1
|
Kumar S, Swamy N, Tuli HS, Rani S, Garg A, Mishra D, Abdulabbas HS, Sandhu SS. Myricetin: a potential plant-derived anticancer bioactive compound-an updated overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2179-2196. [PMID: 37083713 DOI: 10.1007/s00210-023-02479-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
The globe is currently confronting a global fight against the deadliest cancer sickness. Chemotherapy, hormonal therapy, surgery, and radiation therapy are among cancer treatment options. Still, these treatments can induce patient side effects, including recurrence, multidrug resistance, fever, and weakness. As a result, the scientific community is always working on natural phytochemical substances. Numerous phytochemical compounds, including taxol analogues, vinca alkaloids such as vincristine and vinblastine, and podophyllotoxin analogues, are currently undergoing testing and have shown promising results against a number of the deadliest diseases, as well as considerable advantages due to their safety and low cost. According to research, secondary plant metabolites such as myricetin, a flavonoid in berries, herbs, and walnuts, have emerged as valuable bio-agents for cancer prevention. Myricetin and its derivatives have antiinflammatory, anticancer, apoptosis-inducing, and anticarcinogenic properties and can prevent cancer cell proliferation. Multiple studies have found that myricetin has anticancer characteristics in various malignancies, including colon, breast, prostate, bladder, and pancreatic cancers. Current knowledge of the anticancer effects of myricetin reveals its promise as a potentially bioactive chemical produced from plants for the prevention and treatment of cancer. This review aimed to study the numerous bioactivities, mode of action, and modification of several cellular processes that myricetin possesses to impede the spread of cancer cells. This review also addresses the challenges and future prospects of using myricetin as a anticancer drug.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Botany, Government Girls College Khargone, 451001, Khargone, Madhya Pradesh, India
| | - Nitin Swamy
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Seema Rani
- Department of Chemistry, Government M. H. College of Home Science & Science for Women, Autonomous, Jabalpur, 482002, Madhya Pradesh, India
| | - Abhijeet Garg
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Deepa Mishra
- Department of Biotechnology, Mata Gujri Mahila Mahavidyalaya Jabalpur, 482001, Jabalpur, Madhya Pradesh, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India.
| |
Collapse
|
2
|
Rahmani AH, Almatroudi A, Allemailem KS, Alwanian WM, Alharbi BF, Alrumaihi F, Khan AA, Almatroodi SA. Myricetin: A Significant Emphasis on Its Anticancer Potential via the Modulation of Inflammation and Signal Transduction Pathways. Int J Mol Sci 2023; 24:ijms24119665. [PMID: 37298616 DOI: 10.3390/ijms24119665] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a major public health concern worldwide and main burden of the healthcare system. Regrettably, most of the currently used cancer treatment approaches such as targeted therapy, chemotherapy, radiotherapy and surgery usually cause adverse complications including hair loss, bone density loss, vomiting, anemia and other complications. However, to overcome these limitations, there is an urgent need to search for the alternative anticancer drugs with better efficacy as well as less adverse complications. Based on the scientific evidences, it is proven that naturally occurring antioxidants present in medicinal plants or their bioactive compounds might constitute a good therapeutic approach in diseases management including cancer. In this regard, myricetin, a polyhydroxy flavonol found in a several types of plants and its role in diseases management as anti-oxidant, anti-inflammatory and hepato-protective has been documented. Moreover, its role in cancer prevention has been noticed through modulation of angiogenesis, inflammation, cell cycle arrest and induction of apoptosis. Furthermore, myricetin plays a significant role in cancer prevention through the inhibition of inflammatory markers such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2). Moreover, myricetin increases the chemotherapeutic potential of other anticancer drugs through modulation of cell signaling molecules activity. This review elaborates the information of myricetin role in cancer management through modulating of various cell-signaling molecules based on in vivo and in vitro studies. In addition, synergistic effect with currently used anticancer drugs and approaches to improve bioavailability are described. The evidences collected in this review will help different researchers to comprehend the information about its safety aspects, effective dose for different cancers and implication in clinical trials. Moreover, different challenges need to be focused on engineering different nanoformulations of myricetin to overcome the poor bioavailability, loading capacity, targeted delivery and premature release of this compound. Furthermore, some more derivatives of myricetin need to be synthesized to check their anticancer potential.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Basmah F Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
3
|
Kalpoutzakis E, Chatzimitakos T, Athanasiadis V, Mitakou S, Aligiannis N, Bozinou E, Gortzi O, Skaltsounis LA, Lalas SI. Determination of the Total Phenolics Content and Antioxidant Activity of Extracts from Parts of Plants from the Greek Island of Crete. PLANTS (BASEL, SWITZERLAND) 2023; 12:1092. [PMID: 36903954 PMCID: PMC10005234 DOI: 10.3390/plants12051092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Oxidative damages are responsible for many adverse health effects and food deterioration. The use of antioxidant substances is well renowned, and as such, much emphasis is placed on their use. Since synthetic antioxidants exhibit potential adverse effects, plant-derived antioxidants are a preferable solution. Despite the myriads of plants that exist and the fact that numerous studies have been carried out so far, there are many species that have not been examined so far. Many plants under research exist in Greece. Trying to fill this research gap, the total phenolics content and antioxidant activity of seventy methanolic extracts from parts of Greek plants were evaluated. The total phenolics content was measured by the Folin-Ciocalteau assay. Their antioxidant capacity was calculated by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging test, the Rancimat method based on conductometric measurements, and the thermoanalytical method DSC (Differential Scanning Calorimetry). The tested samples were obtained from several parts of fifty-seven Greek plant species belonging to twenty-three different families. Both a remarkably high phenolic content (with gallic acid equivalents varying between 311.6 and 735.5 mg/g of extract) and radical scavenging activity (IC50 values ranged from 7.2 to 39.0 μg/mL) were found in the extract of the aerial parts of Cistus species (C. creticus subsp. creticus, C. creticus subsp. eriocephalus, C. monspeliensis, C. parviflorus and C. salviifolius), Cytinus taxa (C. hypocistis subsp. hypocistis, C. hypocistis subsp. orientalis and C. ruber), and Sarcopoterium spinosum. Furthermore, the sample of Cytinus ruber showed the highest protection factor (PF = 1.276) regarding the Rancimat method, which was similar to that of butylated hydroxytoluene (BHT) (PF = 1.320). The results indicated that these plants are rich in antioxidant compounds, potentiating their use either as food additives to enhance the antioxidant properties of food products, or protect them from oxidation, or as sources for the preparation of food supplements with antioxidant properties.
Collapse
Affiliation(s)
- Eleftherios Kalpoutzakis
- Department of Pharmacognosy and Natural Products Chemistry, University of Athens, 15771 Panepistimiopolis Zografou, Greece
| | | | - Vassilis Athanasiadis
- Department of Food Science and Nutrition, University of Thessaly, 43100 Karditsa, Greece
| | - Sofia Mitakou
- Department of Pharmacognosy and Natural Products Chemistry, University of Athens, 15771 Panepistimiopolis Zografou, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, University of Athens, 15771 Panepistimiopolis Zografou, Greece
| | - Eleni Bozinou
- Department of Food Science and Nutrition, University of Thessaly, 43100 Karditsa, Greece
| | - Olga Gortzi
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Leandros A. Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, University of Athens, 15771 Panepistimiopolis Zografou, Greece
| | - Stavros I. Lalas
- Department of Food Science and Nutrition, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
4
|
Zalegh I, Akssira M, Bourhia M, Mellouki F, Rhallabi N, Salamatullah AM, Alkaltham MS, Khalil Alyahya H, Mhand RA. A Review on Cistus sp.: Phytochemical and Antimicrobial Activities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1214. [PMID: 34203720 PMCID: PMC8232106 DOI: 10.3390/plants10061214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Resistance to drugs is reaching alarming levels and is placing human health at risk. With the lack of new antimicrobials drugs, infectious diseases are becoming harder to treat. Hence, there is an increasing awareness of active phytochemicals with therapeutic functions. The tremendous research interest on the Cistus L. genus includes numerous plants used in traditional medicine by people living around the Mediterranean Sea, also resulted in some interesting discoveries and written literature. This review aimed at gathering scientific literature about Cistus species, describing phytochemical profiles and the various pharmacological activities. We also extensively reviewed the antimicrobial activities, including antiviral, antiparasitic, antifungal, and antibacterial potentials of Essential Oils (EO), raw extracts as well as isolated compounds. Mechanisms of action along with methods used are also investigated in this review. Considering the findings of the Cistus species extracts, this genus offers an adequate reserve of active phytochemicals since many have been used to create drugs. Therefore, this review work can serve society by providing a global view on Cistus L. sp. regarding pharmacological potentials and their chemical profiles.
Collapse
Affiliation(s)
- Imane Zalegh
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
- Laboratory of Physical Chemistry & Bioorganic Chemistry, Research Unit Associated CNRST (URAC 22), FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco;
| | - Mohamed Akssira
- Laboratory of Physical Chemistry & Bioorganic Chemistry, Research Unit Associated CNRST (URAC 22), FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco;
| | - Mohammed Bourhia
- Laboratory of Chemistry, Biochemistry, Nutrition, and Environment, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco;
| | - Fouad Mellouki
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
| | - Naima Rhallabi
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (M.S.A.); (H.K.A.)
| | - Mohammed Saeed Alkaltham
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (M.S.A.); (H.K.A.)
| | - Heba Khalil Alyahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.M.S.); (M.S.A.); (H.K.A.)
| | - Rajaa Ait Mhand
- Research Unit Microbiology, Hygiene & Biomolecule, Laboratory of Virology, Microbiology, Quality & Biotechnology/Ecotoxicology and Biodiversity, FSTM, University Hassan II Casablanca, Casablanca 20000, Morocco; (F.M.); (N.R.); (R.A.M.)
| |
Collapse
|
5
|
Antioxidant activity of crude extracts and essential oils from flower buds and leaves of Cistus creticus and Cistus salviifolius. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Araújo MV, Queiroz AC, Silva JFM, Silva AE, Silva JKS, Silva GR, Silva ECO, Souza ST, Fonseca EJS, Camara CA, Silva TMS, Alexandre-Moreira MS. Flavonoids induce cell death in Leishmania amazonensis: in vitro characterization by flow cytometry and Raman spectroscopy. Analyst 2019; 144:5232-5244. [PMID: 31360935 DOI: 10.1039/c9an00948e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Leishmaniasis comprises a group of infectious diseases with worldwide distribution, of which both the visceral and cutaneous forms are caused by Leishmania parasites. In the absence of vaccines, efficacious chemotherapy remains the basis for leishmaniasis control. The available drugs are expensive and associated with several secondary adverse effects. Due to these limitations, the development of new antileishmanial compounds is imperative, and plants offer various perspectives in this regard. The present study evaluated the in vitro leishmanicidal activity of flavonoids isolated from Solanum paludosum Moric. and investigated the mechanisms of cell death induced by them. These compounds were evaluated in vitro for their antileishmanial activity against Leishmania amazonensis promastigotes and they showed prominent leishmanicidal activity. The EtOAc fraction, gossypetin 3,7,8,4'-tetra-O-methyl ether (1), and kaempferol 3,7-di-O-methyl ether (3) were selected to be used in an in vitro assay against L. amazonensis amastigotes and cell death assays. The flavonoids (1) and (3) presented significant activity against L. amazonensis amastigotes, exhibiting the IC50 values of 23.3 ± 4.5 μM, 34.0 ± 9.6 μM, and 10.5 ± 2.5 μM for the EtOAc fraction, (1), and (3), respectively, without toxic effects to the host cells. Moreover, (1) and (3) induced blocked cell cycle progression at the G1/S transition, ultimately leading to G1/G0 arrest. Flavonoid (3) also induced autophagy. Using Raman spectroscopy in conjunction with principal component analysis, the biochemical changes in the cellular components induced by flavonoids (1) and (3) were presented. The obtained results indicated that the mechanisms of action of (1) and (3) occurred through different routes. The results support that the flavonoids derived from S. paludosum can become lead molecules for the design of antileishmanial prototypes.
Collapse
Affiliation(s)
- Morgana V Araújo
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, 57020-720, Maceió, Alagoas, Brazil.
| | - Aline C Queiroz
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, 57020-720, Maceió, Alagoas, Brazil.
| | - João F M Silva
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, 57020-720, Maceió, Alagoas, Brazil.
| | - Amanda E Silva
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, 57020-720, Maceió, Alagoas, Brazil.
| | - João K S Silva
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, 57020-720, Maceió, Alagoas, Brazil.
| | - Girliane R Silva
- Phytochemical Bioprospecting Laboratory, Chemistry Department, Federal Rural University of Pernambuco, 52171-900, Recife, Pernambuco, Brazil
| | - Elaine C O Silva
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Samuel T Souza
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Eduardo J S Fonseca
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Celso A Camara
- Phytochemical Bioprospecting Laboratory, Chemistry Department, Federal Rural University of Pernambuco, 52171-900, Recife, Pernambuco, Brazil
| | - Tania M S Silva
- Phytochemical Bioprospecting Laboratory, Chemistry Department, Federal Rural University of Pernambuco, 52171-900, Recife, Pernambuco, Brazil
| | - Magna S Alexandre-Moreira
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, 57020-720, Maceió, Alagoas, Brazil.
| |
Collapse
|
7
|
The Role of Herbal Bioactive Components in Mitochondria Function and Cancer Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3868354. [PMID: 31308852 PMCID: PMC6594309 DOI: 10.1155/2019/3868354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/27/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Mitochondria are highly dynamic double-membrane organelles which play a well-recognized role in ATP production, calcium homeostasis, oxidation-reduction (redox) status, apoptotic cell death, and inflammation. Dysfunction of mitochondria has long been observed in a number of human diseases, including cancer. Targeting mitochondria metabolism in tumors as a cancer therapeutic strategy has attracted much attention for researchers in recent years due to the essential role of mitochondria in cancer cell growth, apoptosis, and progression. On the other hand, a series of studies have indicated that traditional medicinal herbs, including traditional Chinese medicines (TCM), exert their potential anticancer effects as an effective adjunct treatment for alleviating the systemic side effects of conventional cancer therapies, for reducing the risk of recurrence and cancer mortality and for improving the quality of patients' life. An amazing feature of these structurally diverse bioactive components is that majority of them target mitochondria to provoke cancer cell-specific death program. The aim of this review is to summarize the in vitro and in vivo studies about the role of these herbs, especially their bioactive compounds in the modulation of the disturbed mitochondrial function for cancer therapy.
Collapse
|
8
|
Effect of Impregnation of Biodegradable Polyesters with Polyphenols from Cistus Linnaeus and Juglans regia Linnaeus Walnut Green Husk. Polymers (Basel) 2019; 11:polym11040669. [PMID: 30979074 PMCID: PMC6523312 DOI: 10.3390/polym11040669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/06/2019] [Accepted: 04/06/2019] [Indexed: 12/17/2022] Open
Abstract
The publication describes a process combining the extraction of plant material and impregnation of biodegradable polymers (polylactide (PLA) and polyhydroxyalkanoate (PHA)). As raw plant materials for making extracts, Cistus and green walnut husk were selected due to their high content of active phytochemicals, including antioxidants. The extracts used to impregnate polymers contained valuable polyphenolic compounds, as confirmed by FTIR and UV–Vis spectroscopy. After impregnation, the polymer samples showed greater thermal stability, determined by the differential scanning calorimetry (DSC) method. In addition, despite the presence of natural antibacterial and antifungal substances in the extracts, the polyester samples remained biodegradable. The manuscript also describes the effect of UV aging on the change of surface free energy and the color of polymers. UV aging has been selected for testing due to the high susceptibility of plant compounds to this degrading factor. The combination of the extraction of plant material and polymer impregnation in one process proved to be an effective and functional method, as both the obtained plant extracts and impregnated polymers showed the expected properties.
Collapse
|
9
|
Fu YX, Wang YH, Tong XS, Gong Z, Sun XM, Yuan JC, Zheng TT, Li C, Niu DQ, Dai HG, Liu XF, Mao YJ, Tang BD, Xue W, Huang YJ. EDACO, a derivative of myricetin, inhibits the differentiation of Gaoyou duck embryonic osteoclasts in vitro. Br Poult Sci 2019; 60:169-175. [PMID: 30722674 DOI: 10.1080/00071668.2018.1564239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. This study determined the effects of (E)-3-(2-(4-(3-(2,4-dimethoxyphenyl)acryloyl)phenoxy)ethoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (EDACO) on the differentiation of Gaoyou duck embryonic osteoclasts cultured in vitro. 2. Bone marrow mononuclear cells (BM-MNC) were collected from 23-d-old Gaoyou duck embryos and induced by macrophage colony-stimulating factor and receptor activator of nuclear factor κB ligand in the presence of EDACO at different concentrations (i.e. 10, 20, 40, 80 and 160 µM). Tartrate-resistant acid phosphatase (TRAP) staining and resorption ability determination were conducted. 3. Results suggested that EDACO suppressed the shaping of positive multinucleated cells and the number of TRAP-positive cells in the 20, 40, 80 and 160 μM EDACO groups was significantly decreased (P < 0.05 or P < 0.01). Besides, the absorption activity of differentiated duck embryonic osteoclasts was significantly inhibited (P < 0.05) in both 80 and 160 μM EDACO groups. 4. Overall, EDACO can inhibit the differentiation of BM-MNC into mature osteoclasts in duck embryos.1.
Collapse
Affiliation(s)
- Y X Fu
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - Y H Wang
- b State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering , Guizhou University , Huaxi District , Guiyang , 550025 , PR China
| | - X S Tong
- c College of Veterinary Medicine , Yangzhou University , Yangzhou , 225009 , PR China
| | - Z Gong
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - X M Sun
- d Department of Clinical Medicine , Bengbu Medical College , Bengbu , 233030 , PR China
| | - J C Yuan
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - T T Zheng
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - C Li
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - D Q Niu
- e Department of gynaecology and obstetrics , The Second Affiliated Hospital of Bengbu Medical College , Bengbu , 233030 , PR China
| | - H G Dai
- f Animal husbandry and veterinary bureau of Fengyang County , Chuzhou , 233100 , PR China
| | - X F Liu
- g Department of surgical oncology , The First Affiliated Hospital of Bengbu Medical College , Huaxi District , Bengbu , 233030 , PR China
| | - Y J Mao
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - B D Tang
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - W Xue
- b State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering , Guizhou University , Huaxi District , Guiyang , 550025 , PR China
| | - Y J Huang
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| |
Collapse
|
10
|
Chemical Diversity and Biological Activity of African Propolis. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 109:415-450. [PMID: 31637531 DOI: 10.1007/978-3-030-12858-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural remedies have for centuries played a significant role in traditional medicine and continue to be a unique reservoir of new chemical entities in drug discovery and development research. Propolis is a natural substance, collected by bees mainly from plant resins, which has a long history of use as a folk remedy to treat a variety of ailments. The highly variable phytochemical composition of propolis is attributed to differences in plant diversity within the geographic regions from which it is collected. Despite the fact that the last five decades has seen significant advancements in the understanding of the chemistry and biological activity of propolis, a search of the literature has revealed that studies on African propolis to date are rather limited. The aim of this contribution is to report on the current body of knowledge of African propolis, with a particular emphasis on its chemistry and biological activity. As Africa is a continent with a rich flora and a vast diversity of ecosystems, there is a wide range of propolis phytochemicals that may be exploited in the development of new drug scaffolds.
Collapse
|
11
|
Larit F, Elokely KM, Chaurasiya ND, Benyahia S, Nael MA, León F, Abu-Darwish MS, Efferth T, Wang YH, Belouahem-Abed D, Benayache S, Tekwani BL, Cutler SJ. Inhibition of human monoamine oxidase A and B by flavonoids isolated from two Algerian medicinal plants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:27-36. [PMID: 29496172 PMCID: PMC5947877 DOI: 10.1016/j.phymed.2017.12.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/03/2017] [Accepted: 12/26/2017] [Indexed: 05/30/2023]
Abstract
BACKGROUND Monoamine oxidases (MAOs) are outer mitochondrial membrane flavoenzymes. They catalyze the oxidative deamination of a variety of neurotransmitters. MAO-A and MAO-B may be considered as targets for inhibitors to treat neurodegenerative diseases and depression and for managing symptoms associated with Parkinson's and Alzheimer's diseases. PURPOSE The objective was to evaluate the inhibitory effect of Hypericum afrum and Cytisus villosus against MAO-A and B and to isolate the compounds responsible for the MAO-inhibitory activity. METHODS The inhibitory effect of extracts and purified constituents of H. afrum and C. villosus were investigated in vitro using recombinant human MAO-A and B, and through bioassay-guided fractionation of ethyl acetate fractions of areal parts of the two plants collected in northeastern Algeria. In addition, computational protein-ligand docking and molecular dynamics simulations were carried out to explain the MAO binding at the molecular level. RESULTS The ethyl acetate (EtOAc) fractions of H. afrum and C. villosus showed the highest MAO inhibition activity against MAO A and B with IC50 values of 3.37 µg/ml and 13.50 µg/ml as well as 5.62 and 1.87 µg/ml, respectively. Bioassay-guided fractionation of the EtOAc fractions resulted in the purification and identification of the known flavonoids quercetin, myricetin, genistein and chrysin as the principal MAO-inhibitory constituents. Their structures were established by extensive 1 and 2D NMR studies and mass spectrometry. Quercetin, myricetin and chrysin showed potent inhibitory activity towards MAO-A with IC50 values of 1.52, 9.93 and 0.25 µM, respectively, while genistein more efficiently inhibited MAO-B (IC50 value: 0.65 µM). The kinetics of the inhibition and the study of dialysis dissociation of the complex of quercetin and myricetin and the isoenzyme MAO-A showed competitive and mixed inhibition, respectively. Both compounds showed reversible binding. Molecular docking experiments and molecular dynamics simulations allowed to estimate the binding poses and to identify the most important residues involved in the selective recognition of molecules in the MAOs enzymatic clefts. CONCLUSION Quercetin and myricetin isolated from H. afrum together with genistein and chrysin isolated from C. villosus have been identified as potent MAO-A and -B inhibitors. H. afrum and C. villosus have properties indicative of potential neuroprotective ability and may be new candidates for selective MAO-A and B inhibitors.
Collapse
Affiliation(s)
- Farida Larit
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States; Département de Chimie, Faculté des Sciences Exactes, Université des Frères Mentouri, Constantine, Route d'Aine El Bey 25000, Constantine, Algeria.
| | - Khaled M Elokely
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Narayan D Chaurasiya
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Samira Benyahia
- Laboratoire de Synthèse Organique, Modélisation et Optimisation des Procèdes (LOMOP), Université Badji Mokhtar, Faculté des Sciences, Département de Chimie, 23000 Annaba, Algeria
| | - Manal A Nael
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Francisco León
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Mohammad Sanad Abu-Darwish
- Department of Basic and Applied Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan; Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Djamila Belouahem-Abed
- Institut National De Recherche Forestière, Station de recherche d'El Kala (El Tarf). Algeria
| | - Samir Benayache
- Unité de Recherche Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physico-Chimique et Biologique (VARENBIOMOL), Université des Frères Mentouri, Constantine, Route d'Aine El Bey 25000, Constantine, Algeria
| | - Babu L Tekwani
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Stephen J Cutler
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| |
Collapse
|
12
|
Ha TK, Jung I, Kim ME, Bae SK, Lee JS. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis. Biomed Pharmacother 2017; 91:378-384. [PMID: 28463801 DOI: 10.1016/j.biopha.2017.04.100] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 11/29/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy and can range in severity from relatively slow-growing occult differentiated thyroid cancer to uniformly aggressive and fatal anaplastic thyroid cancer. A subset of patients with papillary thyroid cancer present with aggressive disease that is refractory to conventional treatment. Myricetin is a flavonol compound found in a variety of berries as well as walnuts and herbs. Previous studies have demonstrated that myricetin exhibits anti-cancer activity against several tumor types. However, an anti-cancer effect of myricetin against human papillary thyroid cancer (HPTC) cells has not been established. The present investigation was undertaken to gain insights into the molecular mechanism of the anti-cancer activity of myricetin against HPTC cells. We examined the cytotoxicity, DNA damaging, and cell cycle arresting activities of myricetin using SNU-790 HPTC cells. We found that myricetin exhibited cytotoxicity and induced DNA condensation in SNU-790 HPTC cells in a dose-dependent manner. Moreover, myricetin up-regulated the activation of caspase cascades and the Bax:Bcl-2 expression ratio. In addition, myricetin induced the release of apoptosis-inducing factor (AIF) and altered the mitochondrial membrane potential. Our results suggest that myricetin induces the death of SNU-790 HPTC cells and thus may prove useful in the development of therapeutic agents for human thyroid cancers.
Collapse
Affiliation(s)
- Tae Kwun Ha
- Department of Surgery, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Inae Jung
- Department of Life Sciences, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju, Korea
| | - Mi Eun Kim
- Department of Life Sciences, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju, Korea
| | - Sung Kwon Bae
- Department of Medical Management, Kosin University, Busan, Korea
| | - Jun Sik Lee
- Department of Life Sciences, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju, Korea.
| |
Collapse
|
13
|
Sak K, Everaus H. Established Human Cell Lines as Models to Study Anti-leukemic Effects of Flavonoids. Curr Genomics 2016; 18:3-26. [PMID: 28503087 PMCID: PMC5321770 DOI: 10.2174/1389202917666160803165447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the extensive work on pathological mechanisms and some recent advances in the treatment of different hematological malignancies, leukemia continues to present a significant challenge being frequently considered as incurable disease. Therefore, the development of novel therapeutic agents with high efficacy and low toxicity is urgently needed to improve the overall survival rate of patients. In this comprehensive review article, the current knowledge about the anticancer activities of flavonoids as plant secondary polyphenolic metabolites in the most commonly used human established leukemia cell lines (HL-60, NB4, KG1a, U937, THP-1, K562, Jurkat, CCRF- CEM, MOLT-3, and MOLT-4) is compiled, revealing clear anti-proliferative, pro-apoptotic, cell cycle arresting, and differentiation inducing effects for certain compounds. Considering the low toxicity of these substances in normal blood cells, the presented data show a great potential of flavonoids to be developed into novel anti-leukemia agents applicable also in the malignant cells resistant to the current conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| | - Hele Everaus
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
Liu RM, Li YB, Liang XF, Liu HZ, Xiao JH, Zhong JJ. Structurally related ganoderic acids induce apoptosis in human cervical cancer HeLa cells: Involvement of oxidative stress and antioxidant protective system. Chem Biol Interact 2015; 240:134-44. [PMID: 26282491 DOI: 10.1016/j.cbi.2015.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Ganoderic acids (GAs) produced by Ganoderma lucidum possess anticancer activities with the generation of reactive oxygen species (ROS). However, the role of oxidative stress in apoptotic process induced by GAs is still undefined. In this study, the effects of four structurally related GAs, i.e. GA-T, GA-Mk, and two deacetylated derivatives of GA-T (GA-T1 and GA-T2) on the antioxidant defense system and induced apoptosis in cervical cancer cells HeLa were investigated in vitro. Our results indicated that the tested GAs (5-40 μM) induced apoptotic cell death through mitochondrial membrane potential decrease and activation of caspase-9 and caspase-3. Furthermore, GAs increased the generation of intracellular ROS and attenuated antioxidant defense system by decreasing glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The above effects were remarkably blocked by the exogenous antioxidants, i.e. N-acetylcysteine, catalase and diphenyleneiodonium chloride. The potency of the four GAs toward induced apoptosis, generation of ROS and suppression of antioxidant defense system was in the order of: GA-T > GA-Mk ≈ GA-T1 > GA-T2 in HeLa cells. These findings suggest that GAs induced mitochondria-dependent cell apoptosis in HeLa cells are mediated via enhancing oxidative stress and depressing antioxidant defense. Additionally, the acetylation of hydroxyl groups in GAs may contribute to their pro-oxidant activities and cytotoxicity, which is helpful to the development of novel chemotherapy agents.
Collapse
Affiliation(s)
- Ru-Ming Liu
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, PR China
| | - Ying-Bo Li
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiang-Feng Liang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Hui-Zhou Liu
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jian-Hui Xiao
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, PR China.
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, PR China.
| |
Collapse
|
15
|
Papaefthimiou D, Papanikolaou A, Falara V, Givanoudi S, Kostas S, Kanellis AK. Genus Cistus: a model for exploring labdane-type diterpenes' biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Front Chem 2014; 2:35. [PMID: 24967222 PMCID: PMC4052220 DOI: 10.3389/fchem.2014.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/23/2014] [Indexed: 11/13/2022] Open
Abstract
The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with 5 genera native to the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum, and Tuberaria). Traditionally, a number of Cistus species have been used in Mediterranean folk medicine as herbal tea infusions for healing digestive problems and colds, as extracts for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the glandular trichomes of certain Cistus species contains a number of phytochemicals with antioxidant, antibacterial, antifungal, and anticancer properties. Furthermore, total leaf aqueous extracts possess anti-influenza virus activity. All these properties have been attributed to phytochemicals such as terpenoids, including diterpenes, labdane-type diterpenes and clerodanes, phenylpropanoids, including flavonoids and ellagitannins, several groups of alkaloids and other types of secondary metabolites. In the past 20 years, research on Cistus involved chemical, biological and phylogenetic analyses but recent investigations have involved genomic and molecular approaches. Our lab is exploring the biosynthetic machinery that generates terpenoids and phenylpropanoids, with a goal to harness their numerous properties that have applications in the pharmaceutical, chemical and aromatic industries. This review focuses on the systematics, botanical characteristics, geographic distribution, chemical analyses, biological function and biosynthesis of major compounds, as well as genomic analyses and biotechnological approaches of the main Cistus species found in the Mediterranean basin, namely C. albidus, C. creticus, C. crispus, C. parviflorus, C. monspeliensis, C. populifolius, C. salviifolius, C. ladanifer, C. laurifolius, and C. clusii.
Collapse
Affiliation(s)
- Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Antigoni Papanikolaou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Vasiliki Falara
- Department of Chemical Engineering, Delaware Biotechnology Institute, University of DelawareNewark, DE, USA
| | - Stella Givanoudi
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Stefanos Kostas
- Department of Floriculture, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Angelos K. Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| |
Collapse
|
16
|
Li X, Kim YB, Kim Y, Zhao S, Kim HH, Chung E, Lee JH, Park SU. Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1630-6. [PMID: 23859559 DOI: 10.1016/j.jplph.2013.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/17/2013] [Accepted: 06/17/2013] [Indexed: 05/03/2023]
Abstract
Flavonoids are ubiquitously present in plants and play important roles in these organisms as well as in the human diet. Flavonol synthase (FLS) is a key enzyme of the flavonoid biosynthetic pathway, acting at the diverging point into the flavonol subclass branch. We isolated and characterized a FLS isoform gene, FtFLS2, from tartary buckwheat (Fagopyrum tataricum). FtFLS2 shares 48% identity and 67% similarity with the previously reported FtFLS1, whereas both genes share 47-65% identity and 65-69% similarity with FLSs from other plant species. Using quantitative real-time PCR and high-performance liquid chromatography (HPLC), the expression of FtFLS1/2 and the production of 3 main flavonols (kaempferol, myricetin and quercetin) was detected in roots, leaves, stems, flowers and different stages of developing seeds. The relationship between the expression of the 2 FLS genes and the accumulation of the 3 basic flavonols was analyzed in 2 tartary buckwheat cultivars. FtFLS1 and FtFLS2 exhibited differential transcriptional levels between the tartary buckwheat cultivars 'Hokkai T10' and 'Hokkai T8'. Generally, higher transcript levels of FtFLS1 and FtFLS2 and a higher amount of flavonols were observed in the 'Hokkai T10' cultivar than 'Hokkai T8'. The content of flavonols showed tissue-specific accumulation between the 2 cultivars. The transcription of FtFLS1 was inhibited by the exogenous application of abscisic acid (ABA), salicylic acid (SA) and sodium chloride (NaCl), while FtFLS2 was not affected by ABA but up-regulated by SA and NaCl. These data indicate that the 2 FtFLS isoforms of buckwheat have different functions in the response of buckwheat to environmental stress.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Activité antimycobactérienne des extraits de deux espècesmarocaines du genre Cistus. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s10298-013-0806-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Bouamama H, Noël T, Villard J, Benharref A, Jana M. Antimicrobial activities of the leaf extracts of two Moroccan Cistus L. species. JOURNAL OF ETHNOPHARMACOLOGY 2006; 104:104-7. [PMID: 16213684 DOI: 10.1016/j.jep.2005.08.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 08/12/2005] [Accepted: 08/26/2005] [Indexed: 05/04/2023]
Abstract
We used the standard M27-T technique to study organic and aqueous leaf extracts of two Moroccan Cistus L. species: Cistus villosus L. and Cistus monspeliensis L. (Cistaceae L.) used in traditional medicine, for their antimicrobial properties against microorganisms, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Candida krusei, Candida glabrata and Aspergillus fumigatus. The broth dilution method M27-T, standardized by the National Committee for Clinical Laboratory Standards (NCCLS) allowed to determine the minimum inhibitory concentrations (MICs) of different extracts. Results showed that the different extracts differed clearly in their antimicrobial activities. Cistus villosus extracts exhibited more interesting activity than Cistus monspeliensis extracts when used on Staphylococcus aureus (MIC=0.78 mg/ml) and Candida glabrata (MIC=0.19 mg/ml), which are the most susceptible microorganisms. On the other hand, Candida krusei and Aspergillus fumigatus were the least susceptible microorganisms to all Cistus extracts. Comparison results were carried out using chloramphenicol, amoxicillin and amphotericin B as standard antibiotics.
Collapse
Affiliation(s)
- H Bouamama
- Laboratoire des Sciences Végétales, Département de Biologie, Université Cadi Ayyad, Faculté des Sciences et Techniques, BP 549, Marrakech 40000, Morocco.
| | | | | | | | | |
Collapse
|