1
|
Nagatsu T, Nakashima A, Watanabe H, Ito S, Wakamatsu K, Zucca FA, Zecca L, Youdim M, Wulf M, Riederer P, Dijkstra JM. The role of tyrosine hydroxylase as a key player in neuromelanin synthesis and the association of neuromelanin with Parkinson's disease. J Neural Transm (Vienna) 2023; 130:611-625. [PMID: 36939908 PMCID: PMC10121510 DOI: 10.1007/s00702-023-02617-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023]
Abstract
The dark pigment neuromelanin (NM) is abundant in cell bodies of dopamine (DA) neurons in the substantia nigra (SN) and norepinephrine (NE) neurons in the locus coeruleus (LC) in the human brain. During the progression of Parkinson's disease (PD), together with the degeneration of the respective catecholamine (CA) neurons, the NM levels in the SN and LC markedly decrease. However, questions remain among others on how NM is associated with PD and how it is synthesized. The biosynthesis pathway of NM in the human brain has been controversial because the presence of tyrosinase in CA neurons in the SN and LC has been elusive. We propose the following NM synthesis pathway in these CA neurons: (1) Tyrosine is converted by tyrosine hydroxylase (TH) to L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted by aromatic L-amino acid decarboxylase to DA, which in LC neurons is converted by dopamine β-hydroxylase to NE; (2) DA or NE is autoxidized to dopamine quinone (DAQ) or norepinephrine quinone (NEQ); and (3) DAQ or NEQ is converted to eumelanic NM (euNM) and pheomelanic NM (pheoNM) in the absence and presence of cysteine, respectively. This process involves proteins as cysteine source and iron. We also discuss whether the NM amounts per neuromelanin-positive (NM+) CA neuron are higher in PD brain, whether NM quantitatively correlates with neurodegeneration, and whether an active lifestyle may reduce NM formation.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan.
| | - Akira Nakashima
- Department of Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy
| | - Moussa Youdim
- Technion-Rappaport Family Faculty of Medicine, Haifa, Israel
- Department of Biology, Yonsey World Central University, Seoul, South Korea
| | - Maximilian Wulf
- Medical Proteome-Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- Medizinisches Proteom‑Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Peter Riederer
- Clinic and Polyclinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany
- Department and Research Unit of Psychiatry, Syddansk University, Odense, Denmark
| | | |
Collapse
|
2
|
Human tyrosine hydroxylase in Parkinson's disease and in related disorders. J Neural Transm (Vienna) 2018; 126:397-409. [PMID: 29995172 DOI: 10.1007/s00702-018-1903-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Parkinson's disease (PD) is an aging-related movement disorder mainly caused by a deficiency of neurotransmitter dopamine (DA) in the striatum of the brain and is considered to be due to progressive degeneration of nigro-striatal DA neurons. Most PD is sporadic without family history (sPD), and there are only a few percent of cases of young-onset familial PD (fPD, PARKs) with the chromosomal locations and the genes identified. Tyrosine hydroxylase (TH), tetrahydrobiopterin (BH4)-dependent and iron-containing monooxygenase, catalyzes the conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA), which is the initial and rate-limiting step in the biosynthesis of catecholamines (DA, noradrenaline, and adrenaline). PD affects specifically TH-containing catecholamine neurons. The most marked neurodegeneration in patients with DA deficiency is observed in the nigro-striatal DA neurons, which contain abundant TH. Accordingly, TH has been speculated to play some important roles in the pathophysiology in PD. However, this decrease in TH is thought to be secondary due to neurodegeneration of DA neurons caused by some as yet unidentified genetic and environmental factors, and thus, TH deficiency may not play a direct role in PD. This manuscript provides an overview of the role of human TH in the pathophysiology of PD, covering the following aspects: (1) structures of the gene and protein of human TH in relation to PD; (2) similarity and dissimilarity between the phenotypes of aging-related sPD and those of young-onset fPD or DOPA-responsive dystonia due to DA deficiency in the striatum with decreased TH activity caused by mutations in either the TH gene or GTP cyclohydrolase I (GCH1) gene; and (3) genetic variants of the TH gene (polymorphisms, rare variants, and mutations) in PD, as discovered recently by advanced genome analysis.
Collapse
|
3
|
Johnson M, Salvatore M, Maiolo S, Bobrovskaya L. Tyrosine hydroxylase as a sentinel for central and peripheral tissue responses in Parkinson’s progression: Evidence from clinical studies and neurotoxin models. Prog Neurobiol 2018; 165-167:1-25. [DOI: 10.1016/j.pneurobio.2018.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/07/2017] [Accepted: 01/10/2018] [Indexed: 12/25/2022]
|
4
|
Nagatsu T, Nagatsu I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects. J Neural Transm (Vienna) 2016; 123:1255-1278. [PMID: 27491309 DOI: 10.1007/s00702-016-1596-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Ikuko Nagatsu
- Department of Anatomy, School of Medicine, Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
5
|
Hare DJ, Adlard PA, Doble PA, Finkelstein DI. Metallobiology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Metallomics 2013; 5:91-109. [DOI: 10.1039/c2mt20164j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Nakashima A, Ota A, Kaneko YS, Mori K, Nagasaki H, Nagatsu T. A possible pathophysiological role of tyrosine hydroxylase in Parkinson’s disease suggested by postmortem brain biochemistry: a contribution for the special 70th birthday symposium in honor of Prof. Peter Riederer. J Neural Transm (Vienna) 2012; 120:49-54. [DOI: 10.1007/s00702-012-0828-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/09/2012] [Indexed: 01/04/2023]
|
7
|
Nagatsu T. The catecholamine system in health and disease -Relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2007; 82:388-415. [PMID: 25792770 PMCID: PMC4338835 DOI: 10.2183/pjab.82.388] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 11/13/2006] [Indexed: 05/29/2023]
Abstract
Catecholamines [dopamine, noradrenaline (norepinephrine), and adrenaline (epinephrine); CAs] are neurotransmitters in the central and peripheral nervous systems as well as hormones in the endocrine system. CAs in the brain play a central role in versatile functions as slow-acting neurotransmitters functioning in synaptic neurotransmission, modulating the effects of fast-acting neurotransmitters such as glutamate and γ-aminobutyric acid (GABA). In this review, I focus on recent advances in the biochemistry and molecular biology of the CA system in humans in health and disease, especially in neuropsychiatric diseases such as Parkinson's disease (PD), in relation to the biosynthesis of CAs regulated by a pteridine-dependent monooxygenase, tyrosine 3-monooxygenase (tyrosine hydroxylase, TH) and its pteridine cofactor, tetrahydrobiopterin (BH4).
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Nagoya University Research Institute of Environmental Medicine, Nagoya,
Japan
- Fujita Health University School of Medicine, Toyoake, Aichi,
Japan
- Visiting Professor and Professor Emeritus
| |
Collapse
|
8
|
Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:113-20. [PMID: 17982884 DOI: 10.1007/978-3-211-73574-9_14] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biochemical studies on postmortem brains of patients with Parkinson's disease (PD) have greatly contributed to our understanding of the molecular pathogenesis of this disease. The discovery by 1960 of a dopamine deficiency in the nigro-striatal dopamine region of the PD brain was a landmark in research on PD. At that time we collaborated with Hirotaro Narabayashi and his colleagues in Japan and with Peter Riederer in Germany on the biochemistry of PD by using postmortem brain samples in their brain banks. We found that the activity, mRNA level, and protein content of tyrosine hydroxylase (TH), as well as the levels of the tetrahydrobiopterin (BH4) cofactor of TH and the activity of the BH4-synthesizing enzyme, GTP cyclohydrolase I (GCHI), were markedly decreased in the substantia nigra and striatum in the PD brain. In contrast, the molecular activity (enzyme activity/enzyme protein) of TH was increased, suggesting a compensatory increase in the enzyme activity. The mRNA levels of all four isoforms of human TH (hTH1-hTH4), produced by alternative mRNA splicing, were also markedly decreased. This finding is in contrast to a completely parallel decrease in the activity and protein content of dopamine beta-hydroxylase (DBH) without changes in its molecular activity in cerebrospinal fluid (CSF) in PD. We also found that the activities and/or the levels of the mRNA and protein of aromatic L-amino acid decarboxylase (AADC, DOPA decarboxylase), DBH, phenylethanolamine N-methyltransferase (PNMT), which synthesize dopamine, noradrenaline, and adrenaline, respectively, were also decreased in PD brains, indicating that all catecholamine systems were widely impaired in PD brains. Programmed cell death of the nigro-striatal dopamine neurons in PD has been suggested from the following findings on postmortem brains: (1) increased levels of pro-inflammatory cytokines such as TNF-alpha and IL-6; (2) increased levels of apoptosis-related factors such as TNF-alpha receptor R1 (p 55), soluble Fas and bcl-2, and increased activities of caspases 1 and 3; and (3) decreased levels of neurotrophins such as brain-derived nerve growth factor (BDNF). Immunohistochemical data and the mRNA levels of the above molecules in PD brains supported these biochemical data. We confirmed by double immunofluorescence staining the production of TNF-alpha and IL-6 in activated microglia in the putamen of PD patients. Owing to the recent development of highly sensitive and wide-range analytical methods for quantifying mRNAs and proteins, future assays of the levels of various mRNAs and proteins not only in micro-dissected brain tissues containing neurons and glial cells, but also in single cells from frozen brain slices isolated by laser capture micro-dissection, coupled with toluidine blue, Nissl staining or immunohistochemical staining, should further contribute to the elucidation of the molecular pathogenesis of PD and other neurodegenerative or neuropsychiatric diseases.
Collapse
Affiliation(s)
- T Nagatsu
- Department of Brain Life Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan.
| | | |
Collapse
|
9
|
Aguirre JA, Andbjer B, González-Barón S, Hansson A, Strömberg I, Agnati LF, Fuxe K. Group I mGluR antagonist AIDA protects nigral DA cells from MPTP-induced injury. Neuroreport 2001; 12:2615-7. [PMID: 11522935 DOI: 10.1097/00001756-200108280-00006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of i.c.v. injection of AIDA, a group I mGluR antagonist, were studied on the nigral DA cells after MPTP-induced injury in the black mouse, using TH immunocytochemistry and unbiased stereology. MPTP reduced the total number of TH-IR neurons by 55.2% and non-TH-IR neurons by 27.5%. A 15 min AIDA pre-treatment (10 nmol) selectively counteracted the loss of TH-IR cells caused by MPTP as evaluated 10 days after the insult without changing the total number of non-neuronal cell nuclei. The results suggest that group I mGluR antagonists may have a neuroprotective role against MPTP-induced degeneration of DA neurons and thus probably also against neurodegenerative processes occurring in Parkinson's disease.
Collapse
Affiliation(s)
- J A Aguirre
- Department of Physiology, School of Medicine, E-29080, Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|