or anti-angiogenic potential of autophagy inside endothelial cells and stem cells could help us to modulate stem cell therapeutic feature post-transplantation.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756 Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Department of Applied Drug Research, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756 Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756 Iran
| |
Collapse
|
10
|
Abstract
Current treatments for stroke, such as the use of thrombolytic agents, are often limited by a narrow therapeutic time window. However, the regeneration of the brain after damage is still active days even weeks after stroke occurs, which might provide a second window for treatment. Cell-based therapy can be categorized into two strategies. One is transplantation of exogenous cells into the injured brain to replace the lost cells or support the remaining cells. The other strategy is to enhance the proliferation, differentiation, migration of endogenous stem or progenitor cells. Recent development in adult stem cell research and advancement in the induction of pluripotent stem cells from somatic adult cells provide a tremendous opportunity for transplantation therapy. Understanding the mechanisms and regulations involved in the endogenous neurogenesis will also help develop novel therapeutic interventions to promote neurogenesis and functional recovery in stroke. This review describes up-to-date progresses in cell-based therapy for the treatment of stroke.
Collapse
Affiliation(s)
- Yu Luo
- National Institute on Drug Abuse, I.R.P., 251 Bayview BLVD, Baltimore, MD 21224, USA.
| |
Collapse
|
11
|
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The onset of PD is usually after the age of 50. Clinical symptoms of PD are not manifested until 60-80% of dopaminergic neurons in the midbrain have been affected. Cell replacement has been a promising approach for the treatment of PD. Fetal mesencephalic dopaminergic neurons seemed to improve the motor disability in patients in some early studies. However, the clinical application of this approach may be limited by ethical and logistic concerns, as well as by side effects. On the other hand, embryonic stem (ES) cells are promising candidates because of their ability to provide an unlimited supply of specific cell types, their accessibility to genetic modifications, and their broad developmental potentials. Transplants of undifferentiated ES cells were able to proliferate and fully differentiate into dopaminergic neurons in a rodent PD model. One of the concerns though is the risk of tumor formation. The tumorigenic potential of ES cells seems to be greatly reduced when cells are predifferentiated into dopaminergic neurons in vitro before implantation. Recent developments in the induction of pluripotent stem cells from somatic adult cells provide a tremendous opportunity for this field. Initial success has been reported in a rodent PD model using iPS cells (induced pluripotent stem cells). However, whether this initial result can be successfully translated into human clinical studies still needs to be determined.
Collapse
Affiliation(s)
- Yu Luo
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
12
|
Aframian DJ, Palmon A. Current status of the development of an artificial salivary gland. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:187-98. [PMID: 18471085 DOI: 10.1089/ten.teb.2008.0044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Salivary glands (SGs) secrete more than half a liter of saliva daily. Saliva has many functions in maintaining the normal homeostasis of the oral cavity. Several causes underlie salivary impairment, where irradiation therapy to head and neck cancer patients is one of the most debilitating causes leading to considerable decrease in the patients' quality of life. In the last decade, others and we have focused on implementing tissue engineering principles combined with gene transfer and stem cell methodologies to develop an artificial SG device. This manuscript provides an overview of the current status of engineering an artificial SG.
Collapse
Affiliation(s)
- Doron J Aframian
- Department of Oral Medicine, Salivary Gland Clinic, Hebrew University, Jerusalem, Israel.
| | | |
Collapse
|
13
|
DUNCAN ANDREWW, DORRELL CRAIG, GROMPE MARKUS. Stem cells and liver regeneration. Gastroenterology 2009; 137:466-81. [PMID: 19470389 PMCID: PMC3136245 DOI: 10.1053/j.gastro.2009.05.044] [Citation(s) in RCA: 401] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/13/2009] [Accepted: 05/11/2009] [Indexed: 12/16/2022]
Abstract
One of the defining features of the liver is the capacity to maintain a constant size despite injury. Although the precise molecular signals involved in the maintenance of liver size are not completely known, it is clear that the liver delicately balances regeneration with overgrowth. Mammals, for example, can survive surgical removal of up to 75% of the total liver mass. Within 1 week after liver resection, the total number of liver cells is restored. Moreover, liver overgrowth can be induced by a variety of signals, including hepatocyte growth factor or peroxisome proliferators; the liver quickly returns to its normal size when the proliferative signal is removed. The extent to which liver stem cells mediate liver regeneration has been hotly debated. One of the primary reasons for this controversy is the use of multiple definitions for the hepatic stem cell. Definitions for the liver stem cell include the following: (1) cells responsible for normal tissue turnover, (2) cells that give rise to regeneration after partial hepatectomy, (3) cells responsible for progenitor-dependent regeneration, (4) cells that produce hepatocyte and bile duct epithelial phenotypes in vitro, and (5) transplantable liver-repopulating cells. This review will consider liver stem cells in the context of each definition.
Collapse
Affiliation(s)
- ANDREW W. DUNCAN
- Oregon Stem Cell Center, Oregon Health & Science University, Portland
| | - CRAIG DORRELL
- Oregon Stem Cell Center, Oregon Health & Science University, Portland
| | - MARKUS GROMPE
- Oregon Stem Cell Center, Oregon Health & Science University, Portland,
Papé Family Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
14
|
Andres RH, Choi R, Steinberg GK, Guzman R. Potential of adult neural stem cells in stroke therapy. Regen Med 2008; 3:893-905. [DOI: 10.2217/17460751.3.6.893] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite state-of-the-art therapy, clinical outcome after stroke remains poor, with many patients left permanently disabled and dependent on care. Stem cell therapy has evolved as a promising new therapeutic avenue for the treatment of stroke in experimental studies, and recent clinical trials have proven its feasibility and safety in patients. Replacement of damaged cells and restoration of function can be accomplished by transplantation of different cell types, such as embryonic, fetal or adult stem cells, human fetal tissue and genetically engineered cell lines. Adult neural stem cells offer the advantage of avoiding the ethical problems associated with embryonic or fetal stem cells and can be harvested as autologous grafts from the individual patients. Furthermore, stimulation of endogenous adult stem cell-mediated repair mechanisms in the brain might offer new avenues for stroke therapy without the necessity of transplantation. However, important scientific issues need to be addressed to advance our understanding of the molecular mechanisms underlying the critical steps in cell-based repair to allow the introduction of these experimental techniques into clinical practice. This review describes up-to-date experimental concepts using adult neural stem cells for the treatment of stroke.
Collapse
Affiliation(s)
- Robert H Andres
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| | - Raymond Choi
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| | - Raphael Guzman
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| |
Collapse
|
15
|
Tian C, Lu Y, Gilbert R, Karpati G. Differentiation of Murine Embryonic Stem Cells in Skeletal Muscles of Mice. Cell Transplant 2008; 17:325-35. [DOI: 10.3727/096368908784153841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Possible myogenic differentiation of SSEA-1- and OCT-4-positive murine embryonic stem cells (ESCs) and embryoid bodies (EBs) was studied in vitro and in vivo. In vitro, ESC- or EB-derived ESCs (EBs/ESCs) showed only traces of Pax 3 and 7 expression by immunocytochemistry and Pax 3 expression by immunoblot. By RT-PCR, myogenic determinant molecules (myf5, myoD, and myogenin) were expressed by EBs/ESCs but not by ESCs. However, in such cultures, very rare contracting myotubes were still present. Suspensions of LacZ-labeled ESCs or EBs were injected into anterior tibialis muscles (ATM) of different cohorts of mice for the study of their survival and possible myogenic differentiation. The different cohorts of mice included isogenic adult 129/Sv, nonisogenic CD1 and mdx, as well as mdx immunosuppressed with 2.5 mg/kg daily injections of tacrolimus. Ten to 90 days postinjections, the injected ATM of nonisogenic mice did not contain cells positive for LacZ, SSEA-1, OCT-4, or embryonic myosin heavy chain. The ATM of intact mdx mice contained very rare examples of muscle fibers positive for dystrophin and/or embryonic myosin heavy chain. In the ATM of the isogenic normal and the immunosuppressed mdx mice, as expected, large teratomas developed containing the usual diverse cell types. In some teratomas of immunosuppressed mdx mice, small pockets of muscle fibers expressed dystrophin and myosin heavy chain. Our studies indicated that in muscles of animals nonisogenic with the used ESCs, only very rare ESCs survived with myogenic differentiation. These studies also indicated that ESCs will not undergo significant, selective, and preferential myogenic differentiation in vitro or in vivo in any of the models studied. It is probable that this strain of murine ESC requires some experimentally induced alteration of its gene expression profile to secure significant myogenicity and suppress tumorogenicity.
Collapse
Affiliation(s)
- Chai Tian
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yifan Lu
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rénald Gilbert
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
| | - George Karpati
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Kodama S, Davis M, Faustman DL. Regenerative medicine: a radical reappraisal of the spleen. Trends Mol Med 2005; 11:271-6. [PMID: 15949768 DOI: 10.1016/j.molmed.2005.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 04/11/2005] [Accepted: 04/26/2005] [Indexed: 12/25/2022]
Abstract
The spleen has long been considered a dispensable organ. Recent research, however, has found that the spleen of adult mice holds a reservoir of stem cells that can rapidly and robustly differentiate into functional cells of diverse lineages. Splenic stem cells express Hox11, a key embryonic transcription factor that regulates organogenesis. The presence of multi-lineage stem cells in the spleen might represent lifelong persistence of cells from a primitive embryonic region called the aorta-gonad-mesonephros. By bringing together findings from diverse disciplines, we propose that the adult spleen is an important source of multi-lineage stem cells for future cellular therapies for diabetes and other diseases.
Collapse
Affiliation(s)
- Shohta Kodama
- Harvard Medical School & Massachusetts General Hospital-East Immunology Lab, Building 149, 13(th) Street, Room 3602, Boston, MA 02193, USA
| | | | | |
Collapse
|
17
|
Kodama S, Faustman DL. Routes to regenerating islet cells: stem cells and other biological therapies for type 1 diabetes. Pediatr Diabetes 2005; 5 Suppl 2:38-44. [PMID: 15601373 DOI: 10.1111/j.1399-543x.2004.00078.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
New biological therapies for type 1 diabetes are emerging from the forefront of stem cell and islet cell biology. Basic research in animal models has uncovered a variety of mechanisms by which natural regeneration of pancreatic islet cells occurs, despite the underlying autoimmune defect. Two mechanisms - in particular, beta-islet cell proliferation and stem cell differentiation - can be harnessed in innovative ways in order to regenerate islets lost to disease. This review provides a background on stem cells and describes a range of potential biological therapies for type 1 diabetes, including the use of adult stem cells from the spleen, an organ not previously considered a source of pancreatic stem cells. Stem cells of the spleen have been demonstrated to home to the pancreas, where they mature into fully functional islet cells responsible for restoring normoglycemia. If the underlying autoimmune defect can be eradicated, stem cells of the spleen, as well as related strategies, can be used in order to regrow islets destroyed by type 1 diabetes.
Collapse
Affiliation(s)
- Shohta Kodama
- Harvard Medical School and Massachusetts General Hospital-East, Boston, 13th Street, MA 02192, USA
| | | |
Collapse
|
18
|
Kodama S, Davis M, Faustman DL. Diabetes and Stem Cell Researchers Turn to the Lowly Spleen. ACTA ACUST UNITED AC 2005; 2005:pe2. [PMID: 15659719 DOI: 10.1126/sageke.2005.3.pe2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The spleen gets no respect. Long seen as superfluous, the adult spleen of the mouse has recently been shown to hold stem cells that, in diabetic mice or genetically altered mice that lack a pancreas, effectively regenerate insulin-producing islet cells of the pancreas. Stem cells of the spleen express Hox11, a highly conserved transcription factor that plays a major role in the development of organs in vertebrate and invertebrate embryos. Hox11 and other members of the Hox family of genes may give stem cells of the spleen the capacity to mature into cell types other than islet cells, including neurons and bone cells. Multilineage splenic stem cells may trace to the embryogenesis and possible persistence into adulthood of a fetal stem cell region called the aorta-gonad-mesonephros (AGM). This Perspective calls for reappraisal of the lowly spleen for treating diabetes and other diseases of aging.
Collapse
Affiliation(s)
- Shohta Kodama
- Harvard Medical School and Massachusetts General Hospital-East, Boston, MA 02192, USA
| | | | | |
Collapse
|
19
|
Affiliation(s)
- Martin Kørbling
- Department of Blood and Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.
| | | |
Collapse
|
20
|
Clark AD, Jørgensen HG, Mountford J, Holyoake TL. Isolation and therapeutic potential of human haemopoietic stem cells. Cytotechnology 2003; 41:111-31. [PMID: 19002948 PMCID: PMC3466700 DOI: 10.1023/a:1024822722285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The haemopoietic stem cell (HSC) has long been regarded as an archetypal, tissue specific, stem cell, capable of completely regenerating haemopoiesis after myeloablation. It has proved relatively easy to harvest HSC, from bone marrow or peripheral blood. In turn, isolation of these cells has allowed therapeutic stem cell transplantation protocols to be developed, that capitalise on their prodigious self renewal and proliferative capabilities. Ex vivo approaches have been described to isolate, genetically manipulateand expand pluripotent stem cell subsets. These techniques have been crucial to the development of gene therapy, and may allow adults to enjoy the potential advantages of cord blood transplantation. Recently, huge conceptual changes have occurred in stem cell biology. In particular, the dogma that, in adults, stem cells are exclusively tissue restricted has been questioned and there is great excitement surrounding the potential plasticity of these cells, with the profound implications that this has, for developing novel cellular therapies. Mesenchymal stem cells, multipotent adult progenitor cells and embryonic stem cells are potential sources of cells for transplantation purposes. These cells may be directed toproduce HSC, in vitro and in the future may be used for therapeutic, or drug development, purposes.
Collapse
Affiliation(s)
- Andrew D. Clark
- Cancer Research Beatson Laboratories, University of Glasgow, Glasgow, U.K
- Department of Haematology, Royal Infirmary, North Glasgow Hospital University Trust, Glasgow, U.K
| | - Heather G. Jørgensen
- Division of Cancer Sciences and Molecular Pathology, Royal Infirmary, University of Glasgow, Glasgow, U.K
| | - Joanne Mountford
- Division of Cancer Sciences and Molecular Pathology, Royal Infirmary, University of Glasgow, Glasgow, U.K
| | - Tessa L. Holyoake
- Cancer Research Beatson Laboratories, University of Glasgow, Glasgow, U.K
| |
Collapse
|