1
|
Edri I, Goldenberg M, Lisnyansky M, Strulovich R, Newman H, Loewenstein A, Khananshvili D, Giladi M, Haitin Y. Overexpression and Purification of Human Cis-prenyltransferase in Escherichia coli. J Vis Exp 2017. [PMID: 28809830 DOI: 10.3791/56430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Prenyltransferases (PT) are a group of enzymes that catalyze chain elongation of allylic diphosphate using isopentenyl diphosphate (IPP) via multiple condensation reactions. DHDDS (dehydrodolichyl diphosphate synthase) is a eukaryotic long-chain cis-PT (forming cis double bonds from the condensation reaction) that catalyzes chain elongation of farnesyl diphosphate (FPP, an allylic diphosphate) via multiple condensations with isopentenyl diphosphate (IPP). DHDDS is of biomedical importance, as a non-conservative mutation (K42E) in the enzyme results in retinitis pigmentosa, ultimately leading to blindness. Therefore, the present protocol was developed in order to acquire large quantities of purified DHDDS, suitable for mechanistic studies. Here, the usage of protein fusion, optimized culture conditions and codon-optimization were used to allow the overexpression and purification of functionally active human DHDDS in E. coli. The described protocol is simple, cost-effective and time sparing. The homology of cis-PT among different species suggests that this protocol may be applied for other eukaryotic cis-PT as well, such as those involved in natural rubber synthesis.
Collapse
Affiliation(s)
- Ilan Edri
- Sackler Faculty of Medicine, Tel Aviv University
| | | | - Michal Lisnyansky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University
| | - Roi Strulovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University
| | - Hadas Newman
- Sackler Faculty of Medicine, Tel Aviv University; Department of Ophthalmology, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University
| | - Anat Loewenstein
- Sackler Faculty of Medicine, Tel Aviv University; Department of Ophthalmology, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University; Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University;
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University;
| |
Collapse
|
2
|
Noguchi T, Nishida Y, Takizawa K, Cui Y, Tsutsumi K, Hamada T, Nishi Y. Accurate quantitation for in vitro refolding of single domain antibody fragments expressed as inclusion bodies by referring the concomitant expression of a soluble form in the periplasms of Escherichia coli. J Immunol Methods 2017; 442:1-11. [DOI: 10.1016/j.jim.2016.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
3
|
Giladi M, Edri I, Goldenberg M, Newman H, Strulovich R, Khananshvili D, Haitin Y, Loewenstein A. Purification and characterization of human dehydrodolychil diphosphate synthase (DHDDS) overexpressed in E. coli. Protein Expr Purif 2017; 132:138-142. [PMID: 28167250 DOI: 10.1016/j.pep.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/09/2023]
Abstract
Protein asparagine (N)-linked glycosylation is a post-translational modification that occurs in the endoplasmic reticulum; it plays an important role in protein folding, oligomerization, quality control, sorting, and transport. Accordingly, disorders of glycosylation may affect practically every organ system. Dehydrodolichyl diphosphate synthase (DHDDS) is an eukaryotic cis prenyltransferase (cis-PT) that catalyzes chain elongation of farnesyl diphosphate via multiple condensations with isopentenyl diphosphate to form dehydrodolichyl diphosphate, a precursor for the glycosyl carrier dolichylpyrophophate involved in N-linked glycosylation. Mutations in DHDDS were shown to result in retinitis pigmentosa, ultimately leading to blindness, but the exact molecular mechanism by which the mutations affect DHDDS function remains elusive. In addition, bacterial cis-PT homologs are involved in bacterial wall synthesis and are therefore potential targets for new antibacterial agents. However, as eukaryotic cis-PT were not thoroughly characterized structurally and functionally, rational design of prokaryotic cis-PT specific drugs is currently impossible. Here, we present a simple protocol for purification of functionally active human DHDDS under non-denaturating conditions using a codon-optimized construct. The purified protein forms a stable homodimer, similar to its bacterial homologs, and shows time- and substrate-dependent activity. Purification of this protein requires the presence of a detergent for protein solubility. The protocol described here may be utilized for the overexpression of other eukaryotic cis-PT. Future structural and functional studies of the recombinant DHDDS may shed light on the mechanisms underlying DHDDS-related retinitis pigmentosa and lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Ilan Edri
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Hadas Newman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Ophthalmology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Roi Strulovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Anat Loewenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Ophthalmology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
4
|
Jia D, Yang Y, Peng Z, Zhang D, Li J, Liu L, Du G, Chen J. High efficiency preparation and characterization of intact poly(vinyl alcohol) dehydrogenase from Sphingopyxis sp.113P3 in Escherichia coli by inclusion bodies renaturation. Appl Biochem Biotechnol 2014; 172:2540-51. [PMID: 24402569 DOI: 10.1007/s12010-013-0703-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/25/2013] [Indexed: 11/25/2022]
Abstract
Poly(vinyl alcohol) dehydrogenase (PVADH, EC 1.1.99.23) is an enzyme which has potential application in textile industry to degrade the poly(vinyl alcohol) (PVA) in waste water. Previously, a 1,965-bp fragment encoding a PVADH from Sphingopyxis sp. 113P3 was synthesized based on the replacement of the rare codons in Escherichia coli (E. coli). In this work, the deduced mature PVADH (mPVADH) gene of 1,887 bp was amplified by polymerase chain reaction (PCR) and inserted into the site between NcoI and HindIII in pET-32a(+). The constructed recombinant plasmid was transformed into E. coli Rosetta (DE3). In shake flask, the fusion protein of thioredoxin (Trx)-mPVADH was expressed precisely; however, Trx-mPVADH was found to accumulate mainly as inclusion bodies. After isolating, dissolving in buffer containing urea, purification, dialysis renaturation, and digesting with recombinant enterokinase/His (rEK/His), the bioactive mPVADH fragments were obtained with protein concentration of 0.56 g/L and enzymatic activity of 194 U/mL. The K m and V max values for PVA 1799 were 2.33 mg/mL and 15.7 nmol/(min·mg protein), respectively. (1)H-NMR and infrared (IR) spectrum demonstrated that its biological function was oxidizing hydroxyl groups of PVA 1799 to form diketone, and PVA 1799 could be degraded completely by successive treatment with mPVADH and oxidized PVA hydrolase (OPH).
Collapse
Affiliation(s)
- Dongxu Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China,
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kou G, Shi S, Wang H, Tan M, Xue J, Zhang D, Hou S, Qian W, Wang S, Dai J, Li B, Guo Y. Preparation and characterization of recombinant protein ScFv(CD11c)-TRP2 for tumor therapy from inclusion bodies in Escherichia coli. Protein Expr Purif 2006; 52:131-8. [PMID: 17027283 DOI: 10.1016/j.pep.2006.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 08/11/2006] [Indexed: 11/17/2022]
Abstract
Dendritic cells (DCs)-based immunotherapy represents an approach to the prevention and treatment of cancers. Targeting antigens to receptors on DCs can be expected to enhance immune response. We have constructed an expression vector pET32a(+)-ScFv(CD11c)-TRP2 based on a single-chain antibody fragment (ScFv) that targets the high affinity receptor CD11c which is expressed on murine DCs. The 3'-terminal end of the ScFv was ligated to the gene for MHC class I molecule-recognized peptide from mouse tyrosine-related protein 2 (TRP2). Using this vector, we have expressed and purified ScFv(CD11c)-TRP2, a fusion protein that could target TRP2 peptide to CD11c on DCs in vivo to elicit anti-tumor responses. This fusion protein was expressed in inclusion bodies in Escherichia coli BL21(DE3) and was refolded and purified on-column effectively by immobilized metal affinity chromatography using His-tag. Flow cytometry assays showed the specific binding ability of ScFv(CD11c)-TRP2 to DCs, which could be blocked by a hamster anti-mouse CD11c produced by N418 hybridoma. Further studies demonstrated that ScFv(CD11c)-targeted TRP2 peptide processed by DCs was capable of stimulating T cells proliferation. Thus, this fusion protein provides a basis for further research in cancer therapy in vivo.
Collapse
Affiliation(s)
- Geng Kou
- International Joint Cancer Institute, Second Military Medical University, New Library Building West 10th-11th Floor, 800 Xiang Yin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Oganesyan N, Kim SH, Kim R. On-column protein refolding for crystallization. ACTA ACUST UNITED AC 2006; 6:177-82. [PMID: 16211516 DOI: 10.1007/s10969-005-2827-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2004] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
One major bottleneck in protein production in Escherichia coli for structural genomics projects is the formation of insoluble protein aggregates (inclusion bodies). The efficient refolding of proteins from inclusion bodies is becoming an important tool that can provide soluble native proteins for structural and functional studies. Here we report an on-column refolding method established at the Berkeley Structural Genomics Center (BSGC). Our method is a combination of an 'artificial chaperone-assisted refolding' method previously proposed and affinity chromatography to take advantage of a chromatographic step: less time-consuming, no filtration or concentration, with the additional benefit of protein purification. It can be easily automated and formatted for high-throughput process.
Collapse
Affiliation(s)
- Natalia Oganesyan
- Berkeley Structural Genomics Center, Physical Biosciences Division, Lawrence Berkeley National Laboratory, California 94720, USA
| | | | | |
Collapse
|
7
|
Ferry G, Ubeaud C, Dauly C, Mozo J, Guillard S, Berger S, Jimenez S, Scoul C, Leclerc G, Yous S, Delagrange P, Boutin JA. Purification of the recombinant human serotonin N-acetyltransferase (EC 2.3.1.87): further characterization of and comparison with AANAT from other species. Protein Expr Purif 2005; 38:84-98. [PMID: 15477086 DOI: 10.1016/j.pep.2004.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 07/01/2004] [Indexed: 12/01/2022]
Abstract
Melatonin is synthesized by a series of enzymes, the penultimate one, serotonin N-acetyltransferase, catalyzing the limiting reaction. In the present study, we compared the recombinant serotonin N-acetyltransferases from rat, ovine, and human. The human protein is particularly difficult to purify because it interacts strongly with a putative chaperone protein from bacteria whereas the rat and sheep enzymes, which interact less strongly with this protein, have been purified close to homogeneity. We identified the contaminating protein as GroEL, the bacterial equivalent of Hsp60. We present numerous catalytic activities (substrate and cosubstrate specificities as well as inhibitor specificities) measured on the three species enzymes from which we deduced that the presence of the chaperone might partly explain the differences between the various species enzyme characteristics, beside the inter-species ones resulting from sequence differences. Despite several trials reported in the literature, a purification to homogeneity of the human (recombinant) enzyme has never been described. We present a new purification method, by using an original denaturation/renaturation process in which the enzyme is immobilized on an affinity chromatography column. The enzyme is then eluted in an active and pure form (i.e., absence of chaperone). The up-scaled system permitted us to perform the necessary experiments for the measurement of more accurate affinities of human serotonin N-acetyltransferase towards its main natural substrates, showing that only the activity of the enzyme towards phenylethylamine was modified.
Collapse
Affiliation(s)
- Gilles Ferry
- Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER, 125, chemin de Ronde 78290 Croissy-sur-Seine, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chang SY, Ko TP, Chen APC, Wang AHJ, Liang PH. Substrate binding mode and reaction mechanism of undecaprenyl pyrophosphate synthase deduced from crystallographic studies. Protein Sci 2004; 13:971-8. [PMID: 15044730 PMCID: PMC2280048 DOI: 10.1110/ps.03519904] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes eight consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to form a 55-carbon long-chain product. We previously reported the crystal structure of the apo-enzyme from Escherichia coli and the structure of UPPs in complex with sulfate ions (resembling pyrophosphate of substrate), Mg(2+), and two Triton molecules (product-like). In the present study, FPP substrate was soaked into the UPPs crystals, and the complex structure was solved. Based on the crystal structure, the pyrophosphate head group of FPP is bound to the backbone NHs of Gly29 and Arg30 as well as the side chains of Asn28, Arg30, and Arg39 through hydrogen bonds. His43 is close to the C2 carbon of FPP and may stabilize the farnesyl cation intermediate during catalysis. The hydrocarbon moiety of FPP is bound with hydrophobic amino acids including Leu85, Leu88, and Phe89, located on the alpha3 helix. The binding mode of FPP in cis-type UPPs is apparently different from that of trans-type and many other prenyltransferases which utilize Asprich motifs for substrate binding via Mg(2+). The new structure provides a plausible mechanism for the catalysis of UPPs.
Collapse
Affiliation(s)
- Sing-Yang Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Scott DJ, da Costa BMT, Espy SC, Keasling JD, Cornish K. Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates. PHYTOCHEMISTRY 2003; 64:123-134. [PMID: 12946411 DOI: 10.1016/s0031-9422(03)00266-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Metal cofactors are necessary for the activity of alkylation by prenyl transfer in enzyme-catalyzed reactions. Rubber transferase (RuT, a cis-prenyl transferase) associated with purified rubber particles from Hevea brasiliensis, Parthenium argentatum and Ficus elastica can use magnesium and manganese interchangably to achieve maximum velocity. We define the concentration of activator required for maximum velocity as [A](max). The [A](max)(Mg2+) in F. elastica (100 mM) is 10 times the [A](max)(Mg2+) for either H. brasiliensis (10 mM) or P. argentatum (8 mM). The [A](max)(Mn2+) in F. elastica (11 mM), H. brasiliensis (3.8 mM) and P. argentatum (6.8 mM) and the [A](max)(Mg2+) in H. brasiliensis (10 mM) and P. argentatum (8 mM) are similar. The differences in [A](max)(Mg2+) correlate with the actual endogenous Mg(2+) concentrations in the latex of living plants. Extremely low Mn(2+) levels in vivo indicate that Mg(2+) is the RuT cofactor in living H. brasiliensis and F. elastica trees. Kinetic analyses demonstrate that FPP-Mg(2+) and FPP-Mn(2+) are active substrates for rubber molecule initiation, although free FPP and metal cations, Mg(2+) and Mn(2+), can interact independently at the active site with the following relative dissociation constants K(d)(FPP) <K(d)(FPP-Metal) <K(d)(E-Metal). Similarly, IPP-Mg(2+) and IPP-Mn(2+) are active substrates for rubber molecule polymerization. Although metal cations can interact independently at the active site with the relative dissociation constant K(d)(IPP-Metal) <K(d)(E-Metal), unlike FPP, IPP alone does not interact independently. All three RuTs have similar characteristics-indeterminate sized products, high K(m)(IPP), high metal [A](max), metal cofactor requirements, and are membrane-bound enzymes.
Collapse
Affiliation(s)
- Deborah J Scott
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | | | | | |
Collapse
|
10
|
Liang PH, Ko TP, Wang AHJ. Structure, mechanism and function of prenyltransferases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3339-54. [PMID: 12135472 DOI: 10.1046/j.1432-1033.2002.03014.x] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this review, we summarize recent progress in studying three main classes of prenyltransferases: (a) isoprenyl pyrophosphate synthases (IPPSs), which catalyze chain elongation of allylic pyrophosphate substrates via consecutive condensation reactions with isopentenyl pyrophosphate (IPP) to generate linear polymers with defined chain lengths; (b) protein prenyltransferases, which catalyze the transfer of an isoprenyl pyrophosphate (e.g. farnesyl pyrophosphate) to a protein or a peptide; (c) prenyltransferases, which catalyze the cyclization of isoprenyl pyrophosphates. The prenyltransferase products are widely distributed in nature and serve a variety of important biological functions. The catalytic mechanism deduced from the 3D structure and other biochemical studies of these prenyltransferases as well as how the protein functions are related to their reaction mechanism and structure are discussed. In the IPPS reaction, we focus on the mechanism that controls product chain length and the reaction kinetics of IPP condensation in the cis-type and trans-type enzymes. For protein prenyltransferases, the structures of Ras farnesyltransferase and Rab geranylgeranyltransferase are used to elucidate the reaction mechanism of this group of enzymes. For the enzymes involved in cyclic terpene biosynthesis, the structures and mechanisms of squalene cyclase, 5-epi-aristolochene synthase, pentalenene synthase, and trichodiene synthase are summarized.
Collapse
Affiliation(s)
- Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | | | | |
Collapse
|