1
|
Mukai H, Takanashi M, Ogawara KI, Maruyama M, Higaki K. Possible Regulation of P-Glycoprotein Function by Adrenergic Agonists II: Study with Isolated Rat Jejunal Sheets and Caco-2 Cell monolayers. J Pharm Sci 2024; 113:1209-1219. [PMID: 37984697 DOI: 10.1016/j.xphs.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
To clarify the regulation of drug absorption by the enteric nervous system, we investigated how adrenergic agonists (adrenaline (ADR), clonidine (CLO), dobutamine (DOB)) and dibutyryl cAMP (DBcAMP) affected P-glycoprotein (P-gp) function by utilizing isolated rat jejunal sheets and Caco-2 cell monolayers. ADR and CLO significantly decreased the secretory transport (Papptotal) of rhodamine-123 and tended to decrease the transport via P-gp (PappP-gp) and passive transport (Papppassive). In contrast, DBcAMP significantly increased and DOB tended to increase Papptotal and both tended to increase PappP-gpand Papppassive. Changes in P-gp expression on brush border membrane by adrenergic agonists and DBcAMP were significantly correlated with PappP-gp, while P-gp expression was not changed in whole cell homogenates, suggesting that the trafficking of P-gp would be responsible for its functional changes. Papppassive was inversely correlated with transmucosal or transepithelial electrical resistance, indicating that adrenergic agonists affected the paracellular permeability. Adrenergic agonists also changed cAMP levels, which were significantly correlated with PappP-gp. Furthermore, protein kinase A (PKA) or PKC inhibitor significantly decreased PappP-gp in Caco-2 cell monolayers, suggesting that they would partly contribute to the changes in P-gp activity. In conclusion, adrenergic agonists regulated P-gp function and paracellular permeability, which would be caused via adrenoceptor stimulation.
Collapse
Affiliation(s)
- Hironori Mukai
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Production Department, Odawara Central Factory, Nippon Shinyaku Co., Ltd., 676-1 Kuwahara, Odawara, Kanagawa 250-0861, Japan
| | - Masashi Takanashi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Central Hyogo Area, Hanshin Dispensing Pharmacy, I & H Co., Ltd., 1-18 Ohmasu-cho, Ashiya, Hyogo 659-0066, Japan
| | - Ken-Ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada-ku, Kobe, Hyogo 658-8558, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
2
|
Paulussen F, Kulkarni CP, Stolz F, Lescrinier E, De Graeve S, Lambin S, Marchand A, Chaltin P, In't Veld P, Mebis J, Tavernier J, Van Dijck P, Luyten W, Thevelein JM. The β2-adrenergic receptor in the apical membrane of intestinal enterocytes senses sugars to stimulate glucose uptake from the gut. Front Cell Dev Biol 2023; 10:1041930. [PMID: 36699012 PMCID: PMC9869975 DOI: 10.3389/fcell.2022.1041930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
The presence of sugar in the gut causes induction of SGLT1, the sodium/glucose cotransporter in intestinal epithelial cells (enterocytes), and this is accompanied by stimulation of sugar absorption. Sugar sensing was suggested to involve a G-protein coupled receptor and cAMP - protein kinase A signalling, but the sugar receptor has remained unknown. We show strong expression and co-localization with SGLT1 of the β2-adrenergic receptor (β 2-AR) at the enterocyte apical membrane and reveal its role in stimulating glucose uptake from the gut by the sodium/glucose-linked transporter, SGLT1. Upon heterologous expression in different reporter systems, the β 2-AR responds to multiple sugars in the mM range, consistent with estimated gut sugar levels after a meal. Most adrenergic receptor antagonists inhibit sugar signaling, while some differentially inhibit epinephrine and sugar responses. However, sugars did not inhibit binding of I125-cyanopindolol, a β 2-AR antagonist, to the ligand-binding site in cell-free membrane preparations. This suggests different but interdependent binding sites. Glucose uptake into everted sacs from rat intestine was stimulated by epinephrine and sugars in a β 2-AR-dependent manner. STD-NMR confirmed direct physical binding of glucose to the β 2-AR. Oral administration of glucose with a non-bioavailable β 2-AR antagonist lowered the subsequent increase in blood glucose levels, confirming a role for enterocyte apical β 2-ARs in stimulating gut glucose uptake, and suggesting enterocyte β 2-AR as novel drug target in diabetic and obese patients. Future work will have to reveal how glucose sensing by enterocytes and neuroendocrine cells is connected, and whether β 2-ARs mediate glucose sensing also in other tissues.
Collapse
Affiliation(s)
- Frederik Paulussen
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Chetan P. Kulkarni
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,3Functional Genomics and Proteomics Research Unit, Department of Biology, KU Leuven, Leuven, Belgium
| | - Frank Stolz
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Eveline Lescrinier
- 4Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Stijn De Graeve
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Suzan Lambin
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | | | | | - Peter In't Veld
- 6Department of Pathology, Free University of Brussels, Brussels, Belgium
| | - Joseph Mebis
- 7Department of Pathology, KU Leuven, Flanders, Belgium
| | - Jan Tavernier
- 8Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium,9Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Patrick Van Dijck
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Walter Luyten
- 3Functional Genomics and Proteomics Research Unit, Department of Biology, KU Leuven, Leuven, Belgium
| | - Johan M. Thevelein
- 1Center for Microbiology, VIB, Leuven-Heverlee, Belgium,2Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium,10NovelYeast bv, Bio-Incubator BIO4, Gaston Geenslaan 3, Leuven-Heverlee,, Belgium,*Correspondence: Johan M. Thevelein,
| |
Collapse
|
3
|
Walum E, Tähti H, Kolman A. The tenth anniversary of the Björn Ekwall memorial foundation. Altern Lab Anim 2011; 39:389-402. [PMID: 21942549 DOI: 10.1177/026119291103900413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Björn Ekwall Memorial Foundation (BEMF) was initiated by the Scandinavian Society for Cell Toxicology in 2001, to honour the memory of Dr Björn Ekwall (1940-2000) and to establish a prize, the Björn Ekwall Memorial Award. The prize is awarded to scientists who have significantly contributed to the field of cell toxicology, and whose work is contributing toward the replacement of animal experiments by alternative toxicity tests. Over the past 10 years, the Björn Ekwall Memorial Award has been presented annually. Björn Ekwall, an outstanding Swedish cell toxicologist, was one of the pioneers in the development and application of alternative methods to animal tests in toxicology. All his scientific work was devoted to in vitro toxicology, and in particular, to the use of cultured human cells for the screening of toxic chemicals. In the middle of the 1980s, he initiated the international Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) project, to evaluate the usefulness of in vitro tests for the estimation of human acute systemic toxicity. To prove his "basal cytotoxicity concept", he established the MEMO database, in which data on the acutely toxic human blood concentrations of drugs and chemicals were collated from the literature and from clinical studies. He also initiated another project, Evaluation-Guided Development of In Vitro Toxicity and Toxicokinetic Tests (EDIT). The ideas from the EDIT project, together with those from the MEIC project, became the basis for today's international EU projects, e.g. ACuteTox, Sens-it-iv and ReProTect. In this article, 10 years after the start of the BEMF, the scientific achievements of each of the award winners in the field of in vitro toxicology are presented, together with a brief synopsis of their careers.
Collapse
|
4
|
Barbero R, Badino P, Odore R, Galmozzi MR, Cuniberti B, Zanatta R, Re G. Mepartricin long-term administration regulates steroid hormone and adrenergic receptor concentrations in the prostate of aged rats. J Vet Pharmacol Ther 2006; 29:289-97. [PMID: 16846466 DOI: 10.1111/j.1365-2885.2006.00745.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mepartricin is a semi-synthetic macrolide antibiotic developed as a drug for the treatment of benign prostatic hyperplasia (BPH) in human patients. In the present study, aged rats are used as an experimental model to evaluate the effects of mepartricin on circulating hormone concentrations and prostate receptor concentrations, to compare these possible effects with clinical findings observed in long-term treated dogs. Fifty-six aged male rats were randomly divided into four experimental groups treated orally with 0 (group 1), 2 mg (group 2), 5 mg (group 3) and 20 mg (group 4) mepartricin/kg of body weight. for 28 days respectively. Serum oestradiol and testosterone concentrations were measured by radio-immune-assays methods. Binding assays were used to measure the prostate concentrations of oestrogen receptors (ER), androgen receptors (AnR), alpha(1)-adrenergic receptor (alpha(1)-AR), and beta-adrenerergic receptor (beta-AR) subtypes. Mepartricin induced a significant reduction of prostate weight and serum oestradiol concentrations. Serum testosterone concentrations were unaffected. The treatment induced a significant down-regulation of ER concentrations (P < 0.05) and a significant up-regulation of AnR (P < 0.05) in rat prostate. Mepartricin induced a significant (P < 0.05) dose-dependent up-regulation of alpha(1)-AR and beta(2)-AR. In contrast, the concentration of beta(3)-ARs was significantly decreased (P < 0.05) in treated animals. The increase in prostate beta(2)-AR concentrations observed in subjects treated with mepartricin may be a favourable element in the evolution of BPH, because of the role exerted by these receptors in the control of prostatic smooth muscle relaxation. Curiously, beta(3)-AR concentrations were significantly reduced in treated animals. Data collected suggest that the prostatic beta-AR expression might be strongly influenced by oestrogen deprivation (mepartricin treatment); therefore, the combination of oestrogen suppression (mepartricin) and adrenergic suppression (alpha(1)-AR blockers) may be proposed as a possible nonhormonal therapeutic strategy for the treatment of benign prostatic hyperplasia in dogs.
Collapse
Affiliation(s)
- R Barbero
- Department of Animal Pathology, Division of Pharmacology & Toxicology, University of Torino, Grugliasco, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|