1
|
Changes in amino acid profiles and liver alterations in pregnant rats with a high carbohydrate/low protein diet. Ann Hepatol 2020; 18:345-353. [PMID: 31060976 DOI: 10.1016/j.aohep.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Intake of a high-carbohydrate, low-protein diet (HCD/LPD) during pregnancy promotes metabolic disturbances. It has been suggested that liver function during pregnancy contributes to the synthesis of proteins necessary for fetal development during this stage. The liver is a site of response to the synthesis of macronutrients such as proteins. However, it is unknown how HCD/LPD is associated with modifications to the amino acid profiles and hepatic alterations in the maternal environment during pregnancy. MATERIALS AND METHODS A transverse longitudinal study was done in primiparous mothers during gestation (G) (G1 day 1, G5 day 5, G15 day 15, and G20 day 20). Histological analysis was used to assess hepatic alterations, and amino acid profiles in the liver were analyzed with high performance liquid chromatography (HPLC). Food and water intake was quantified, and peripheral biochemical indicators in serum were measured. RESULTS Mothers with HCD/LPD had increased micro and macro vesicles of fat, necrosis, and inflammation in the liver on G5. The total concentration of hepatic amino acids increased by 40% on G1, 17% on G5, and 25% on G15; and, there was a 12% decrease on G20. The following increases were observed in the liver on G1: arginine 68%, histidine 75%, alanine 18%, methionine 71%, and phenylalanine 51% (p>0.05); on G5: arginine 12%, methionine 34%, and phenylalanine 83% (p>0.05); on G15: arginine and phenylalanine 66%, tryptophan 81% and histidine 60.4% (p>0.05); and on G20: arginine 32% (p>0.05). No weight loss, changes in food consumption, or hepatomegaly occurred. CONCLUSIONS HCD/LPD during pregnancy in primiparous mothers may promote development of fat vesicles. Possibly, this condition causes metabolic adaptations and nitrogen management reflected in decreased levels of serum urea and altered amino acid profiles in the liver.
Collapse
|
2
|
Serrano Sponton LE, Soria GJ, Dubroqua S, Singer P, Feldon J, Gargiulo PA, Yee BK. Negative transfer effects between reference memory and working memory training in the water maze in C57BL/6 mice. Behav Brain Res 2017; 339:286-296. [PMID: 29102592 DOI: 10.1016/j.bbr.2017.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Abstract
The water maze is one of the most widely employed spatial learning paradigms in the cognitive profiling of genetically modified mice. Oftentimes, tests of reference memory (RM) and working memory (WM) in the water maze are sequentially evaluated in the same animals. However, critical difference in the rules governing efficient escape from the water between WM and RM tests is expected to promote the adoption of incompatible mnemonic or navigational strategies. Hence, performance in a given test is likely poorer if it follows the other test instead of being conducted first. Yet, the presence of such negative transfer effects (or proactive interference) between WM and RM training in the water maze is often overlooked in the literature. To gauge whether this constitutes a serious concern, the present study determined empirically the magnitude, persistence, and directionality of the transfer effect in wild-type C57BL/6 mice. We contrasted the order of tests between two cohorts of mice. Performance between the two cohorts in the WM and RM tests were then separately compared. We showed that prior training of either test significantly reduced performance in the subsequent one. The statistical effect sizes in both directions were moderate to large. Although extended training could overcome the deficit, it could re-emerge later albeit in a more transient fashion. Whenever RM and WM water maze tests are conducted sequentially in the same animals - regardless of the test order, extra caution is necessary when interpreting the outcomes in the second test. Counterbalancing test orders between animals is recommended.
Collapse
Affiliation(s)
- Lucas Ezequiel Serrano Sponton
- Department of Neurosurgery, Mainz University Hospital, Langenbeckstraße 1, 55131, Mainz, Germany; Laboratorio de Neurociencias y Psicología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Gonzalo Jose Soria
- Laboratorio de Neurociencias y Psicología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Sylvain Dubroqua
- Laboratory of Behavioural Neurobiology, ETH Zurich, Schorenstrasse 16, CH-8603, Schwerzenbach, Switzerland; NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China
| | - Philipp Singer
- Laboratory of Behavioural Neurobiology, ETH Zurich, Schorenstrasse 16, CH-8603, Schwerzenbach, Switzerland; Roche Diagnostics, Hoffman-La Roche, CH-6343, Rotkreuz, Switzerland
| | - Joram Feldon
- Laboratory of Behavioural Neurobiology, ETH Zurich, Schorenstrasse 16, CH-8603, Schwerzenbach, Switzerland
| | - Pascual A Gargiulo
- Laboratorio de Neurociencias y Psicología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Benjamin K Yee
- Laboratory of Behavioural Neurobiology, ETH Zurich, Schorenstrasse 16, CH-8603, Schwerzenbach, Switzerland; Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Chiral separation of D/L-aldoses by micellar electrokinetic chromatography using a chiral derivatization reagent and a phenylboronic acid complex. Anal Bioanal Chem 2015; 407:6201-6. [PMID: 26044740 DOI: 10.1007/s00216-015-8802-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
A novel method was developed for D/L-isomeric separation of aldopentoses and aldohexoses as their (S)-(+)-4-(N,N-dimethylaminosulfonyl)-7-(3-aminopyrrolidin-1-yl)-2,1,3-benzoxadiazole derivatives using phenylboronate buffer containing sodium dodecyl sulfate as a background electrolyte. The combination of derivatization with a chiral labeling reagent and micellar electrokinetic chromatography with phenylboronate made possible the efficient separation of D/L isomers as well as epimeric isomers of aldopentoses and aldohexoses. Laser-induced fluorescence detection permitted the micromolar-level determination of monosaccharide derivatives. The limit of detection was 105 amol (300 nM), and the repeatabilities of the migration times and peak area responses were 0.8 % and 7.9 % (relative standard deviation; n = 6), respectively. The method was applied to the determination of D/L- galactose in red seaweed.
Collapse
|
4
|
Bai W, Shen J, Zhu Y, Men Y, Sun Y, Ma Y. Characteristics and Kinetic Properties of L-Rhamnose Isomerase from Bacillus Subtilis by Isothermal Titration Calorimetry for the Production of D-Allose. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Wei Bai
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Jie Shen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| |
Collapse
|
5
|
Prabhu P, Doan TNT, Tiwari M, Singh R, Kim SC, Hong MK, Kang YC, Kang LW, Lee JK. Structure-based studies on the metal binding of two-metal-dependent sugar isomerases. FEBS J 2014; 281:3446-59. [PMID: 24925069 DOI: 10.1111/febs.12872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Two-metal-dependent sugar isomerases are important in the synthesis of rare sugars. Many of their properties, specifically their metal dependency, have not been sufficiently explored. Here we used X-ray crystallography, site-directed mutagenesis, isothermal titration calorimetry and electron paramagnetic resonance spectroscopy to investigate the molecular determinants of the metal-binding affinity of l-rhamnose isomerase, a two-Mn(2+) -dependent isomerase from Bacillus halodurans (BHRI). The crystal structure of BHRI confirmed the presence of two metal ion-binding sites: a structural metal ion-binding site for substrate binding, and a catalytic metal ion-binding site that catalyzes a hydride shift. One conserved amino acid, W38, in wild-type BHRI was identified as a critical residue for structural Mn(2+) binding and thus the catalytic efficiency of BHRI. This function of W38 was explored by replacing it with other amino acids. Substitution by Phe, His, Lys, Ile or Ala caused complete loss of catalytic activity. The role of W38 was further examined by analyzing the crystal structure of wild-type BHRI and two inactive mutants of BHRI (W38F and W38A) in complex with Mn(2+) . A structural comparison of the mutants and the wild-type revealed differences in their coordination of Mn(2+) , including changes in metal-ligand bond length and affinity for Mn(2+) . The role of W38 was further confirmed in another two-metal-dependent enzyme: xylose isomerase from Bacillus licheniformis. These data suggest that W38 stabilizes protein-metal complexes and in turn assists ligand binding during catalysis in two-metal-dependent isomerases. STRUCTURED DIGITAL ABSTRACT BHRI and BHRI bind by x-ray crystallography (View interaction).
Collapse
Affiliation(s)
- Ponnandy Prabhu
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hasehira K, Miyanishi N, Sumiyoshi W, Hirabayashi J, Nakakita SI. Development of a chemical strategy to produce rare aldohexoses from ketohexoses using 2-aminopyridine. Carbohydr Res 2011; 346:2693-8. [DOI: 10.1016/j.carres.2011.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 11/30/2022]
|
7
|
Cloning and characterization of a rhamnose isomerase from Bacillus halodurans. Appl Microbiol Biotechnol 2010; 89:635-44. [DOI: 10.1007/s00253-010-2844-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/07/2010] [Accepted: 08/14/2010] [Indexed: 10/19/2022]
|
8
|
Doan TNT, Prabhu P, Kim JK, Ahn YJ, Natarajan S, Kang LW, Park GT, Lim SB, Lee JK. Crystallization and preliminary X-ray crystallographic analysis of L-rhamnose isomerase with a novel high thermostability from Bacillus halodurans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:677-80. [PMID: 20516598 PMCID: PMC2882768 DOI: 10.1107/s174430911001256x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/03/2010] [Indexed: 11/10/2022]
Abstract
L-Rhamnose isomerases catalyze isomerization between L-rhamnose (6-deoxy-L-mannose) and L-rhamnulose (6-deoxy-L-fructose), which is the first step in rhamnose catabolism. L-Rhamnose isomerase from Bacillus halodurans ATCC BAA-125 (BHRI) exhibits interesting characteristics such as high thermostability and selective substrate specificity. BHRI fused with an HHHHHH sequence was purified and crystallized in order to elucidate the molecular basis of its unique enzymatic properties. The crystals were grown by the hanging-drop vapour-diffusion method and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 83.2, b = 164.9, c = 92.0 A, beta = 116.0 degrees . Diffraction data were collected to 2.5 A resolution. According to a Matthews coefficient calculation, there are four monomers in the asymmetric unit with a V(M) of 3.0 A(3) Da(-1) and a solvent content of 59.3%. The initial structure of BHRI has been determined by the molecular-replacement method.
Collapse
Affiliation(s)
- Thi-Ngoc-Thanh Doan
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ponnandy Prabhu
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jin-Kwang Kim
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yeh-Jin Ahn
- Department of Life Science, College of Natural Sciences, Sangmyung University, 7 Hongji-dong, Jongno-gu, Seoul 110-743, Republic of Korea
| | - Sampath Natarajan
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Lin-Woo Kang
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Geon Tae Park
- Hanyoung Foreign Language High School, Sang-Il dong 166, Gangdong-gu, Seoul 134-837, Republic of Korea
| | - Sang-Boem Lim
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
9
|
Xu Y, Zhang Y, Cardell LO. Nicotine enhances murine airway contractile responses to kinin receptor agonists via activation of JNK- and PDE4-related intracellular pathways. Respir Res 2010; 11:13. [PMID: 20113502 PMCID: PMC2845563 DOI: 10.1186/1465-9921-11-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/29/2010] [Indexed: 11/16/2022] Open
Abstract
Background Nicotine plays an important role in cigarette-smoke-associated airway disease. The present study was designed to examine if nicotine could induce airway hyperresponsiveness through kinin receptors, and if so, explore the underlying mechanisms involved. Methods Murine tracheal segments were cultured for 1, 2 or 4 days in serum-free DMEM medium in presence of nicotine (1 and 10 μM) or vehicle (DMSO). Contractile responses induced by kinin B1 receptor agonist, des-Arg9-bradykinin, and B2 receptor agonist, bradykinin, were monitored with myographs. The B1 and B2 receptor mRNA expressions were semi-quantified using real-time PCR and their corresponding protein expressions assessed with confocal-microscopy-based immunohistochemistry. Various pharmacological inhibitors were used for studying intracellular signaling pathways. Results Four days of organ culture with nicotine concentration-dependently increased kinin B1 and B2 receptor-mediated airway contractions, without altering the kinin receptor-mediated relaxations. No such increase was seen at day 1 or day 2. The airway contractile responses to 5-HT, acetylcholine and endothelin receptor agonists remained unaffected by nicotine. Two different neuronal nicotinic receptor antagonists MG624 and hexamethonium blocked the nicotine-induced effects. The enhanced contractile responses were accompanied by increased mRNA and protein expression for both kinin receptors, suggesting the involvement of transcriptional mechanisms. Confocal-microscopy-based immunohistochemistry showed that 4 days of nicotine treatment induced activation (phosphorylation) of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1 and 2 (ERK1/2) and p38. Inhibition of JNK with its specific inhibitor SP600125 abolished the nicotine-induced effects on kinin receptor-mediated contractions and reverted the enhanced receptor mRNA expression. Administration of phosphodiesterase inhibitors (YM976 and theophylline), glucocorticoid (dexamethasone) or adenylcyclase activator (forskolin) suppressed the nicotine-enhanced airway contractile response to des-Arg9-bradykinin and bradykinin. Conclusions Nicotine induces airway hyperresponsiveness via transcriptional up-regulation of airway kinin B1 and B2 receptors, an effect mediated via neuronal nicotinic receptors. The underlying molecular mechanisms involve activation of JNK- and PDE4-mediated intracellular inflammatory signal pathways. Our results might be relevant to active and passive smokers suffering from airway hyperresponsiveness, and suggest new therapeutic targets for the treatment of smoke-associated airway disease.
Collapse
Affiliation(s)
- Yuan Xu
- Division of Ear, Nose and Throat Diseases, CLINTEC, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | | |
Collapse
|
10
|
Hasehira K, Nakakita SI, Miyanishi N, Sumiyoshi W, Hayashi S, Takegawa K, Hirabayashi J. A comprehensive HPLC analytical system for the identification and quantification of hexoses that employs 2-aminobenzamide coupling. J Biochem 2009; 147:501-9. [DOI: 10.1093/jb/mvp199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Thomas C, Hestermann U, Kopitz J, Plaschke K, Oster P, Driessen M, Mundt C, Weisbrod M. Serum anticholinergic activity and cerebral cholinergic dysfunction: an EEG study in frail elderly with and without delirium. BMC Neurosci 2008; 9:86. [PMID: 18793418 PMCID: PMC2564970 DOI: 10.1186/1471-2202-9-86] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 09/15/2008] [Indexed: 02/03/2023] Open
Abstract
Background Delirium increases morbidity, mortality and healthcare costs especially in the elderly. Serum anticholinergic activity (SAA) is a suggested biomarker for anticholinergic burden and delirium risk, but the association with cerebral cholinergic function remains unclear. To clarify this relationship, we prospectively assessed the correlation of SAA with quantitative electroencephalography (qEEG) power, delirium occurrence, functional and cognitive measures in a cross-sectional sample of acutely hospitalized elderly (> 80 y) with high dementia and delirium prevalence. Methods 61 consecutively admitted patients over 80 years underwent an extensive clinical and neuropsychological evaluation. SAA was determined by using radio receptor assay as developed by Tune, and standard as well as quantitative EEGs were obtained. Results 15 patients had dementia with additional delirium (DD) according to expert consensus using DSM-IV criteria, 31 suffered from dementia without delirium (D), 15 were cognitively unimpaired (CU). SAA was clearly detectable in all patients but one (mean 10.9 ± 7.1 pmol/ml), but was not associated with expert-panel approved delirium diagnosis or cognitive functions. Delirium-associated EEG abnormalities included occipital slowing, peak power and alpha decrease, delta and theta power increase and slow wave ratio increase during active delirious states. EEG measures correlated significantly with cognitive performance and delirium severity, but not with SAA levels. Conclusion In elderly with acute disease, EEG parameters reliable indicate delirium, but SAA does not seem to reflect cerebral cholinergic function as measured by EEG and is not related to delirium diagnosis.
Collapse
Affiliation(s)
- Christine Thomas
- Centre for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Menavuvu BT, Poonperm W, Leang K, Noguchi N, Okada H, Morimoto K, Granström TB, Takada G, Izumori K. Efficient biosynthesis of d-allose from d-psicose by cross-linked recombinant l-rhamnose isomerase: Separation of product by ethanol crystallization. J Biosci Bioeng 2006; 101:340-5. [PMID: 16716943 DOI: 10.1263/jbb.101.340] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 01/24/2006] [Indexed: 11/17/2022]
Abstract
Mass production of a rare aldohexose D-allose from D-psicose was achieved in a batch reaction by crude recombinant L-rhamnose isomerase (L-RhI) cross-linked with glutaraldehyde. The D-psicose substrate was, in turn, mass produced from a naturally abundant ketohexose D-fructose by immobilized recombinant D-tagatose 3-epimerase (D-TE). At an equilibrium state, 25% of D-psicose was isomerized to D-allose, that is, 25 g of D-allose was obtained from 100 g of D-psicose. The D-allose product was easily separated and crystallized from the reaction mixture that contains 25%D-allose, 8%D-altrose and 67%D-psicose using ethanol. Empirically, approximately 338 g, that is, 90% of a theoretical overall yield for the purification of pure D-allose crystals was produced from 1.5 kg of D-psicose within 30 d using a constructed bioreactor. The cross-linked enzyme had an operative half-life of two months after repeated usages.
Collapse
Affiliation(s)
- Buetusiwa Thomas Menavuvu
- Department of Biochemistry and Food Science, Faculty of Agriculture and Rare Sugar Research Center, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The memory-improving action of glucose has now been studied for almost 20 years and the study of this phenomenon has led to a number of important developments in the understanding of memory, brain physiology and pathological consequences of impaired glucose tolerance. Glucose improvement of memory appears to involve two optimal doses in animals (100 mg/kg and 2 g/kg) that may correspond to two physiological mechanisms underlying glucose effects on memory. In humans, there have been few dose-response studies so the existence of more than one effective dose in humans is uncertain. Many tasks are facilitated by glucose in humans but tasks that are difficult to master or involve divided attention are improved more readily that easier tasks. There are a number of hypotheses about the physiological bases of the memory-improving action of glucose. Peripheral glucose injections could alleviate localized deficits in extracellular glucose in the hippocampus. These localized deficits may be due to changes in glucose transporters in that structure. Because certain neurotransmitters such as acetylcholine are directly dependent on the glucose supply for their synthesis, glucose is thought to facilitate neurotransmitter synthesis under certain circumstances. However, these hypotheses cannot account for the specificity of the dose-response effect of glucose. A number of peripheral mechanisms have been proposed, including the possibility that glucose-sensitive neurons in the brain or in the periphery may serve as glucose sensors and eventually produce neural changes that would facilitate memory processing. These latter results could be of importance because the mechanisms they suggest appear to be dose-dependent, a crucial characteristic to explain the dose-dependent effects of glucose. There may be an advantage to develop hypotheses that include both peripheral and central actions of glucose. There is evidence that impaired glucose regulation is associated with impaired cognition, particularly episodic memory. This impairment is minimal in young people but increases in older people (65 years and over) where it may compound other aging processes leading to reduced brain function. A small number of studies showed that glucose improvement of memory is associated with poor glucose regulation although this may not be the case for diabetic patients. Results of a few studies also suggest that drug treatments that improve glucose regulation also produce cognitive improvement in diabetic patients.
Collapse
Affiliation(s)
- Claude Messier
- School of Psychology, University of Ottawa, 145 Jean-Jacques Lussier Room 352, Ottawa, Ontario, Canada K1N 6N5.
| |
Collapse
|
14
|
Escher T, Mittleman G. Effects of ethanol and GABAB drugs on working memory in C57BL/6J and DBA/2J mice. Psychopharmacology (Berl) 2004; 176:166-74. [PMID: 15064920 DOI: 10.1007/s00213-004-1875-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 03/08/2004] [Indexed: 11/30/2022]
Abstract
RATIONALE It has been suggested that GABA(B) receptors may be part of a neural substrate mediating some of the effects of ethanol. OBJECTIVE The purpose of this experiment was to investigate, in mice, the effects of ethanol on working memory in a delayed matching-to position (DMTP) task, and additionally to determine if these effects were modulated by GABA(B) receptors. METHODS Female C57BL/6J and DBA/2J mice were trained in the DMTP task, and after asymptotic levels of performance accuracy were achieved, injections (IP) of ethanol, baclofen, or phaclofen were administered. Baclofen or phaclofen were then co-administered with ethanol. Each test was repeated twice. RESULTS Ethanol caused deficits in working memory at 2.0 g/kg and higher. The highest dose (2.5 g/kg) produced additional non-specific effects, indicative of sedation. Baclofen increased performance accuracy (2.5 mg/kg), while decreasing the total number of trials completed. When combined with ethanol (1.5 g/kg), baclofen increased memory deficits at the highest dose (7.5 mg/kg). Phaclofen increased performance accuracy at 10 and 30 mg/kg but had no effect on the total number of trials completed. When combined with ethanol (2.5 g/kg), phaclofen did not significantly alter ethanol-induced deficits in performance. CONCLUSIONS Analyses of performance accuracy, total trials completed and variables indexing bias and motor impairment indicated that GABA(B) drugs modulate working memory in a behaviorally specific manner. Overall, these receptors may be part of a neural substrate that modulates some of the effects of ethanol.
Collapse
Affiliation(s)
- T Escher
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA
| | | |
Collapse
|
15
|
Leang K, Takada G, Fukai Y, Morimoto K, Granström TB, Izumori K. Novel reactions of l-rhamnose isomerase from Pseudomonas stutzeri and its relation with d-xylose isomerase via substrate specificity. Biochim Biophys Acta Gen Subj 2004; 1674:68-77. [PMID: 15342115 DOI: 10.1016/j.bbagen.2004.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 05/24/2004] [Accepted: 06/03/2004] [Indexed: 11/26/2022]
Abstract
Escherichia coli strain JM 109 harboring 6 x His-tag L-rhamnose isomerase (L-RhI) from Pseudomonas stutzeri allowed a 20-fold increase in the volumetric yield of soluble enzyme compared to the value for the intrinsic yield. Detailed studies on the substrate specificity of the purified His-tagged protein revealed that it catalyzed previously unknown common and rare aldo/ketotetrose, aldo/ketopentose, and aldo/ketohexose substrates in both D- and L-forms, for instance, erythrose, threose, xylose, lyxose, ribose, glucose, mannose, galactose, altrose, tagatose, sorbose, psicose, and fructose. Using a high enzyme-substrate ratio in extended reactions, the enzyme-catalyzed interconversion reactions from which two different products from one substrate were formed: L-lyxose, L-glucose, L-tagatose and D-allose were isomerized to L-xylulose and L-xylose, L-fructose and L-mannose, L-galactose and L-talose, and D-psicose and D-altrose, in that order. Kinetic studies, however, showed that L-rhamnose with Km and Vmax values of 11 mM and 240 U/mg, respectively, was the most preferred substrate, followed by L-mannose, L-lyxose, D-ribose, and D-allose. Based on the observed catalytic mode of action, these new findings reflected a hitherto undetected interrelation between L-RhI and D-xylose isomerase (D-XI).
Collapse
Affiliation(s)
- Khim Leang
- Department of Biochemistry and Food Science, Faculty of Agriculture and Rare Sugar Research Center, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Leang K, Takada G, Ishimura A, Okita M, Izumori K. Cloning, nucleotide sequence, and overexpression of the L-rhamnose isomerase gene from Pseudomonas stutzeri in Escherichia coli. Appl Environ Microbiol 2004; 70:3298-304. [PMID: 15184124 PMCID: PMC427750 DOI: 10.1128/aem.70.6.3298-3304.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding L-rhamnose isomerase (L-RhI) from Pseudomonas stutzeri was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the L-RhI gene revealed an open reading frame of 1,290 bp coding for a protein of 430 amino acid residues with a predicted molecular mass of 46,946 Da. A comparison of the deduced amino acid sequence with sequences in relevant databases indicated that no significant homology has previously been identified. An amino acid sequence alignment, however, suggested that the residues involved in the active site of L-RhI from E. coli are conserved in that from P. stutzeri. The L-RhI gene was then overexpressed in E. coli cells under the control of the T5 promoter. The recombinant clone, E. coli JM109, produced significant levels of L-RhI activity, with a specific activity of 140 U/mg and a volumetric yield of 20,000 U of soluble enzyme per liter of medium. This reflected a 20-fold increase in the volumetric yield compared to the value for the intrinsic yield. The recombinant L-RhI protein was purified to apparent homogeneity on the basis of three-step chromatography. The purified recombinant enzyme showed a single band with an estimated molecular weight of 42,000 in a sodium dodecyl sulfate-polyacrylamide gel. The overall enzymatic properties of the purified recombinant L-RhI protein were the same as those of the authentic one, as the optimal activity was measured at 60 degrees C within a broad pH range from 5.0 to 11.0, with an optimum at pH 9.0.
Collapse
Affiliation(s)
- Khim Leang
- Department of Biochemistry and Food Science, Faculty of Agriculture and Rare Sugar Research Center, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | | | |
Collapse
|
17
|
Leang K, Maekawa K, Menavuvu BT, Morimoto K, Granström TB, Takada G, Izumori K. A novel enzymatic approach to the massproduction of L-galactose from L-sorbose. J Biosci Bioeng 2004; 97:383-8. [PMID: 16233647 DOI: 10.1016/s1389-1723(04)70223-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 03/18/2004] [Indexed: 10/26/2022]
Abstract
Wild-type strain of Pseudomonas cichorii ST-24 was unable to grow on D -psicose and inductively produced D -tagatose 3-epimerase (D -TE) with D -tagatose as an inducer. We have isolated a constitutive mutant, designated strain Ka75, which had acquired a new ability to grow on a mineral salts medium containing D -psicose as a sole carbon source. The D -psicose-metabolizing mutant synthesized a high level of D -TE. When grown on the culture medium supplemented with Mn(2+), the mutant strain produced around 250-fold higher activity than did the parent strain. Enzymatic properties of the constitutive enzyme were similar to those of the wild-type. Using the immobilized D -TE and recombinant L-rhamnose isomerase (L-RhI) from Escherichia coli strain JM109, a two-step enzymatic reaction was performed for massproduction of a rare aldo-hexose monosaccharide, L-galactose, from a common one, L-sorbose. In the first step, L-sorbose was epimerized to L-tagatose in a yield of 28%. The L-tagatose obtained was utilized as a starting material for L-galactose preparation by the immobilized L-RhI. At equilibrium, approximately 30% L-tagatose was isomerized to L-galactose. Finally, 7.5 g of L-galactose was obtained from 100 g of L-sorbose, viz an overall yield of 7.5%. The product obtained was purified and identified to be L-galactose by specific optical rotation and high performance liquid chromatography (HPLC) analysis, and was ultimately confirmed by (13)C nuclear magnetic resonance ((13)C NMR) and IR spectra.
Collapse
Affiliation(s)
- Khim Leang
- Department of Biochemistry and Food Science, Faculty of Agriculture and Rare Sugar Research Center, Kagawa University, Miki-Cho, Kagawa 761-0795, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Shah AA, Parent MB. Septal infusions of glucose or pyruvate, but not fructose, produce avoidance deficits when co-infused with the GABA agonist muscimol. Neurobiol Learn Mem 2003; 79:243-51. [PMID: 12676523 DOI: 10.1016/s1074-7427(03)00007-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although glucose typically enhances memory or reverses memory deficits, glucose can also produce memory deficits when co-infused with the gamma-aminobutyric acid (GABA) agonist muscimol into the medial septum (Parent & Gold, 1997; Parent, Laurey, Wilkniss, & Gold, 1997). To date the mechanisms underlying the memory-impairing interaction between GABA and glucose remain unknown. Here we investigate whether this effect is the result of hyperosmolar conditions or may involve glucose metabolism. Male Sprague-Dawley rats were given one-trial inhibitory avoidance training after receiving septal infusions of vehicle (phosphate-buffered saline, 0.5 microl), the GABA(A) agonist muscimol (3 nmol), glucose (16.5, 33, or 66 nmol), fructose (33 nmol), pyruvate (33 nmol), or a solution containing muscimol combined with glucose, fructose, or pyruvate. Retention performance was tested 48 h later. Infusions of glucose, pyruvate, fructose, or muscimol alone did not affect retention performance. However, co-infusions of all doses of glucose (16.5, 33, or 66 nmol) or the glycolytic end product pyruvate with muscimol impaired retention performance. Co-infusions of fructose with muscimol did not affect retention performance. These results suggest that the memory-impairing interaction between glucose and muscimol does not result from hyperosmolar conditions, because equiosmolar concentrations of fructose do not mimic the effects of glucose and the memory deficits do not vary as a function of glucose concentration. The finding that pyruvate mimicked the effects of glucose and impaired memory when combined with muscimol suggests that glucose metabolism may be involved in the memory-impairing interaction between glucose and GABA(A) receptors in the medial septum.
Collapse
Affiliation(s)
- Akeel A Shah
- Department of Psychology, University of Alberta, Edmonton, Alb., T6G 2E9, Canada
| | | |
Collapse
|
19
|
Leang K, Sultana I, Takada G, Izumori K. A novel bioconversion of l-fructose to l-glucose by Klebsiella pneumoniae. J Biosci Bioeng 2003; 95:310-2. [PMID: 16233412 DOI: 10.1016/s1389-1723(03)80036-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 10/25/2002] [Indexed: 11/27/2022]
Abstract
L-Fructose, which was produced from L-psicose using immobilized D-tagatose 3-epimerase, was utilized as a starting material in the preparation of an uncommon aldose-hexose, L-glucose, by cell reaction. A mutant strain, Klebsiella pneumoniae strain 40bXX, produced D-arabinose isomerase constitutively. Toluene-treated cells of the mutant strain, which were used as the source of crude D-arabinose isomerase, were employed in the conversion of L-fructose to L-glucose. Empirically, 0.35 g of L-glucose was obtained from 1.0 g of L-fructose, viz an overall yield of 35%. The product obtained was purified and identified to be L-glucose by high performance liquid chromatography (HPLC) analysis, and was ultimately confirmed by 13C nuclear magnetic resonance (13C NMR) spectra.
Collapse
Affiliation(s)
- Khim Leang
- Department of Biochemistry and Food Science, Faculty of Agriculture and Rare Sugar Research Center, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | |
Collapse
|
20
|
Zeitschel U, Schliebs R, Rossner S, Bigl V, Eschrich K, Bigl M. Changes in activity and expression of phosphofructokinase in different rat brain regions after basal forebrain cholinergic lesion. J Neurochem 2002; 83:371-80. [PMID: 12423247 DOI: 10.1046/j.1471-4159.2002.01127.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Selective lesion of rat basal forebrain by the cholinergic immunotoxin 192IgG-saporin was used as an animal model to address the question of whether the changes in cortical glucose metabolism observed in patients with Alzheimer's disease may be related to impaired cholinergic transmission. At different times after creating the immunolesion, the isoenzyme pattern and steady-state mRNA levels of the key glycolytic enzyme phosphofructokinase were determined in cortex, hippocampus, basal forebrain and nucleus caudatus. The loss of cholinergic input was accompanied by a persistent decrease in choline acetytransferase and acetylcholine esterase activities in the cortical target areas similar to the cholinergic malfunction seen in Alzheimer's dementia. The basal forebrain lesion induced by the immunotoxin resulted in a transient increase in phosphofructokinase activity peaking on day 7 after inducing the lesion in cortical areas. In parallel, an increased steady-state level of phosphofructokinase mRNA was determined by RT/real-time PCR and in situ hybridization. In contrast, analysis by western blotting and quantitative PCR revealed no changes in the phosphofructokinase isoenzyme pattern after immunolesion. It is concluded that common metabolic mechanisms may underlie the degenerative and repair processes in denervated rat brain and in the diseased Alzheimer's brain.
Collapse
Affiliation(s)
- Ulrike Zeitschel
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig (Medical Faculty), Leipzig, Germany
| | | | | | | | | | | |
Collapse
|