1
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Jain A, Srivastava P. Broad host range plasmids. FEMS Microbiol Lett 2013; 348:87-96. [DOI: 10.1111/1574-6968.12241] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/09/2013] [Accepted: 08/20/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Aayushi Jain
- Department of Biochemical Engineering and Biotechnology; Indian Institute of Technology; New Delhi India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology; Indian Institute of Technology; New Delhi India
| |
Collapse
|
3
|
Heinl S, Spath K, Egger E, Grabherr R. Sequence analysis and characterization of two cryptic plasmids derived from Lactobacillus buchneri CD034. Plasmid 2011; 66:159-68. [DOI: 10.1016/j.plasmid.2011.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
|
4
|
Cloning and molecular characterization of a novel rolling-circle replicating plasmid, pK1S-1, from Bacillus thuringiensis subsp. kurstaki K1. J Microbiol 2009; 47:466-72. [PMID: 19763421 DOI: 10.1007/s12275-009-0020-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
|
5
|
Zhang Q, Sun M, Xu Z, Yu Z. Cloning and characterization of pBMB9741, a native plasmid of Bacillus thuringiensis subsp. kurstaki strain YBT-1520. Curr Microbiol 2007; 55:302-7. [PMID: 17849163 DOI: 10.1007/s00284-006-0623-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Accepted: 01/17/2007] [Indexed: 10/22/2022]
Abstract
A native plasmid of Bacillus thuringiensis subsp. kurstaki strain YBT-1520 named pBMB9741 has been successfully cloned, sequenced, and characterized. Twelve open reading frames of at least 50 amino acids were identified. BLAST search indicated that three of them encode conserved proteins involved in conjugative mobilization, replication initiation, and transcription regulation. The orf6 located within a 2.2-kb minimal replication region was predicted to encode a replication protein. An homologous study of the orf6 product suggested that this plasmid might engage a rolling-circle replication mechanism. Unlike many other plasmids that adopt a rolling-circle model to replicate, pBMB9741 demonstrated strong segregation stability. When tested at 28 degrees C, 37 degrees C, and 42 degrees C, this plasmid maintained 100% stability in a variety of strains, including wild-type strains of B. thuringiensis and B. cereus, as well as plasmidless mutants of B. thuringiensis subsp. kurstaki and subsp. israelensis.
Collapse
Affiliation(s)
- Qiong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | | | | | | |
Collapse
|
6
|
Huang J, Han D, Yu Z, Sun M. A novel cryptic plasmid pBMB175 from Bacillus thuringiensis subsp. tenebrionis YBT-1765. Arch Microbiol 2007; 188:47-53. [PMID: 17310366 DOI: 10.1007/s00203-007-0222-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/31/2006] [Accepted: 01/25/2007] [Indexed: 10/23/2022]
Abstract
A new cryptic plasmid pBMB175 from Bacillus thuringiensis subsp. tenebrionis YBT-1765 was isolated and characterized. Sequence analysis showed that pBMB175 (14,841 bp and 31% GC content) contained at least eighteen putative open reading frames (ORFs), among which nine ORFs displayed the homology with the hypothetical proteins in rolling-circle replication plasmid pGI3. Deletion analysis revealed that the pBMB175 minireplicon located in a novel 1,151 bp fragment. This fragment contains ORF7 coding sequence, which encodes a protein (Rep175, 149 amino acids [aa]) indispensable for plasmid replication. Rep175 has no significant homology with known function proteins. Furthermore, a putative double-strand origin (dso), having no DNA similarity with characterized dso of other replicon so far, was identified in this minireplicon fragment. These features showed that pBMB175 could be placed into a new plasmid family.
Collapse
Affiliation(s)
- Junyan Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | | | | | | |
Collapse
|
7
|
Tang M, Bideshi DK, Park HW, Federici BA. Minireplicon from pBtoxis of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 2006; 72:6948-54. [PMID: 16936050 PMCID: PMC1636135 DOI: 10.1128/aem.00976-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 2.2-kb fragment containing a replicon from pBtoxis, the large plasmid that encodes the insecticidal endotoxins of Bacillus thuringiensis subsp. israelensis, was identified, cloned, and sequenced. This fragment contains cis elements, including iterons, found in replication origins of other large plasmids and suggests that pBtoxis replicates by a type A theta mechanism. Two genes, pBt156 and pBt157, encoding proteins of 54.4 kDa and 11.8 kDa, respectively, were present in an operon within this minireplicon, and each was shown by deletion analysis to be essential for replication. The deduced amino acid sequences of the 54.4-kDa and 11.8-kDa proteins showed no substantial homology with known replication (Rep) proteins. However, the 54.4-kDa protein contained a conserved FtsZ domain, and the 11.8 kDa protein contained a helix-turn-helix motif. As FtsZ proteins have known functions in bacterial cell division and the helix-turn-helix motif is present in Rep proteins, it is likely that these proteins function in plasmid replication and partitioning. The minireplicon had a copy number of two or three per chromosome equivalent in B. thuringiensis subsp. israelensis but did not replicate in B. cereus, B. megaterium, or B. subtilis. A plasmid constructed to synthesize large quantities of the Cry11A and Cyt1A endotoxins demonstrated that this minireplicon can be used to engineer vectors for cry and cyt gene expression.
Collapse
Affiliation(s)
- Mujin Tang
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
8
|
Chu SF, Shu HY, Lin LC, Chen MY, Tsay SS, Lin GH. Characterization of a rolling-circle replication plasmid from Thermus aquaticus NTU103. Plasmid 2006; 56:46-52. [PMID: 16675012 DOI: 10.1016/j.plasmid.2006.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 01/25/2006] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
The thermophilic bacterium Thermus aquaticus NTU103 harbors a 1,965-bp plasmid, pTA103. Sequencing analysis revealed that pTA103 contains two open reading frames. One of the open reading frames (orf2) shares no significant homology with protein in the data bank. The other one has 50% similarity and 34% identity with RepA-like protein of pRm1132f, which is a rolling-circle replication (RCR) plasmid isolated from Sinorhizobium meliloti. S1 nuclease analysis demonstrated that pTA103 contains a single-stranded intermediate, confirming that pTA103 replicates via RCR mechanism. Sequence data also revealed putative double-stranded origin and single-stranded origin sites, indicating the importance of these cis elements in pTA103 replication.
Collapse
Affiliation(s)
- Sheng-Fen Chu
- Microbial Genetics Laboratory, Institute of Microbiology, Immunology and Molecular Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Di Franco C, Santini T, Pisaneschi G, Beccari E. Insights into the genetic organization of the Bacillus mycoides cryptic plasmids pDx14.2 and pSin9.7 deduced from their complete nucleotide sequence. Plasmid 2005; 54:288-93. [PMID: 16040120 DOI: 10.1016/j.plasmid.2005.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 05/03/2005] [Accepted: 05/11/2005] [Indexed: 11/18/2022]
Abstract
Bacillus mycoides, a member of the Bacillus cereus group of bacteria, can be easily distinguished from close species because of colony shape, made by filaments of cells, resembling fungal hyphae, curving clock- or counterclockwise depending on the strain. Two plasmids, one from a strain curving to the right (pDx14.2), the other from a strain curving to the left (pSin9.7), were sequenced and analyzed for gene content and replication mode. Rolling-circle replication modules and mobilization proteins were found, very similar to those of other plasmids of the B. cereus group bacilli, mostly Bacillus thuringiensis living in the same ecosystem, suggesting active plasmid exchange in nature.
Collapse
|
10
|
Anderson I, Sorokin A, Kapatral V, Reznik G, Bhattacharya A, Mikhailova N, Burd H, Joukov V, Kaznadzey D, Walunas T, Larsen N, Pusch G, Liolios K, Grechkin Y, Lapidus A, Goltsman E, Chu L, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N, Ivanova N. Comparative genome analysis ofBacillus cereusgroup genomes withBacillus subtilis. FEMS Microbiol Lett 2005; 250:175-84. [PMID: 16099605 DOI: 10.1016/j.femsle.2005.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 06/22/2005] [Accepted: 07/01/2005] [Indexed: 11/24/2022] Open
Abstract
Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp. israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.
Collapse
Affiliation(s)
- Iain Anderson
- Integrated Genomics, 2201 W. Campbell Park Dr., Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Loeza-Lara PD, Benintende G, Cozzi J, Ochoa-Zarzosa A, Baizabal-Aguirre VM, Valdez-Alarcón JJ, López-Meza JE. The plasmid pBMBt1 from Bacillus thuringiensis subsp. darmstadiensis (INTA Mo14-4) replicates by the rolling-circle mechanism and encodes a novel insecticidal crystal protein-like gene. Plasmid 2005; 54:229-40. [PMID: 15970328 DOI: 10.1016/j.plasmid.2005.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 04/25/2005] [Accepted: 04/27/2005] [Indexed: 11/18/2022]
Abstract
This work describes a novel rolling-circle replicating (RCR) plasmid pBMBt1 from Bacillus thuringiensis subsp. darmstadiensis (INTA Mo14-4) encoding an insecticidal crystal protein-like gene. pBMBt1 (6700 bp) contains three ORFs and their putative transcription initiation sites and Shine-Dalgarno sequences were localized. ORF1 encodes a 34.6 kDa protein which showed identity with the protein CryC53 from B. thuringiensis subsp. cameroun (24.6%), the Cry15Aa insecticidal crystal protein from B. thuringiensis subsp. thompsoni (21.9%) and the Mtx3 protein from Bacillus sphaericus (27.8%). The ORF2 (52.3 kDa) showed a 74% identity with the Mob protein coded by pUIBI-1 from B. thuringiensis subsp. entomocidus and 64% identity with the Mob protein of pBMY1 from Bacillus mycoides; both Mob proteins belong to the pMV158 superfamily. To evaluate the Mob protein, the plasmid pHTMob14-4 was constructed. This plasmid shows transfer frequencies of 9.1x10(-6) in B. thuringiensis subsp. israelensis (4Q7Gm(R)). The ORF3 (23.6 kDa) gene product is homologous to the Rep protein from the plasmid pBMYdx of B. mycoides (37.6%). A putative double-strand origin with significant homology to that of B. thuringiensis plasmids, and an ssoA-type single-strand origin were also identified. Detection of single-stranded pBMBt1 DNA replicating intermediaries suggests that replication occurs via the rolling-circle mechanism.
Collapse
Affiliation(s)
- Pedro D Loeza-Lara
- Centro Multidisciplinario de Estudios en Biotecnología-Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Apdo. Postal 53, Administración Chapultepec, C.P. 58262 Morelia, Michoacán, Mexico
| | | | | | | | | | | | | |
Collapse
|
12
|
Khan SA. Plasmid rolling-circle replication: highlights of two decades of research. Plasmid 2005; 53:126-36. [PMID: 15737400 DOI: 10.1016/j.plasmid.2004.12.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 12/24/2004] [Indexed: 11/25/2022]
Abstract
This review provides a historical perspective of the major findings that contributed to our current understanding of plasmid rolling-circle (RC) replication. Rolling-circle-replicating (RCR) plasmids were discovered approximately 20 years ago. The first of the RCR plasmids to be identified were native to Gram-positive bacteria, but later such plasmids were also identified in Gram-negative bacteria and in archaea. Further studies revealed mechanistic similarities in the replication of RCR plasmids and the single-stranded DNA bacteriophages of Escherichia coli, although there were important differences as well. Three important elements, a gene encoding the initiator protein, the double strand origin, and the single strand origin, are contained in all RCR plasmids. The initiator proteins typically contain a domain involved in their sequence-specific binding to the double strand origin and a domain that nicks within the double strand origin and generates the primer for DNA replication. The double strand origins include the start-site of leading strand synthesis and contain sequences that are bound and nicked by the initiator proteins. The single strand origins are required for synthesis of the lagging strand of RCR plasmids. The single strand origins are non-coding regions that are strand-specific, and contain extensive secondary structures. This minireview will highlight the major findings in the study of plasmid RC replication over the past twenty years. Regulation of replication of RCR plasmids will not be included since it is the subject of another review.
Collapse
Affiliation(s)
- Saleem A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Andrup L, Jensen GB, Wilcks A, Smidt L, Hoflack L, Mahillon J. The patchwork nature of rolling-circle plasmids: comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid 2003; 49:205-32. [PMID: 12749835 DOI: 10.1016/s0147-619x(03)00015-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacillus thuringiensis, the entomopathogenic bacteria from the Bacillus cereus group, harbors numerous extrachromosomal molecules whose sizes vary from 2 to more than 200kb. Apart from the genes coding for the biopesticide delta-endotoxins located on large plasmids, little information has been obtained on these plasmids and their contribution to the biology of their host. In this paper, we embarked on a detailed comparison of six small rolling-circle replicating (RCR) plasmids originating from two major B. thuringiensis strains. The complete nucleotide sequences of plasmid pGI1, pGI2, pGI3, pTX14-1, pTX14-2, and pTX14-3 have been obtained and compared. Replication functions, comprising, for each plasmid, the gene encoding the Rep-protein, double-strand origin of replication (dso), single-strand origin of replication (sso), have been identified and analyzed. Two new families, or homology groups, of RCR plasmids originated from the studies of these plasmids (Group VI based on pGI3 and Group VII based on pTX14-3). On five of the six plasmids, loci involved in conjugative mobilization (Mob-genes and origin of transfer (oriT)) were identified. Plasmids pTX14-1, pTX14-2, and pTX14-3 each harbor an ORF encoding a polypeptide containing a central domain with repetitive elements similar to eukaryotic collagen (Gly-X-Y triplets). These genes were termed bcol for Bacillus-collagen-like genes.
Collapse
Affiliation(s)
- Lars Andrup
- National Institute of Occupational Health, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
14
|
Berry C, O'Neil S, Ben-Dov E, Jones AF, Murphy L, Quail MA, Holden MTG, Harris D, Zaritsky A, Parkhill J. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 2002; 68:5082-95. [PMID: 12324359 PMCID: PMC126441 DOI: 10.1128/aem.68.10.5082-5095.2002] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Accepted: 06/18/2002] [Indexed: 11/20/2022] Open
Abstract
The entire 127,923-bp sequence of the toxin-encoding plasmid pBtoxis from Bacillus thuringiensis subsp. israelensis is presented and analyzed. In addition to the four known Cry and two known Cyt toxins, a third Cyt-type sequence was found with an additional C-terminal domain previously unseen in such proteins. Many plasmid-encoded genes could be involved in several functions other than toxin production. The most striking of these are several genes potentially affecting host sporulation and germination and a set of genes for the production and export of a peptide antibiotic.
Collapse
Affiliation(s)
- Colin Berry
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ben-Dov E, Nissan G, Pelleg N, Manasherob R, Boussiba S, Zaritsky A. Refined, circular restriction map of the Bacillus thuringiensis subsp. israelensis plasmid carrying the mosquito larvicidal genes. Plasmid 1999; 42:186-91. [PMID: 10545261 DOI: 10.1006/plas.1999.1415] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
All the genetic elements responsible for the mosquito larval toxicity of Bacillus thuringiensis subsp. israelensis are located on one of its largest plasmids, nicknamed pBtoxis. Two linkage groups (with sizes of about 75 and 55 kb) have previously been mapped partially with respect to SacI and BamHI restriction sites (Ben-Dov et al., 1996), but linking them to a single circular plasmid unambiguously was impossible with the available data. To finalize the plasmid map, another rare cutting restriction endonuclease, AlwNI, was used in addition. The two linkage groups and the fragments generated by AlwNI were aligned on the circular plasmid, and known insertion sequences were localized on the refined map. Pulsed-field electrophoresis revealed that the total size of pBtoxis (137 kb) was larger than thought before.
Collapse
Affiliation(s)
- E Ben-Dov
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, 84105, Israel
| | | | | | | | | | | |
Collapse
|
16
|
Wilcks A, Smidt L, Okstad OA, Kolsto AB, Mahillon J, Andrup L. Replication mechanism and sequence analysis of the replicon of pAW63, a conjugative plasmid from Bacillus thuringiensis. J Bacteriol 1999; 181:3193-200. [PMID: 10322022 PMCID: PMC93776 DOI: 10.1128/jb.181.10.3193-3200.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 5.8-kb fragment of the large conjugative plasmid pAW63 from Bacillus thuringiensis subsp. kurstaki HD73 containing all the information for autonomous replication was cloned and sequenced. By deletion analysis, the pAW63 replicon was reduced to a 4.1-kb fragment harboring four open reading frames (ORFs). Rep63A (513 amino acids [aa]), encoded by the largest ORF, displayed strong similarity (40% identity) to the replication proteins from plasmids pAMbeta1, pIP501, and pSM19035, indicating that the pAW63 replicon belongs to the pAMbeta1 family of gram-positive theta-replicating plasmids. This was confirmed by the facts that no single-stranded DNA replication intermediates could be detected and that replication was found to be dependent on host-gene-encoded DNA polymerase I. An 85-bp region downstream of Rep63A was also shown to have strong similarity to the origins of replication of pAMbeta1 and pIP501, and it is suggested that this region contains the bona fide pAW63 ori. The protein encoded by the second large ORF, Rep63B (308 aa), was shown to display similarity to RepB (34% identity over 281 aa) and PrgP (32% identity over 310 aa), involved in copy control of the Enterococcus faecalis plasmids pAD1 and pCF10, respectively. No significant similarity to known proteins or DNA sequences could be detected for the two smallest ORFs. However, the location, size, hydrophilicity, and orientation of ORF6 (107 codons) were analogous to those features of the putative genes repC and prgO, which encode stability functions on plasmids pAD1 and pCF10, respectively. The cloned replicon of plasmid pAW63 was stably maintained in Bacillus subtilis and B. thuringiensis and displayed incompatibility with the native pAW63. Hybridization experiments using the cloned replicon as a probe showed that pAW63 has similarity to large plasmids from other B. thuringiensis subsp. kurstaki strains and to a strain of B. thuringiensis subsp. alesti.
Collapse
Affiliation(s)
- A Wilcks
- National Institute of Occupational Health, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
17
|
Alegre MT, Rodríguez MC, Mesas JM. Nucleotide sequence analysis of pRS1, a cryptic plasmid from Oenococcus oeni. Plasmid 1999; 41:128-34. [PMID: 10087217 DOI: 10.1006/plas.1998.1382] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new cryptic plasmid, pRS1, from an Oenococcus oeni strain isolated from Spanish wines is reported. Nucleotide sequence analysis (2523 bp) revealed the presence of three major open reading frames (ORFs) whose nucleotide sequence and encoded proteins exhibit high homology with those of pOg32, a previously described plasmid of O. oeni. Common features in other plasmids from O. oeni (i.e., pLo13 and pOg32) have been found in pRS1. They have three major ORFs in the same strand; the putative encoded proteins by two of these ORFs exhibit homology with the replication (Rep) and the recombination (Pre) proteins, respectively, of the pT181 plasmid family and related gram-positive bacteria plasmids; these plasmids contain the DNA sequences required for plasmid replication by the rolling circle mechanism and for recombination (i.e., double-strand origin, DSO; single-strand origin, SSO; recombination-specific sites, RSA and RSB); and finally, all these plasmids have a third ORF of unknown function. These features suggest that pRS1 could constitute together with pLo13 and pOg32 a family of small cryptic plasmids of O. oeni.
Collapse
Affiliation(s)
- M T Alegre
- Escuela Politécnica Superior, Universidad de Santiago de Compostela, Lugo, 27002, Spain
| | | | | |
Collapse
|
18
|
Ohara H, Miyagi T, Kaneichi K, Karita S, Kobayashi Y, Kimura T, Sakka K, Ohmiya K. Structural analysis of a new cryptic plasmid pAR67 isolated from Ruminococcus albus AR67. Plasmid 1998; 39:84-8. [PMID: 9473449 DOI: 10.1006/plas.1997.1324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complete nucleotide sequence of a new cryptic plasmid pAR67 isolated from a rumen bacterium Ruminococcus albus AR67 has been determined. The plasmid pAR67 was 3419 bp in size with a 45% GC content. Two open reading frames, ORF1 and ORF2, encoding potential polypeptides of 285 and 165 amino acids, with limited sequence similarity to replication and mobilization proteins, respectively, were identified within the sequence. The region upstream of ORF1 had an AT-rich (80%) segment followed by four 19-bp direct repeats, which is similar to the structural organization characteristic of replication origins of some bacterial plasmids.
Collapse
Affiliation(s)
- H Ohara
- Faculty of Bioresources, Mie University, Tsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Many bacterial plasmids replicate by a rolling-circle (RC) mechanism. Their replication properties have many similarities to as well as significant differences from those of single-stranded DNA (ssDNA) coliphages, which also replicate by an RC mechanism. Studies on a large number of RC plasmids have revealed that they fall into several families based on homology in their initiator proteins and leading-strand origins. The leading-strand origins contain distinct sequences that are required for binding and nicking by the Rep proteins. Leading-strand origins also contain domains that are required for the initiation and termination of replication. RC plasmids generate ssDNA intermediates during replication, since their lagging-strand synthesis does not usually initiate until the leading strand has been almost fully synthesized. The leading- and lagging-strand origins are distinct, and the displaced leading-strand DNA is converted to the double-stranded form by using solely the host proteins. The Rep proteins encoded by RC plasmids contain specific domains that are involved in their origin binding and nicking activities. The replication and copy number of RC plasmids, in general, are regulated at the level of synthesis of their Rep proteins, which are usually rate limiting for replication. Some RC Rep proteins are known to be inactivated after supporting one round of replication. A number of in vitro replication systems have been developed for RC plasmids and have provided insight into the mechanism of plasmid RC replication.
Collapse
Affiliation(s)
- S A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
| |
Collapse
|
20
|
Louis P, Galinski EA. Identification of plasmids in the genus Marinococcus and complete nucleotide sequence of plasmid pPL1 from Marinococcus halophilus. Plasmid 1997; 38:107-14. [PMID: 9339468 DOI: 10.1006/plas.1997.1304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several plasmids were detected in the Gram-positive halophilic eubacterium Marinococcus halophilus and in the related strain M52. The complete nucleotide sequence (3874 bp) of one of these plasmids, pPL1, was determined. Four major open reading frames were identified. Whereas orf3 and orf4 showed no sequence similarities to known proteins, rep displayed a high sequence similarity to replication proteins of rolling circle plasmids. Upstream of this ORF, a sequence resembling the double-strand origin was detected. A region probably constituting the single-strand origin was identified. The ORF mob showed sequence similarity with Mob proteins of rolling circle plasmids. The observed characteristics suggest that pPL1 replicates according to the rolling circle mechanism.
Collapse
Affiliation(s)
- P Louis
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
| | | |
Collapse
|
21
|
Hoflack L, Seurinck J, Mahillon J. Nucleotide sequence and characterization of the cryptic Bacillus thuringiensis plasmid pGI3 reveal a new family of rolling circle replicons. J Bacteriol 1997; 179:5000-8. [PMID: 9260939 PMCID: PMC179355 DOI: 10.1128/jb.179.16.5000-5008.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The complete nucleotide sequence of plasmid pGI3 from Bacillus thuringiensis subsp. thuringiensis H1.1. was obtained. Although this 11,365-bp molecule contained at least 11 putative open reading frames (ORFs), extensive database searches did not reveal any homologous sequences with the exception of ORF6, which displayed similarity to the largest ORF of pSTK1, a 1,883-bp cryptic plasmid isolated from Bacillus stearothermophilus. Deletion analysis to determine the pGI3 minimal replicon revealed that ORF6 is the rep gene. Replication occurred via a single-stranded DNA (ssDNA) intermediate, as demonstrated by S1 treatment and Southern hybridization in nondenaturating conditions. Interestingly, however, no homology was found between the pGI3 (ORF6) and pSTK1 (ORF3) rep genes and those from other single-stranded DNA plasmids, nor was there any DNA similarity to the double-strand origins of replication characterized so far, indicating that pGI3 and pSTK1 form another, new family of ssDNA plasmids. PCR analysis revealed that the pGI3 rep gene is largely distributed among B. thuringiensis strains but can also be found in B. cereus and B. mycoides strains, albeit at a lower frequency. Finally, segregation experiments performed with B. subtilis and B. thuringiensis showed that the pGI3 derivatives, including the minimal replicon, were segregationally stable at temperatures suitable for B. thuringiensis growth (<43 degrees C).
Collapse
Affiliation(s)
- L Hoflack
- Laboratorium Genetika, Universiteit Gent, Belgium
| | | | | |
Collapse
|
22
|
Ben-Dov E, Einav M, Peleg N, Boussiba S, Zaritsky A. Restriction map of the 125-kilobase plasmid of Bacillus thuringiensis subsp. israelensis carrying the genes that encode delta-endotoxins active against mosquito larvae. Appl Environ Microbiol 1996; 62:3140-5. [PMID: 8795201 PMCID: PMC168107 DOI: 10.1128/aem.62.9.3140-3145.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A large plasmid containing all delta-endotoxin genes was isolated from Bacillus thuringiensis subsp. israelensis; restricted by BamHI, EcoRI, HindIII, KpnI, PstI, SacI, and SalI; and cloned as appropriate libraries in Escherichia coli. The libraries were screened for inserts containing recognition sites for BamHI, SacI, and SalI. Each was labeled with 32P and hybridized to Southern blots of gels with fragments generated by cleaving the plasmid with several restriction endonucleases, to align at least two fragments of the relevant enzymes. All nine BamHI fragments and all eight SacI fragments were mapped in two overlapping linkage groups (with total sizes of about 76 and 56 kb, respectively). The homology observed between some fragments is apparently a consequence of the presence of transposons and repeated insertion sequences. Four delta-endotoxin genes (cryIVB-D and cytA) and two genes for regulatory polypeptides (of 19 and 20 kDa) were localized on a 21-kb stretch of the plasmid; without cytA, they are placed on a single BamHI fragment. This convergence enables subcloning of delta-endotoxin genes (excluding cryIVA, localized on the other linkage group) as an intact natural fragment.
Collapse
Affiliation(s)
- E Ben-Dov
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | | | | | | | | |
Collapse
|
23
|
Jensen GB, Wilcks A, Petersen SS, Damgaard J, Baum JA, Andrup L. The genetic basis of the aggregation system in Bacillus thuringiensis subsp. israelensis is located on the large conjugative plasmid pXO16. J Bacteriol 1995; 177:2914-7. [PMID: 7751306 PMCID: PMC176968 DOI: 10.1128/jb.177.10.2914-2917.1995] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The aggregation phenotypes Agr+ and Agr- of Bacillus thuringiensis subsp. israelensis are correlated with a conjugation-like plasmid transfer and characterized by the formation of aggregates when the bacteria are socialized during exponential growth. We present evidence for the association of the Agr+ phenotype with the presence of the large (135-MDa) self-transmissible plasmid pXO16.
Collapse
Affiliation(s)
- G B Jensen
- Department of Toxicology and Biology, National Institute of Occupational Health, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|