1
|
Zhu F, Peña M, Bennett GN. Metabolic engineering of Escherichia coli for quinolinic acid production by assembling L-aspartate oxidase and quinolinate synthase as an enzyme complex. Metab Eng 2021; 67:164-172. [PMID: 34192552 PMCID: PMC10024596 DOI: 10.1016/j.ymben.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Quinolinic acid (QA) is a key intermediate of nicotinic acid (Niacin) which is an essential human nutrient and widely used in food and pharmaceutical industries. In this study, a quinolinic acid producer was constructed by employing comprehensive engineering strategies. Firstly, the quinolinic acid production was improved by deactivation of NadC (to block the consumption pathway), NadR (to eliminate the repression of L-aspartate oxidase and quinolinate synthase), and PtsG (to slow the glucose utilization rate and achieve a more balanced metabolism, and also to increase the availability of the precursor phosphoenolpyruvate). Further modifications to enhance quinolinic acid production were investigated by increasing the oxaloacetate pool through overproduction of phosphoenolpyruvate carboxylase and deactivation of acetate-producing pathway enzymes. Moreover, quinolinic acid production was accelerated by assembling NadB and NadA as an enzyme complex with the help of peptide-peptide interaction peptides RIAD and RIDD, which resulted in up to 3.7 g/L quinolinic acid being produced from 40 g/L glucose in shake-flask cultures. A quinolinic acid producer was constructed in this study, and these results lay a foundation for further engineering of microbial cell factories to efficiently produce quinolinic acid and subsequently convert this product to nicotinic acid for industrial applications.
Collapse
Affiliation(s)
- Fayin Zhu
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Matthew Peña
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - George N Bennett
- Department of BioSciences, Rice University, Houston, TX, 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
2
|
Tamiyakul H, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Tanasupawat S, Warisnoicharoen W. Changes in protein patterns of Staphylococcus aureus and Escherichia coli by silver nanoparticles capped with poly (4-styrenesulfonic acid-co-maleic acid) polymer. ASIAN BIOMED 2019. [DOI: 10.1515/abm-2019-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
While silver nanoparticles (AgNPs) are increasingly attractive as an antibacterial agent in many applications, the effect of AgNPs on bacterial protein profiles, especially AgNPs stabilized by polymeric molecules, is not well understood.
Objectives
To investigate the changes in bacterial protein patterns by AgNPs capped with poly (4-styrenesulfonic acid-co-maleic acid) (AgNPs-PSSMA) polymer toward Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922.
Methods
The growth of bacteria after incubated with AgNPs-PSSMA for different time intervals was determined by optical density at 600 nm. Their protein patterns were observed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the proteomic analysis of extracted proteins was determined by liquid chromatography-tandem mass spectrometry (LC–MS/MS).
Results
AgNPs-PSSMA was able to inhibit the growth of both S. aureus and E. coli cells. The treated bacterial cells expressed more proteins than the untreated cells as seen from SDS-PAGE study. Nanosilver (NS) caused the upregulation of metabolic gene, waaA, in S. aureus cells. For E. coli cells, the upregulated proteins were metabolic genes (srlB, fliE, murD) and other genes dealt with DNA replication (dinG), DNA–RNA transcription (yrdD), RNA– protein translation (rplD), molecular transport (sapF), and signal transduction (tdcF).
Conclusions
The antibacterial effect of AgNPs-PSSMA may arise by changing the bacterial proteins and thus interfering with the normal cell function.
Collapse
Affiliation(s)
- Hathaichanok Tamiyakul
- Graduate School of Nanoscience and Technology, Chulalongkorn University , Bangkok 10330 , Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), The National Science and Technology Development Agency (NSTDA) , Pathum Thani 12120 , Thailand
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), The National Science and Technology Development Agency (NSTDA) , Pathum Thani 12120 , Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), The National Science and Technology Development Agency (NSTDA) , Pathum Thani 12120 , Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok 10330 , Thailand
| | - Warangkana Warisnoicharoen
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok 10330 , Thailand
| |
Collapse
|
3
|
Wang QJ, Sun H, Dong QL, Sun TY, Jin ZX, Hao YJ, Yao YX. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1986-97. [PMID: 26923485 PMCID: PMC5043475 DOI: 10.1111/pbi.12556] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/04/2016] [Accepted: 02/17/2016] [Indexed: 05/20/2023]
Abstract
In this study, we characterized the role of an apple cytosolic malate dehydrogenase gene (MdcyMDH) in the tolerance to salt and cold stresses and investigated its regulation mechanism in stress tolerance. The MdcyMDH transcript was induced by mild cold and salt treatments, and MdcyMDH-overexpressing apple plants possessed improved cold and salt tolerance compared to wild-type (WT) plants. A digital gene expression tag profiling analysis revealed that MdcyMDH overexpression largely altered some biological processes, including hormone signal transduction, photosynthesis, citrate cycle and oxidation-reduction. Further experiments verified that MdcyMDH overexpression modified the mitochondrial and chloroplast metabolisms and elevated the level of reducing power, primarily caused by increased ascorbate and glutathione, as well as the increased ratios of ascorbate/dehydroascorbate and glutathione/glutathione disulphide, under normal and especially stress conditions. Concurrently, the transgenic plants produced a high H2 O2 content, but a low O2·- production rate was observed compared to the WT plants. On the other hand, the transgenic plants accumulated more free and total salicylic acid (SA) than the WT plants under normal and stress conditions. Taken together, MdcyMDH conferred the transgenic apple plants a higher stress tolerance by producing more reductive redox states and increasing the SA level; MdcyMDH could serve as a target gene to genetically engineer salt- and cold-tolerant trees.
Collapse
Affiliation(s)
- Qing-Jie Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Hong Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Qing-Long Dong
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Tian-Yu Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zhong-Xin Jin
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Xin Yao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China.
| |
Collapse
|
4
|
The Riemerella anatipestifer AS87_01735 Gene Encodes Nicotinamidase PncA, an Important Virulence Factor. Appl Environ Microbiol 2016; 82:5815-23. [PMID: 27451449 DOI: 10.1128/aem.01829-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Riemerella anatipestifer is a major bacterial pathogen that causes septicemic and exudative diseases in domestic ducks. In our previous study, we found that deletion of the AS87_01735 gene significantly decreased the bacterial virulence of R. anatipestifer strain Yb2 (mutant RA625). The AS87_01735 gene was predicted to encode a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, the AS87_01735 gene was expressed and identified as the PncA-encoding gene, using an enzymatic assay. Western blot analysis demonstrated that R. anatipestifer PncA was localized to the cytoplasm. The mutant strain RA625 (named Yb2ΔpncA in this study) showed a similar growth rate but decreased NAD(+) quantities in both the exponential and stationary phases in tryptic soy broth culture, compared with the wild-type strain Yb2. In addition, Yb2ΔpncA-infected ducks showed much lower bacterial loads in their blood, and no visible histological changes were observed in the heart, liver, and spleen. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Our results suggest that the R. anatipestifer AS87_01735 gene encodes PncA, which is an important virulence factor, and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate. IMPORTANCE Riemerella anatipestifer is reported worldwide as a cause of septicemic and exudative diseases of domestic ducks. The pncA gene encodes a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, we identified and characterized the pncA-homologous gene AS87_01735 in R. anatipestifer strain Yb2. R. anatipestifer PncA is a cytoplasmic protein that possesses similar PncA activity, compared with other organisms. Generation of the pncA mutant Yb2ΔpncA led to a decrease in the NAD(+) content, which was associated with decreased capacity for invasion and attenuated virulence in ducks. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Altogether, these results suggest that PncA contributes to the virulence of R. anatipestifer and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate.
Collapse
|
5
|
Abstract
Universal and ubiquitous redox cofactors, nicotinamide adenine dinucleotide (NAD) and its phosphorylated analog (NADP), collectively contribute to approximately 12% of all biochemical reactions included in the metabolic model of Escherichia coli K-12. A homeostasis of the NAD pool faithfully maintained by the cells results from a dynamic balance in a network of NAD biosynthesis, utilization, decomposition, and recycling pathways that is subject to tight regulation at various levels. A brief overview of NAD utilization processes is provided in this review, including some examples of nonredox utilization. The review focuses mostly on those aspects of NAD biogenesis and utilization in E. coli and Salmonella that emerged within the past 12 years. The first pyridine nucleotide cycle (PNC) originally identified in mammalian systems and termed the Preiss-Handler pathway includes a single-step conversion of niacin (Na) to NaMN by nicotinic acid phosphoribosyltransferase (PncB). In E. coli and many other prokaryotes, this enzyme, together with nicotinamide deamidase (PncA), compose the major pathway for utilization of the pyridine ring in the form of amidated (Nm) or deamidated (Na) precursors. The existence of various regulatory mechanisms and checkpoints that control the NAD biosynthetic machinery reflects the importance of maintaining NAD homeostasis in a variety of growth conditions. Among the most important regulatory mechanisms at the level of individual enzymes are a classic feedback inhibition of NadB, the first enzyme of NAD de novo biosynthesis, by NAD and a metabolic regulation of NadK by reduced cofactors.
Collapse
|
6
|
Soriano EV, Zhang Y, Colabroy KL, Sanders JM, Settembre EC, Dorrestein PC, Begley TP, Ealick SE. Active-site models for complexes of quinolinate synthase with substrates and intermediates. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1685-96. [PMID: 23999292 DOI: 10.1107/s090744491301247x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/07/2013] [Indexed: 11/11/2022]
Abstract
Quinolinate synthase (QS) catalyzes the condensation of iminoaspartate and dihydroxyacetone phosphate to form quinolinate, the universal precursor for the de novo biosynthesis of nicotinamide adenine dinucleotide. QS has been difficult to characterize owing either to instability or lack of activity when it is overexpressed and purified. Here, the structure of QS from Pyrococcus furiosus has been determined at 2.8 Å resolution. The structure is a homodimer consisting of three domains per protomer. Each domain shows the same topology with a four-stranded parallel β-sheet flanked by four α-helices, suggesting that the domains are the result of gene triplication. Biochemical studies of QS indicate that the enzyme requires a [4Fe-4S] cluster, which is lacking in this crystal structure, for full activity. The organization of domains in the protomer is distinctly different from that of a monomeric structure of QS from P. horikoshii [Sakuraba et al. (2005), J. Biol. Chem. 280, 26645-26648]. The domain arrangement in P. furiosus QS may be related to protection of cysteine side chains, which are required to chelate the [4Fe-4S] cluster, prior to cluster assembly.
Collapse
Affiliation(s)
- Erika V Soriano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
PrfA-like transcription factor gene lmo0753 contributes to L-rhamnose utilization in Listeria monocytogenes strains associated with human food-borne infections. Appl Environ Microbiol 2013; 79:5584-92. [PMID: 23835178 DOI: 10.1128/aem.01812-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Listeria monocytogenes is a food-borne bacterial pathogen and the causative agent of human and animal listeriosis. Among the three major genetic lineages of L. monocytogenes (i.e., LI, LII, and LIII), LI and LII are predominantly associated with food-borne listeriosis outbreaks, whereas LIII is rarely implicated in human infections. In a previous study, we identified a Crp/Fnr family transcription factor gene, lmo0753, that was highly specific to outbreak-associated LI and LII but absent from LIII. Lmo0753 shares two conserved functional domains, including a DNA binding domain, with the well-characterized master virulence regulator PrfA in L. monocytogenes. In this study, we constructed lmo0753 deletion and complementation mutants in two fully sequenced L. monocytogenes LII strains, 10403S and EGDe, and compared the flagellar motility, phospholipase C production, hemolysis, and intracellular growth of the mutants and their respective wild types. Our results suggested that lmo0753 plays a role in hemolytic activity in both EGDe and 10403S. More interestingly, we found that deletion of lmo0753 led to the loss of l-rhamnose utilization in EGDe, but not in 10403S. RNA-seq analysis of EGDe Δ0753 incubated in phenol red medium containing l-rhamnose as the sole carbon source revealed that 126 (4.5%) and 546 (19.5%) out of 2,798 genes in the EGDe genome were up- and downregulated more than 2-fold, respectively, compared to the wild-type strain. Genes related to biotin biosynthesis, general stress response, and rhamnose metabolism were shown to be differentially regulated. Findings from this study collectively suggested varied functional roles of lmo0753 in different LII L. monocytogenes strain backgrounds associated with human listeriosis outbreaks.
Collapse
|
8
|
Marinoni I, Nonnis S, Monteferrante C, Heathcote P, Härtig E, Böttger LH, Trautwein AX, Negri A, Albertini AM, Tedeschi G. Characterization of L-aspartate oxidase and quinolinate synthase from Bacillus subtilis. FEBS J 2008; 275:5090-107. [PMID: 18959769 DOI: 10.1111/j.1742-4658.2008.06641.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NAD is an important cofactor and essential molecule in all living organisms. In many eubacteria, including several pathogens, the first two steps in the de novo synthesis of NAD are catalyzed by l-aspartate oxidase (NadB) and quinolinate synthase (NadA). Despite the important role played by these two enzymes in NAD metabolism, many of their biochemical and structural properties are still largely unknown. In the present study, we cloned, overexpressed and characterized NadA and NadB from Bacillus subtilis, one of the best studied bacteria and a model organism for low-GC Gram-positive bacteria. Our data demonstrated that NadA from B. subtilis possesses a [4Fe-4S]2+ cluster, and we also identified the cysteine residues involved in the cluster binding. The [4Fe-4S]2+ cluster is coordinated by three cysteine residues (Cys110, Cys230, and Cys320) that are conserved in all the NadA sequences reported so far, suggesting a new noncanonical binding motif that, on the basis of sequence alignment studies, may be common to other quinolinate synthases from different organisms. Moreover, for the first time, it was shown that the interaction between NadA and NadB is not species-specific between B. subtilis and Escherichia coli.
Collapse
Affiliation(s)
- Ilaria Marinoni
- Department of Genetics and Microbiology, University of Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Saunders AH, Griffiths AE, Lee KH, Cicchillo RM, Tu L, Stromberg JA, Krebs C, Booker SJ. Characterization of quinolinate synthases from Escherichia coli, Mycobacterium tuberculosis, and Pyrococcus horikoshii indicates that [4Fe-4S] clusters are common cofactors throughout this class of enzymes. Biochemistry 2008; 47:10999-1012. [PMID: 18803397 DOI: 10.1021/bi801268f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quinolinate synthase (NadA) catalyzes a unique condensation reaction between iminoaspartate and dihydroxyacetone phosphate, affording quinolinic acid, a central intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD). Iminoaspartate is generated via the action of l-aspartate oxidase (NadB), which catalyzes the first step in the biosynthesis of NAD in most prokaryotes. NadA from Escherichia coli was hypothesized to contain an iron-sulfur cluster as early as 1991, because of its observed labile activity, especially in the presence of hyperbaric oxygen, and because its primary structure contained a CXXCXXC motif, which is commonly found in the [4Fe-4S] ferredoxin class of iron-sulfur (Fe/S) proteins. Indeed, using analytical methods in concert with Mossbauer and electron paramagnetic resonance spectroscopies, the protein was later shown to harbor a [4Fe-4S] cluster. Recently, the X-ray structure of NadA from Pyrococcus horikoshii was solved to 2.0 A resolution [Sakuraba, H., Tsuge, H.,Yoneda, K., Katunuma, N., and Ohshima, T. (2005) J. Biol. Chem. 280, 26645-26648]. This protein does not contain a CXXCXXC motif, and no Fe/S cluster was observed in the structure or even mentioned in the report. Moreover, rates of quinolinic acid production were reported to be 2.2 micromol min (-1) mg (-1), significantly greater than that of E. coli NadA containing an Fe/S cluster (0.10 micromol min (-1) mg (-1)), suggesting that the [4Fe-4S] cluster of E. coli NadA may not be necessary for catalysis. In the study described herein, nadA genes from both Mycobacterium tuberculosis and Pyrococcus horikoshii were cloned, and their protein products shown to contain [4Fe-4S] clusters that are absolutely required for activity despite the absence of a CXXCXXC motif in their primary structures. Moreover, E. coli NadA, which contains nine cysteine residues, is shown to require only three for turnover (C113, C200, and C297), of which only C297 resides in the CXXCXXC motif. These results are consistent with a bioinformatics analysis of NadA sequences, which indicates that three cysteines are strictly conserved across all species. This study concludes that all currently annotated quinolinate synthases harbor a [4Fe-4S] cluster, that the crystal structure reported by Sakuraba et al. does not accurately represent the active site of the protein, and that the "activity" reported does not correspond to quinolinate formation.
Collapse
Affiliation(s)
- Allison H Saunders
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Xiao QG, Tao X, Chen JF. Silica Nanotubes Based on Needle-like Calcium Carbonate: Fabrication and Immobilization for Glucose Oxidase. Ind Eng Chem Res 2007. [DOI: 10.1021/ie060935+] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Luo MJ, Yang XY, Liu WX, Xu Y, Huang P, Yan F, Chen F. Expression, purification and anti-tumor activity of curcin. Acta Biochim Biophys Sin (Shanghai) 2006; 38:663-8. [PMID: 16953306 DOI: 10.1111/j.1745-7270.2006.00208.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Curcin, purified from the seeds of Jatropha curcas, can be used as a cell-killing agent. Understanding the anti-tumor activity of the recombinant protein of curcin is important for its application in clinical medicine. The segment encoding the mature protein of curcin was inserted into Escherichia coli strain M15, and the recombinant strain was induced to express by isopropyl-beta-D-thiogalactopyranoside at a concentration of 0.5 mM. The recombinant protein was expressed in the form of inclusion bodies and purified by Ni-NTA affinity chromatography. The target protein was incubated with the tumor cells at different concentrations for different times and the results demonstrated that the target protein could inhibit the growth of tumor cells (NCL-H446, SGC-7901 and S180) at 5 microg/ml.
Collapse
Affiliation(s)
- Meng-Jun Luo
- College of Life Sciences, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Rossolillo P, Marinoni I, Galli E, Colosimo A, Albertini AM. YrxA is the transcriptional regulator that represses de novo NAD biosynthesis in Bacillus subtilis. J Bacteriol 2005; 187:7155-60. [PMID: 16199587 PMCID: PMC1251630 DOI: 10.1128/jb.187.20.7155-7160.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first genetic, in vivo, and in vitro evidences that YrxA is the regulator of NAD de novo biosynthesis in Bacillus subtilis are hereby reported. The protein is essential to the transcription repression of the divergent operons nadBCA and nifS-yrxA in the presence of nicotinic acid and binds to their shared operator-promoter region.
Collapse
Affiliation(s)
- Paola Rossolillo
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, 1, Via Ferrata, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
13
|
Ollagnier-de Choudens S, Loiseau L, Sanakis Y, Barras F, Fontecave M. Quinolinate synthetase, an iron-sulfur enzyme in NAD biosynthesis. FEBS Lett 2005; 579:3737-43. [PMID: 15967443 DOI: 10.1016/j.febslet.2005.05.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 05/26/2005] [Accepted: 05/27/2005] [Indexed: 10/25/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) plays a crucial role as a cofactor in numerous essential redox biological reactions. NAD derives from quinolinic acid which is synthesized in Escherichia coli from L-aspartate and dihydroxyacetone phosphate (DHAP) as the result of the concerted action of two enzymes, L-aspartate oxidase (NadB) and quinolinate synthetase (NadA). We report here the characterization of NadA protein from E. coli. When anaerobically purified, the isolated soluble protein contains 3-3.5 iron and 3-3.5 sulfide/polypeptide chain. Mössbauer spectra of the 57Fe-protein revealed that the majority of the iron is in the form of a (4Fe-4S)2+ cluster. An enzymatic assay for quinolinate synthetase activity was set up and allowed to demonstrate that the cluster is absolutely required for NadA activity. Exposure to air leads to degradation of the cluster and inactivate enzyme.
Collapse
Affiliation(s)
- Sandrine Ollagnier-de Choudens
- Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, DRDC-CB, CEA/CNRS/Université Joseph Fourier, UMR 5047, 17 Avenue des Martyrs, 38054 Grenoble Cedex 09, France.
| | | | | | | | | |
Collapse
|
14
|
Cicchillo RM, Tu L, Stromberg JA, Hoffart LM, Krebs C, Booker SJ. Escherichia coli quinolinate synthetase does indeed harbor a [4Fe-4S] cluster. J Am Chem Soc 2005; 127:7310-1. [PMID: 15898769 DOI: 10.1021/ja051369x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quinolinic acid is an intermediate in the biosynthesis of nicotinamide-containing redox cofactors. The ultimate step in the formation of quinolinic acid in prokaryotes is the condensation of iminosuccinate and dihydroxyacetone phosphate, which is catalyzed by the product of the nadA gene in Escherichia coli. A combination of UV-vis, Mössbauer, and EPR spectroscopies, along with analytical methods for the determination of iron and sulfide, demonstrates for the first time that anaerobically purified quinolinate synthetase (NadA) from E. coli contains one [4Fe-4S] cluster per polypeptide. The protein is active, catalyzing the formation of quinolinic acid with a Vmax [ET]-1 of 0.01 s-1.
Collapse
Affiliation(s)
- Robert M Cicchillo
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | | | | | | | | | | |
Collapse
|
15
|
Sakuraba H, Tsuge H, Yoneda K, Katunuma N, Ohshima T. Crystal structure of the NAD biosynthetic enzyme quinolinate synthase. J Biol Chem 2005; 280:26645-8. [PMID: 15937336 DOI: 10.1074/jbc.c500192200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene encoding a quinolinate synthase has been identified in the hyperthermophilic archaeon Pyrococcus horikoshii via genome sequencing. The gene was overexpressed in Escherichia coli, and the crystal structure of the produced enzyme was determined to 2.0 A resolution in the presence of malate, a substrate analogue. The overall structure exhibits a unique triangular architecture composed of a 3-fold repeat of three-layer (alphabetaalpha) sandwich folding. Although some aspects of the fold homologous to the each domain have been observed previously, the overall structure of quinolinate synthase shows no similarity to any known protein structure. The three analogous domains are related to a pseudo-3-fold symmetry. The active site is located at the interface of the three domains and is centered on the pseudo-3-fold axis. The malate molecule is tightly held near the bottom of the active site cavity. The model of the catalytic state during the first condensation step of the quinolinate synthase reaction indicates that the elimination of inorganic phosphate from dihydroxyacetone phosphate may precede the condensation reaction.
Collapse
Affiliation(s)
- Haruhiko Sakuraba
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506
| | | | | | | | | |
Collapse
|
16
|
Sun X, Cao K, Yang G, Huang Y, Hanna ST, Wang R. Selective expression of Kir6.1 protein in different vascular and non-vascular tissues. Biochem Pharmacol 2004; 67:147-56. [PMID: 14667937 DOI: 10.1016/j.bcp.2003.08.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
K(ATP) channels are composed of pore-forming subunits Kir6.x and auxiliary subunits SURx. These channels play important roles in modulating the contractility of vascular smooth muscle cells (SMCs) by altering membrane potentials. The molecular basis of K(ATP) channels in vascular SMCs is unclear and the expression of different K(ATP) channel subunits at protein level in various tissues still undetermined. In this study, using an anti-Kir6.1 antibody, we detected the expression of Kir6.1 proteins in rat vascular tissues including mesenteric artery, pulmonary artery, aorta, and tail artery. Kir6.1 proteins were also identified in heart and other non-vascular tissues including spleen and brain, but they were undetectable in liver and kidney. Immunocytochemical study revealed the expression of Kir6.1 proteins in cultured rat thoracic aortic SMCs. Using the whole-cell patch-clamp technique, it was found that the intracellularly applied anti-Kir6.1 antibody significantly inhibited K(ATP) channel currents in HEK-293 cells that were stably transfected with Kir6.1 cDNA. A better understanding of differential expression of Kir6.1 proteins in various vascular and non-vascular tissues may help discern different molecular basis and functions of K(ATP) channel complexes in these tissues.
Collapse
Affiliation(s)
- Xianfeng Sun
- Department of Physiology, College of Medicine, University of Saskatchewan, Sask., S7N 5E5, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Begley TP, Kinsland C, Mehl RA, Osterman A, Dorrestein P. The biosynthesis of nicotinamide adenine dinucleotides in bacteria. VITAMINS AND HORMONES 2001; 61:103-19. [PMID: 11153263 DOI: 10.1016/s0083-6729(01)61003-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The nicotinamide adenine dinucleotides (NAD, NADH, NADP, and NADPH) are essential cofactors in all living systems and function as hydride acceptors (NAD, NADP) and hydride donors (NADH, NADPH) in biochemical redox reactions. The six-step bacterial biosynthetic pathway begins with the oxidation of aspartate to iminosuccinic acid, which is then condensed with dihydroxyacetone phosphate to give quinolinic acid. Phosphoribosylation and decarboxylation of quinolinic acid gives nicotinic acid mononucleotide. Adenylation of this mononucleotide followed by amide formation completes the biosynthesis of NAD. An additional phosphorylation gives NADP. This review focuses on the mechanistic enzymology of this pathway in bacteria.
Collapse
Affiliation(s)
- T P Begley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | | | | | | | |
Collapse
|