Garrick RA, Woodin BR, Stegeman JJ. CYTOCHROME P4501A INDUCED DIFFERENTIALLY IN ENDOTHELIAL CELLS CULTURED FROM DIFFERENT ORGANS OF ANGUILLA ROSTRATA.
ACTA ACUST UNITED AC 2005;
41:57-63. [PMID:
15926861 DOI:
10.1290/0409063.1]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells are a structural barrier and an active regulator of many bodily processes. Cytochrome P4501A (CYP1A) activity is induced in the endothelium of teleosts and mammals exposed to lipophilic xenobiotics, such as polycyclic aromatic hydrocarbons, and can have significant consequences for endothelial functions. We exposed cultures of characterized endothelial cells from the heart, kidney, and rete mirabile of the eel, Anguilla rostrata, to aryl hydrocarbon receptor (AhR) agonists. In heart endothelial cells, the maximum response (based on O-deethylation of 7-ethoxyresorufin to resorufin [EROD] activity) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 113 pmol/mg/min, was at 1 nM TCDD and the peak response to beta-napthoflavone (betaNF), 135 pmol/mg/min, was at 3 microM betaNF. The maximum response to TCDD in the kidney endothelial cells is 12 pmol/mg/min at 0.3 nM TCDD. The rete mirabile capillary endothelial cells responded minimally or not at all to exposure to TCDD and betaNF. Both the heart and kidney endothelial cells (but not the rete mirabile capillary cells) have a low level of EROD activity (12.7 and 5.2 pmol/mg/min, respectively) in untreated or dimethylsulfoxide-treated cells. The robust response of the heart endothelial cells to induction and the lack of response in the rete mirabile capillary endothelial cells indicate that these cells are a good resource to use to investigate the physiological consequences of AhR agonist exposure and CYP1A induction in different areas of the vasculature.
Collapse