1
|
Waturuocha UW, P. J. A, Singh KK, Malhotra V, Krishna MS, Saini DK. A high-frequency single nucleotide polymorphism in the MtrB sensor kinase in clinical strains of Mycobacterium tuberculosis alters its biochemical and physiological properties. PLoS One 2021; 16:e0256664. [PMID: 34529706 PMCID: PMC8445491 DOI: 10.1371/journal.pone.0256664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
The DNA polymorphisms found in clinical strains of Mycobacterium tuberculosis drive altered physiology, virulence, and pathogenesis in them. Although the lineages of these clinical strains can be traced back to common ancestor/s, there exists a plethora of difference between them, compared to those that have evolved in the laboratory. We identify a mutation present in ~80% of clinical strains, which maps in the HATPase domain of the sensor kinase MtrB and alters kinase and phosphatase activities, and affects its physiological role. The changes conferred by the mutation were probed by in-vitro biochemical assays which revealed changes in signaling properties of the sensor kinase. These changes also affect bacterial cell division rates, size and membrane properties. The study highlights the impact of DNA polymorphisms on the pathophysiology of clinical strains and provides insights into underlying mechanisms that drive signal transduction in pathogenic bacteria.
Collapse
Affiliation(s)
- Uchenna Watson Waturuocha
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, India
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Athira P. J.
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Krishna Kumar Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Vandana Malhotra
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, Delhi, India
| | - M. S. Krishna
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
2
|
Waturuocha UW, Krishna MS, Malhotra V, Dixit NM, Saini DK. A Low-Prevalence Single-Nucleotide Polymorphism in the Sensor Kinase PhoR in Mycobacterium tuberculosis Suppresses Its Autophosphatase Activity and Reduces Pathogenic Fitness: Implications in Evolutionary Selection. Front Microbiol 2021; 12:724482. [PMID: 34512602 PMCID: PMC8424205 DOI: 10.3389/fmicb.2021.724482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
The genome sequencing of Mycobacterium tuberculosis, the causative organism of tuberculosis, has significantly improved our understanding of the mechanisms that drive the establishment of infection and disease progression. Several clinical strains of M. tuberculosis exhibit single-nucleotide polymorphisms (SNPs), the implications of which are only beginning to be understood. Here, we examined the impact of a specific polymorphism in PhoR, the sensor kinase of the PhoPR two-component system. Biochemical analysis revealed reduced autophosphatase/ATPase activity, which led to enhanced downstream gene expression. We complemented M. tuberculosis H37Ra with the wild-type and mutant phoPR genes and characterized the strains in a cell line infection model. We provide an explanation for the low prevalence of the SNP in clinical strains (∼1%), as the mutation causes a survival disadvantage in the host cells. The study provides a rare example of selection of a signaling node under competing evolutionary forces, wherein a biochemically superior mutation aids bacterial adaptation within-host but has low fitness for infection and hence is not selected. Our study highlights the importance of accounting for such SNPs to test therapeutic and co-therapeutic methods to combat TB.
Collapse
Affiliation(s)
- Uchenna Watson Waturuocha
- Department of Studies in Zoology, University of Mysore, Mysore, India.,Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - M S Krishna
- Department of Studies in Zoology, University of Mysore, Mysore, India
| | | | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.,Center for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India.,Center for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Phosphatase-defective DevS sensor kinase mutants permit constitutive expression of DevR-regulated dormancy genes in Mycobacterium tuberculosis. Biochem J 2020; 477:1669-1682. [PMID: 32309848 DOI: 10.1042/bcj20200113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
The DevR-DevS/DosR-DosS two-component system of Mycobacterium tuberculosis, that comprises of DevS sensor kinase and DevR response regulator, is essential for bacterial adaptation to hypoxia by inducing dormancy regulon expression. The dominant phosphatase activity of DevS under aerobic conditions enables tight negative control, whereas its kinase function activates DevR under hypoxia to induce the dormancy regulon. A net balance in these opposing kinase and phosphatase activities of DevS calibrates the response output of DevR. To gain mechanistic insights into the kinase-phosphatase balance of DevS, we generated alanine substitution mutants of five residues located in DHp α1 helix of DevS, namely Phe-403, Gly-406, Leu-407, Gly-411 and His-415. For the first time, we have identified kinase positive phosphatase negative (K+P-) mutants in DevS by a single-site mutation in either Gly-406 or Leu-407. M. tuberculosis Gly-406A and Leu-407A mutant strains constitutively expressed the DevR regulon under aerobic conditions despite the presence of negative signal, oxygen. These mutant proteins exhibited ∼2-fold interaction defect with DevR. We conclude that Gly-406 and Leu-407 residues are individually essential for the phosphatase function of DevS. Our study provides new insights into the negative control mechanism of DevS by demonstrating the importance of an optimal interaction between DevR and DevS, and local changes associated with individual residues, Gly-406 and Leu-407, which mimic ligand-free DevS. These K+P- mutant strains are expected to facilitate the rapid aerobic screening of DevR antagonists in M. tuberculosis, thereby eliminating the requirement for hypoxic culture conditions.
Collapse
|
4
|
Nandi M, Sikri K, Chaudhary N, Mande SC, Sharma RD, Tyagi JS. Multiple transcription factors co-regulate the Mycobacterium tuberculosis adaptation response to vitamin C. BMC Genomics 2019; 20:887. [PMID: 31752669 PMCID: PMC6868718 DOI: 10.1186/s12864-019-6190-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
Background Latent tuberculosis infection is attributed in part to the existence of Mycobacterium tuberculosis in a persistent non-replicating dormant state that is associated with tolerance to host defence mechanisms and antibiotics. We have recently reported that vitamin C treatment of M. tuberculosis triggers the rapid development of bacterial dormancy. Temporal genome-wide transcriptome analysis has revealed that vitamin C-induced dormancy is associated with a large-scale modulation of gene expression in M. tuberculosis. Results An updated transcriptional regulatory network of M.tuberculosis (Mtb-TRN) consisting of 178 regulators and 3432 target genes was constructed. The temporal transcriptome data generated in response to vitamin C was overlaid on the Mtb-TRN (vitamin C Mtb-TRN) to derive insights into the transcriptional regulatory features in vitamin C-adapted bacteria. Statistical analysis using Fisher’s exact test predicted that 56 regulators play a central role in modulating genes which are involved in growth, respiration, metabolism and repair functions. Rv0348, DevR, MprA and RegX3 participate in a core temporal regulatory response during 0.25 h to 8 h of vitamin C treatment. Temporal network analysis further revealed Rv0348 to be the most prominent hub regulator with maximum interactions in the vitamin C Mtb-TRN. Experimental analysis revealed that Rv0348 and DevR proteins interact with each other, and this interaction results in an enhanced binding of DevR to its target promoter. These findings, together with the enhanced expression of devR and Rv0348 transcriptional regulators, indicate a second-level regulation of target genes through transcription factor- transcription factor interactions. Conclusions Temporal regulatory analysis of the vitamin C Mtb-TRN revealed that there is involvement of multiple regulators during bacterial adaptation to dormancy. Our findings suggest that Rv0348 is a prominent hub regulator in the vitamin C model and large-scale modulation of gene expression is achieved through interactions of Rv0348 with other transcriptional regulators.
Collapse
Affiliation(s)
- Malobi Nandi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.,Amity Institute of Biotechnology, Amity University, Manesar, Haryana, 122413, India
| | - Kriti Sikri
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neha Chaudhary
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.,Present address: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, 122413, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India. .,Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
| |
Collapse
|
5
|
Hu Q, Zhang J, Chen Y, Hu L, Li W, He ZG. Cyclic di-GMP co-activates the two-component transcriptional regulator DevR in Mycobacterium smegmatis in response to oxidative stress. J Biol Chem 2019; 294:12729-12742. [PMID: 31270210 DOI: 10.1074/jbc.ra119.008252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Cyclic di-GMP (c-di-GMP) is an important second messenger in bacteria, and its regulatory network has been extensively studied. However, information regarding the activation mechanisms of its receptors remains limited. In this study, we characterized the two-component regulator DevR as a new c-di-GMP receptor and further uncovered a novel co-activation mechanism for effective regulation of DevR in mycobacteria. We show that high c-di-GMP levels induce the expression of the devR operon in Mycobacterium smegmatis and increase mycobacterial survival under oxidative stress. The deletion of either DevR or its two-component kinase DevS significantly weakened the stimulating effect of c-di-GMP on oxidative-stress tolerance of mycobacteria. We also found that DevR senses the c-di-GMP signal through its C-terminal structure and that c-di-GMP alone does not directly affect the DNA-binding activity of DevR. Strikingly, c-di-GMP stimulated DevR phosphorylation by the kinase DevS, thereby activating DevR's DNA-binding affinity. In summary, our results indicated that c-di-GMP triggers a phosphorylation-dependent mechanism that co-activates DevR's transcriptional activity. Our findings suggest a novel paradigm for the cross-talk between c-di-GMP signaling and two-component regulatory systems that activates transcription of stress-response genes in bacteria.
Collapse
Affiliation(s)
- Qingbin Hu
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxun Zhang
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Chen
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihua Hu
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zheng-Guo He
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
MnoSR Is a Bona Fide Two-Component System Involved in Methylotrophic Metabolism in Mycobacterium smegmatis. Appl Environ Microbiol 2019; 85:AEM.00535-19. [PMID: 31003982 DOI: 10.1128/aem.00535-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/14/2019] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium smegmatis and several other mycobacteria are able to utilize methanol as the sole source of carbon and energy. We recently showed that N,N-dimethyl-p-nitrosoaniline (NDMA)-dependent methanol dehydrogenase (Mno) is essential for the growth of M. smegmatis on methanol. Although Mno from this bacterium shares high homology with other known methanol dehydrogenases, methanol metabolism in M. smegmatis differs significantly from that of other described methylotrophs. In this study, we dissect the regulatory mechanism involved in the methylotrophic metabolism in M. smegmatis We identify a two-component system (TCS), mnoSR, that is involved in the regulation of mno expression. We show that the MnoSR TCS is comprised of a sensor kinase (MnoS) and a response regulator (MnoR). Our results demonstrate that MnoS undergoes autophosphorylation and is able to transfer its phosphate to MnoR by means of phosphotransferase activity. Furthermore, MnoR shows specific binding to the putative mno promoter region in vitro, thus suggesting its role in the regulation of mno expression. Additionally, we find that the MnoSR system is involved in the regulation of MSMEG_6239, which codes for a putative 1,3-propanediol dehydrogenase. We further show that M. smegmatis lacking mnoSR is unable to utilize methanol and 1,3-propanediol as the sole carbon source, which confirms the role of MnoSR in the regulation of alcohol metabolism. Our data, thus, suggest that the regulation of mno expression in M. smegmatis provides new insight into the regulation of methanol metabolism, which furthers our understanding of methylotrophy in mycobacteria.IMPORTANCE Methylotrophic metabolism has gained huge attention considering its broad application in ecology, agriculture, industries, and human health. The genus Mycobacterium comprises both pathogenic and nonpathogenic species. Several members of this genus are known to utilize methanol as the sole carbon source for growth. Although various pathways underlying methanol utilization have been established, the regulation of methylotrophic metabolism is not well studied. In the present work, we explore the regulation of methanol metabolism in M. smegmatis and discover a dedicated two-component system (TCS), MnoSR, that is involved in its regulation. We show that the loss of MnoSR renders the bacterium incapable of utilizing methanol and 1,3-propanediol as the sole carbon sources. Additionally, we establish that MnoS acts as the common sensor for the alcohols in M. smegmatis.
Collapse
|
7
|
Expression and Purification of Matrix Metalloproteinases in Escherichia coli. Methods Mol Biol 2018. [PMID: 28299729 DOI: 10.1007/978-1-4939-6863-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The MMP (matrix metalloproteinases) family of endopeptidases are involved in cleavage induced remodelling of the extracellular matrix including collagen, fibrinogen, elastin, and gelatin. Owing to their proteolytic activity which can cleave and degrade multiple intracellular substrates, the overexpression and purification of these proteins tends to be toxic. Here we describe a novel "matrix assisted refolding" protocol to overcome the technical challenges associated with overexpression and purification of full-length MMPs. The toxicity issue associated with MMP expression, is circumvented by expressing the recombinant protein in Escherichia coli in an inactive insoluble form. The methodology used for obtaining full-length MMP2 protein from these inclusion bodies, by its subsequent purification and refolding using affinity chromatography, through a single-step matrix based refolding protocol is presented here. The protocol described yields high concentrations of pure full-length and active MMP2 protein useful for downstream applications.
Collapse
|
8
|
Carrillo E, Fernandez L, Ibarra-Meneses AV, Santos MLB, Nico D, de Luca PM, Correa CB, de Almeida RP, Moreno J, Palatnik-de-Sousa CB. F1 Domain of the Leishmania (Leishmania) donovani Nucleoside Hydrolase Promotes a Th1 Response in Leishmania (Leishmania) infantum Cured Patients and in Asymptomatic Individuals Living in an Endemic Area of Leishmaniasis. Front Immunol 2017; 8:750. [PMID: 28747911 PMCID: PMC5506215 DOI: 10.3389/fimmu.2017.00750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023] Open
Abstract
The Leishmania (Leishmania) donovani nucleoside hydrolase NH36 is the main antigen of the Leishmune® vaccine and one of the promising candidates for vaccination against visceral leishmaniasis. The antigenicity of the N-terminal (F1), the central (F2), or the C-terminal recombinant domain (F3) of NH36 was evaluated using peripheral blood mononuclear cells (PBMC) from individuals infected with L. (L.) infantum from an endemic area of visceral leishmaniasis of Spain. Both NH36 and F1 domains significantly increased the PBMC proliferation stimulation index of cured patients and infected asymptomatic individuals compared to healthy controls. Moreover, F1 induced a 19% higher proliferative response than NH36 in asymptomatic exposed subjects. In addition, in patients cured from visceral leishmaniasis, proliferation in response to NH36 and F1 was accompanied by a significant increase of IFN-γ and TNF-α secretion, which was 42-43% higher, in response to F1 than to NH36. The interleukin 17 (IL-17) secretion was stronger in asymptomatic subjects, in response to F1, as well as in cured cutaneous leishmaniasis after NH36 stimulation. While no IL-10 secretion was determined by F1, a granzyme B increase was detected in supernatants from cured patients after stimulation with either NH36 or F1. These data demonstrate that F1 is the domain of NH36 that induces a recall cellular response in individuals with acquired resistance to the infection by L. (L.) infantum. In addition, F1 and NH36 discriminated the IgG3 humoral response in patients with active visceral leishmaniasis due to L. (L.) donovani (Ethiopia) and L. (L.) infantum (Spain) from that of endemic and non-endemic area controls. NH36 showed higher reactivity with sera from L. (L.) donovani-infected individuals, indicating species specificity. We conclude that the F1 domain, previously characterized as an inducer of the Th1 and Th17 responses in cured/exposed patients infected with L. (L.) infantum chagasi, may also be involved in the generation of a protective response against L. (L.) infantum and represents a potential vaccine candidate for the control of human leishmaniasis alone, or in combination with other HLA epitopes/antigens.
Collapse
Affiliation(s)
- Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Fernandez
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Victoria Ibarra-Meneses
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Micheli L. B. Santos
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Dirlei Nico
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula M. de Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Roque Pacheco de Almeida
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo, Brazil
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Clarisa B. Palatnik-de-Sousa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
9
|
Movahedi B, Mokarram P, Hemmati M, Mosavari N, Zare R, Ardekani LS, Mostafavi-Pour Z. IFN-γ and IL-2 Responses to Recombinant AlaDH against ESAT-6/CFP-10 Fusion Antigens in the Diagnosis of Latent versus Active Tuberculosis Infection. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:275-283. [PMID: 28533576 PMCID: PMC5429496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Discriminating latent tuberculosis infection (LTBI) from active TBI may be challenging. The objective of this study was to produce the recombinant L-alanine dehydrogenase (AlaDH) antigen and evaluate individuals with LTBI, those with active TBI, and uninfected individuals by enzyme-linked immunospot assay (ELISPOT) in order to distinguish LTBI from active TBI. METHODS This exploratory study was performed in the Iranian city of Shiraz from 2014 to 2015. The study population (N=99) was divided into 3 groups: individuals with newly diagnosed active TBI (n=33), their household contacts (n=33), and controls (n=33). AlaDH was produced through PCR and cloning methods. The diagnostic characteristics of AlaDH vs. ESAT-6/CFP-10 were evaluated in responses to interferon-γ (IFN-γ) and interleukin-2 (IL-2) with ELISPOT. Differences between the groups were assessed with the Kruskal-Wallis and Mann-Whitney tests for nonparametric data analysis. The statistical analyses were performed with SPSS, version 16. RESULTS IFN-γ responses to both ESAT-6/CFP-10 (P=0.81) and AlaDH (P=0.18) revealed that there were no significant differences between the individuals with LTBI and those with active TBI. The same results were determined for IL-2 responses to ESAT-6/CFP-10 between the 2 groups, while significantly higher IL-2 responses to AlaDH were observed in LTBI than in active TBI. According to the ROC curve analysis, a cutoff value of 275 SFC showed sensitivity of 75.8% and specificity of 78.8% for distinguishing LTBI from active TBI by IL-2 responses to AlaDH. CONCLUSION The current study suggests that it may be possible to discriminate LTBI from active TBI by IL-2 responses to AlaDH.
Collapse
Affiliation(s)
- Bahram Movahedi
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Gastroenterohepatology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Hemmati
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Nader Mosavari
- Department of PPD Tuberculin, Razi Vaccine and Serum Research Institute, Tehran, Iran
| | - Razie Zare
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Safaee Ardekani
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Zohreh Mostafavi-Pour, PhD; Department of Biochemistry, School of Medicine, Zand Blvd., Shiraz, Iran Tel\Fax: +98 71 32303029
| |
Collapse
|
10
|
Barbosa Santos ML, Nico D, de Oliveira FA, Barreto AS, Palatnik-de-Sousa I, Carrillo E, Moreno J, de Luca PM, Morrot A, Rosa DS, Palatnik M, Bani-Corrêa C, de Almeida RP, Palatnik-de-Sousa CB. Leishmania donovani Nucleoside Hydrolase (NH36) Domains Induce T-Cell Cytokine Responses in Human Visceral Leishmaniasis. Front Immunol 2017; 8:227. [PMID: 28321221 PMCID: PMC5338038 DOI: 10.3389/fimmu.2017.00227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/16/2017] [Indexed: 11/15/2022] Open
Abstract
Development of immunoprotection against visceral leishmaniasis (VL) focused on the identification of antigens capable of inducing a Th1 immune response. Alternatively, antigens targeting the CD8 and T-regulatory responses are also relevant in VL pathogenesis and worthy of being included in a preventive human vaccine. We assessed in active and cured patients and VL asymptomatic subjects the clinical signs and cytokine responses to the Leishmania donovani nucleoside hydrolase NH36 antigen and its N-(F1), central (F2) and C-terminal (F3) domains. As markers of VL resistance, the F2 induced the highest levels of IFN-γ, IL-1β, and TNF-α and, together with F1, the strongest secretion of IL-17, IL-6, and IL-10 in DTH+ and cured subjects. F2 also promoted the highest frequencies of CD3+CD4+IL-2+TNF-α-IFN-γ-, CD3+CD4+IL-2+TNF-α+IFN-γ-, CD3+CD4+IL-2+TNF-α-IFN-γ+, and CD3+CD4+IL-2+TNF-α+IFN-γ+ T cells in cured and asymptomatic subjects. Consistent with this, the IFN-γ increase was correlated with decreased spleen (R = -0.428, P = 0.05) and liver sizes (R = -0.428, P = 0.05) and with increased hematocrit counts (R = 0.532, P = 0.015) in response to F1 domain, and with increased hematocrit (R = 0.512, P 0.02) and hemoglobin counts (R = 0.434, P = 0.05) in response to F2. Additionally, IL-17 increases were associated with decreased spleen and liver sizes in response to F1 (R = -0.595, P = 0.005) and F2 (R = -0.462, P = 0.04). Conversely, F1 and F3 increased the CD3+CD8+IL-2+TNF-α-IFN-γ-, CD3+CD8+IL-2+TNF-α+IFN-γ-, and CD3+CD8+IL-2+TNF-α+IFN-γ+ T cell frequencies of VL patients correlated with increased spleen and liver sizes and decreased hemoglobin and hematocrit values. Therefore, cure and acquired resistance to VL correlate with the CD4+-Th1 and Th-17 T-cell responses to F2 and F1 domains. Clinical VL outcomes, by contrast, correlate with CD8+ T-cell responses against F3 and F1, potentially involved in control of the early infection. The in silico-predicted NH36 epitopes are conserved and bind to many HL-DR and HLA and B allotypes. No human vaccine against Leishmania is available thus far. In this investigation, we identified the NH36 domains and epitopes that induce CD4+ and CD8+ T cell responses, which could be used to potentiate a human universal T-epitope vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Micheli Luize Barbosa Santos
- Laboratório de Biologia Molecular, Hospital Universitário, Departamento de Medicina, Universidade Federal de Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Dirlei Nico
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabrícia Alvisi de Oliveira
- Laboratório de Biologia Molecular, Hospital Universitário, Departamento de Medicina, Universidade Federal de Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Aline Silva Barreto
- Laboratório de Biologia Molecular, Hospital Universitário, Departamento de Medicina, Universidade Federal de Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Iam Palatnik-de-Sousa
- Laboratório de Biometrologia, Programa de Pós-Graduação em Metrologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Instituto de Salud Carlos III, Centro Nacional de Microbiologia, Madrid, Comunidad de Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Instituto de Salud Carlos III, Centro Nacional de Microbiologia, Madrid, Comunidad de Madrid, Spain
| | - Paula Mello de Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunologia Integrada, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Santoro Rosa
- Faculdade de Medicina, Instituto de Investigação em Imunologia, Universidade de São Paulo (USP), São Paulo, Brazil
- Laboratório de Vacinas experimentais, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Marcos Palatnik
- Laboratório de Imunohematologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga-Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Bani-Corrêa
- Departamento de Morfologia, Universidade Federal de Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Roque Pacheco de Almeida
- Laboratório de Biologia Molecular, Hospital Universitário, Departamento de Medicina, Universidade Federal de Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
- Faculdade de Medicina, Instituto de Investigação em Imunologia, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Clarisa Beatriz Palatnik-de-Sousa
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Instituto de Investigação em Imunologia, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
11
|
Kaur K, Kumari P, Sharma S, Sehgal S, Tyagi JS. DevS/DosS sensor is bifunctional and its phosphatase activity precludes aerobic DevR/DosR regulon expression inMycobacterium tuberculosis. FEBS J 2016; 283:2949-62. [DOI: 10.1111/febs.13787] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Kohinoor Kaur
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Priyanka Kumari
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Saurabh Sharma
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Snigdha Sehgal
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
12
|
Saini DK, Tyagi JS. High-Throughput Microplate Phosphorylation Assays Based on DevR-DevS/Rv2027c 2-Component Signal Transduction Pathway to Screen for Novel Antitubercular Compounds. ACTA ACUST UNITED AC 2016; 10:215-24. [PMID: 15809317 DOI: 10.1177/1087057104272090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DevR-DevS (Rv3133c-Rv3132c) and DevR-Rv2027c have been established through their autophosphorylation and phospho-transfer properties to constitute bonafide regulatory 2-component systems of Mycobacterium tuberculosis. DevR has also been shown by others to play a key regulatory role in the expression of M. tuberculosis genes comprising the dormancy regulon. The authors describe high-throughput phosphorylation assays in a microplate format using DevS and Rv2027c histidine kinases and DevR response regulator proteins from M. tuberculosis. The assays were designed to measure [γ-32P]ATP-dependent autophosphorylation of DevS/Rv2027c and also the phosphotransfer reaction to DevR. First, the optimal reaction conditions were established using the conventional method of radiolabeling the 2-component proteins by [γ-32P]ATP and followed by gel electrophoresis-based analysis. Next, the assays were converted to a high-throughput format in which the radiolabeled protein retained on a filter using mixed cellulose ester-based 96-well filter plates was analyzed for radioactivity retention by scintillation counting. The utility of these assays to screen for inhibitors is illustrated using 2-mercaptobenzimidazole, ethidium bromide, and EDTA. The high quality and flexibility of these assays will enable their use in high-throughput screening for new antitubercular compounds directed against 2-component systems that comprise a novel target in dormant mycobacteria.
Collapse
Affiliation(s)
- Deepak Kumar Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110-029, India
| | | |
Collapse
|
13
|
Matrix-assisted refolding, purification and activity assessment using a 'form invariant' assay for matrix metalloproteinase 2 (MMP2). Mol Biotechnol 2016; 56:1121-32. [PMID: 25119648 DOI: 10.1007/s12033-014-9792-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Matrix metalloproteinases expression is used as biomarker for various cancers and associated malignancies. Since these proteinases can cleave many intracellular proteins, overexpression tends to be toxic; hence, a challenge to purify them. To overcome these limitations, we designed a protocol where full length pro-MMP2 enzyme was overexpressed in E. coli as inclusion bodies and purified using 6xHis affinity chromatography under denaturing conditions. In one step, the enzyme was purified and refolded directly on the affinity matrix under redox conditions to obtain a bioactive protein. The pro-MMP2 protein was characterized by mass spectrometry, CD spectroscopy, zymography and activity analysis using a simple in-house developed 'form invariant' assay, which reports the total MMP2 activity independent of its various forms. The methodology yielded higher yields of bioactive protein compared to other strategies reported till date, and we anticipate that using the protocol, other toxic proteins can also be overexpressed and purified from E. coli and subsequently refolded into active form using a one step renaturation protocol.
Collapse
|
14
|
Expression, Purification, and Biological Characterization of Babesia microti Apical Membrane Antigen 1. Infect Immun 2015. [PMID: 26195550 DOI: 10.1128/iai.00168-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The intraerythrocytic apicomplexan Babesia microti, the primary causative agent of human babesiosis, is a major public health concern in the United States and elsewhere. Apicomplexans utilize a multiprotein complex that includes a type I membrane protein called apical membrane antigen 1 (AMA1) to invade host cells. We have isolated the full-length B. microti AMA1 (BmAMA1) gene and determined its nucleotide sequence, as well as the amino acid sequence of the AMA1 protein. This protein contains an N-terminal signal sequence, an extracellular region, a transmembrane region, and a short conserved cytoplasmic tail. It shows the same domain organization as the AMA1 orthologs from piroplasm, coccidian, and haemosporidian apicomplexans but differs from all other currently known piroplasmida, including other Babesia and Theileria species, in lacking two conserved cysteines in highly variable domain III of the extracellular region. Minimal polymorphism was detected in BmAMA1 gene sequences of parasite isolates from six babesiosis patients from Nantucket. Immunofluorescence microscopy studies showed that BmAMA1 is localized on the cell surface and cytoplasm near the apical end of the parasite. Native BmAMA1 from parasite lysate and refolded recombinant BmAMA1 (rBmAMA1) expressed in Escherichia coli reacted with a mouse anti-BmAMA1 antibody using Western blotting. In vitro binding studies showed that both native BmAMA1 and rBmAMA1 bind to human red blood cells (RBCs). This binding is trypsin and chymotrypsin treatment sensitive but neuraminidase independent. Incubation of B. microti parasites in human RBCs with a mouse anti-BmAMA1 antibody inhibited parasite growth by 80% in a 24-h assay. Based on its antigenically conserved nature and potential role in RBC invasion, BmAMA1 should be evaluated as a vaccine candidate.
Collapse
|
15
|
The two-component signalling networks of Mycobacterium tuberculosis display extensive cross-talk in vitro. Biochem J 2015; 469:121-34. [DOI: 10.1042/bj20150268] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/01/2015] [Indexed: 02/06/2023]
Abstract
Bacteria use two-component signalling systems (TCSs) to sense and respond to environmental changes. Currently, they are thought to be highly specific, with each TCS functioning independently. Here, unlike the prevalent paradigm, we show that the TCSs of M. tuberculosis cross-talk extensively, thereby proposing an alternative signalling scenario.
Collapse
|
16
|
Malhotra V, Agrawal R, Duncan TR, Saini DK, Clark-Curtiss JE. Mycobacterium tuberculosis response regulators, DevR and NarL, interact in vivo and co-regulate gene expression during aerobic nitrate metabolism. J Biol Chem 2015; 290:8294-309. [PMID: 25659431 DOI: 10.1074/jbc.m114.591800] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis genes Rv0844c/Rv0845 encoding the NarL response regulator and NarS histidine kinase are hypothesized to constitute a two-component system involved in the regulation of nitrate metabolism. However, there is no experimental evidence to support this. In this study, we established M. tuberculosis NarL/NarS as a functional two-component system and identified His(241) and Asp(61) as conserved phosphorylation sites in NarS and NarL, respectively. Transcriptional profiling between M. tuberculosis H37Rv and a ΔnarL mutant strain during exponential growth in broth cultures with or without nitrate defined an ∼30-gene NarL regulon that exhibited significant overlap with DevR-regulated genes, thereby implicating a role for the DevR response regulator in the regulation of nitrate metabolism. Notably, expression analysis of a subset of genes common to NarL and DevR regulons in M. tuberculosis ΔdevR, ΔdevSΔdosT, and ΔnarL mutant strains revealed that in response to nitrite produced during aerobic nitrate metabolism, the DevRS/DosT regulatory system plays a primary role that is augmented by NarL. Specifically, NarL itself was unable to bind to the narK2, acg, and Rv3130c promoters in phosphorylated or unphosphorylated form; however, its interaction with DevR∼P resulted in cooperative binding, thereby enabling co-regulation of these genes. These findings support the role of physiologically derived nitrite as a metabolic signal in mycobacteria. We propose NarL-DevR binding, possibly as a heterodimer, as a novel mechanism for co-regulation of gene expression by the DevRS/DosT and NarL/NarS regulatory systems.
Collapse
Affiliation(s)
- Vandana Malhotra
- From the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and
| | - Ruchi Agrawal
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Tammi R Duncan
- From the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Deepak K Saini
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Josephine E Clark-Curtiss
- From the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| |
Collapse
|
17
|
Cloning and Characterization of Pangasianodon hypophthalmus Growth Hormone Gene and its Heterologous Expression. Appl Biochem Biotechnol 2014; 173:1446-68. [DOI: 10.1007/s12010-014-0946-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
|
18
|
Agrawal R, Saini DK. Rv1027c-Rv1028c encode functional KdpDE two--component system in Mycobacterium tuberculosis. Biochem Biophys Res Commun 2014; 446:1172-8. [PMID: 24667597 DOI: 10.1016/j.bbrc.2014.03.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
In Mycobacteriumtuberculosis Rv1027c-Rv1028c genes are predicted to encode KdpDE two component system, which is highly conserved across all bacterial species. Here, we show that the system is functionally active and KdpD sensor kinase undergoes autophosphorylation and transfers phosphoryl group to KdpE, response regulator protein. We identified His(642) and Asp(52) as conserved phosphorylation sites in KdpD and KdpE respectively and by SPR analysis confirmed the physical interaction between them. KdpD was purified with prebound divalent ions and their importance in phosphorylation was established using protein refolding and ion chelation approaches. Genetically a single transcript encoded both KdpD and KdpE proteins. Overall, we report that M. tuberculosis KdpDE system operates like a canonical two component system.
Collapse
Affiliation(s)
- Ruchi Agrawal
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
19
|
Mir SA, Sharma S. Cloning, expression and N-terminal formylation of ESAT-6 of Mycobacterium tuberculosis H37Rv. Protein Expr Purif 2013; 92:223-9. [DOI: 10.1016/j.pep.2013.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 11/16/2022]
|
20
|
Sivaramakrishnan S, de Montellano PRO. The DosS-DosT/DosR Mycobacterial Sensor System. BIOSENSORS 2013; 3:259-282. [PMID: 25002970 PMCID: PMC4082495 DOI: 10.3390/bios3030259] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/15/2013] [Accepted: 06/26/2013] [Indexed: 11/16/2022]
Abstract
DosS/DosR is a two-component regulatory system in which DosS, a heme-containing sensor also known as DevS, under certain conditions undergoes autophosphorylation and then transfers the phosphate to DosR, a DNA-binding protein that controls the entry of Mycobacterium tuberculosis and other mycobacteria into a latent, dormant state. DosT, a second sensor closely related to DosS, is present in M. tuberculosis and participates in the control of the dormancy response mediated by DosR. The binding of phosphorylated DosR to DNA initiates the expression of approximately fifty dormancy-linked genes. DosT is accepted to be a gas sensor that is activated in the ferrous state by the absence of an oxygen ligand or by the binding of NO or CO. DosS functions in a similar fashion as a gas sensor, but contradictory evidence has led to the suggestion that it also functions as a redox state sensor. This review focuses on the structure, biophysical properties, and function of the DosS/DosT heme sensors.
Collapse
Affiliation(s)
- Santhosh Sivaramakrishnan
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158, USA;
| | - Paul R Ortiz de Montellano
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158, USA;
| |
Collapse
|
21
|
Haldar S, Sankhyan N, Sharma N, Bansal A, Jain V, Gupta VK, Juneja M, Mishra D, Kapil A, Singh UB, Gulati S, Kalra V, Tyagi JS. Detection of Mycobacterium tuberculosis GlcB or HspX Antigens or devR DNA impacts the rapid diagnosis of tuberculous meningitis in children. PLoS One 2012; 7:e44630. [PMID: 22984534 PMCID: PMC3440320 DOI: 10.1371/journal.pone.0044630] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 08/06/2012] [Indexed: 01/22/2023] Open
Abstract
Background Tuberculous meningitis (TBM) is the most common form of neurotuberculosis and the fifth most common form of extrapulmonary TB. Early diagnosis and prompt treatment are the cornerstones of effective disease management. The accurate diagnosis of TBM poses a challenge due to an extensive differential diagnosis, low bacterial load and paucity of cerebrospinal fluid (CSF) especially in children. Methodology/Principal Findings We describe the utility of ELISA and qPCR for the detection of Mycobacterium tuberculosis (M. tb) proteins (GlcB, HspX, MPT51, Ag85B and PstS1) and DNA for the rapid diagnosis of TBM. CSF filtrates (n = 532) derived from children were classified as ‘Definite’ TBM (M. tb culture positive, n = 29), ‘Probable and Possible’ TBM (n = 165) and ‘Not-TBM’ including other cases of meningitis or neurological disorders (n = 338). ROC curves were generated from ELISA and qPCR data of ‘Definite’ TBM and Non-Tuberculous infectious meningitis (NTIM) samples and cut-off values were derived to provide ≥95% specificity. devR qPCR, GlcB, HspX and PstS1 ELISAs showed 100% (88;100) sensitivity and 96–97% specificity in ‘Definite’ TBM samples. The application of these cut-offs to ‘Probable and Possible’ TBM groups yielded excellent sensitivity (98%, 94;99) and specificity (98%, 96;99) for qPCR and for GlcB, HspX and MPT51 antigen ELISAs (sensitivity 92–95% and specificity 93–96%). A test combination of qPCR with GlcB and HspX ELISAs accurately detected all TBM samples at a specificity of ∼90%. Logistic regression analysis indicated that these tests significantly added value to the currently used algorithms for TBM diagnosis. Conclusions The detection of M. tb GlcB/HspX antigens/devR DNA in CSF is likely to improve the utility of existing algorithms for TBM diagnosis and also hasten the speed of diagnosis.
Collapse
Affiliation(s)
- Sagarika Haldar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Naveen Sankhyan
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Neera Sharma
- Department of Biochemistry and Department of Pediatrics, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Anjali Bansal
- Department of Biochemistry and Department of Pediatrics, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Vitul Jain
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - V. K. Gupta
- Department of Biochemistry and Department of Pediatrics, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Monica Juneja
- Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Devendra Mishra
- Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Urvashi B. Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sheffali Gulati
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Veena Kalra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
22
|
Bretl DJ, Demetriadou C, Zahrt TC. Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis. Microbiol Mol Biol Rev 2011; 75:566-82. [PMID: 22126994 PMCID: PMC3232741 DOI: 10.1128/mmbr.05004-11] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis.
Collapse
Affiliation(s)
| | | | - Thomas C. Zahrt
- Center for Infectious Disease Research and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| |
Collapse
|
23
|
Su Z, Lu D, Liu Z. Refolding of inclusion body proteins from E. coli. METHODS OF BIOCHEMICAL ANALYSIS 2011; 54:319-38. [PMID: 21954784 DOI: 10.1002/9780470939932.ch13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China
| | | | | |
Collapse
|
24
|
Co-expression of DevR and DevR(N)-Aph proteins is associated with hypoxic adaptation defect and virulence attenuation of Mycobacterium tuberculosis. PLoS One 2010; 5:e9448. [PMID: 20195478 PMCID: PMC2829086 DOI: 10.1371/journal.pone.0009448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/04/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The DevR response regulator is implicated in both hypoxic adaptation and virulence of Mycobacterium tuberculosis (M. tb). DevR regulon genes are powerfully induced in vivo implicating them in bacterial adaptation to host control strategies. A better understanding of DevR function will illumine the way for new strategies to control and treat tuberculosis. METHODOLOGY/PRINCIPAL FINDINGS Towards this objective, we used a combination of genetic, microbiological, biochemical, cell biological tools and a guinea pig virulence assay to compare the hypoxic adaptation and virulence properties of two novel M. tb strains, namely, a devR disruption mutant, Mut1, that expresses C-terminal truncated N-terminal domain of DevR (DevR(NTD)) as a fusion protein with AphI (DevR(N)-Kan), and its complemented strain, Comp1, that expresses intact DevR along with DevR(N)-Kan. Comp1 bacteria exhibit a defect in DevR-mediated phosphosignalling, hypoxic induction of HspX and also hypoxic survival. In addition, we find that Comp1 is attenuated in virulence in guinea pigs and shows decreased infectivity of THP-1 cells. While Mut1 bacilli are also defective in hypoxic adaptation and early growth in spleen, they exhibit an overall virulence comparable to that of wild-type bacteria. CONCLUSIONS/SIGNIFICANCE The hypoxic defect of Comp1 is associated to a defect in DevR expression level. The demonstrated repression of DevR function by DevR(N)-Kan suggests that such a knockdown approach could be useful for evaluating the activity of DevRS and other two-component signaling pathways. Further investigation is necessary to elucidate the mechanism underlying Comp1 attenuation.
Collapse
|
25
|
Sousa EHS, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA. DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci 2007; 16:1708-19. [PMID: 17600145 PMCID: PMC2203369 DOI: 10.1110/ps.072897707] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Exposure of Mycobacterium tuberculosis to hypoxia is known to alter the expression of many genes, including ones thought to be involved in latency, via the transcription factor DevR (also called DosR). Two sensory kinases, DosT and DevS (also called DosS), control the activity of DevR. We show that, like DevS, DosT contains a heme cofactor within an N-terminal GAF domain. For full-length DosT and DevS, we determined the ligand-binding parameters and the rates of ATP reaction with the liganded and unliganded states. In both proteins, the heme state was coupled to the kinase such that the unliganded, CO-bound, and NO-bound forms were active, but the O(2)-bound form was inactive. Oxygen-bound DosT was unusually inert to oxidation to the ferric state (half life in air >60 h). Though the kinase activity of DosT was unaffected by NO, this ligand bound 5000 times more avidly than O(2) to DosT (K(d) [NO] approximately 5 nM versus K(d) [O(2)] = 26 microM). These results demonstrate direct and specific O(2) sensing by proteins in M. tuberculosis and identify for the first time a signal ligand for a sensory kinase from this organism. They also explain why exposure of M. tuberculosis to NO donors under aerobic conditions can give results identical to hypoxia, i.e., NO saturates DosT, preventing O(2) binding and yielding an active kinase.
Collapse
|
26
|
Ioanoviciu A, Yukl ET, Moënne-Loccoz P, Ortiz de Montellano PR. DevS, a heme-containing two-component oxygen sensor of Mycobacterium tuberculosis. Biochemistry 2007; 46:4250-60. [PMID: 17371046 PMCID: PMC2518089 DOI: 10.1021/bi602422p] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis can exist in the actively growing state of the overt disease or in a latent quiescent state that can be induced, among other things, by anaerobiosis. Eradication of the latent state is particularly difficult with the available drugs and requires prolonged treatment. DevS is a member of the DevS-DevR two-component regulatory system that is thought to mediate the cellular response to anaerobiosis. Here we report the cloning, expression, and initial characterization of a truncated version of DevS (DevS642) containing only the N-terminal GAF sensor domain (GAF-A) and of the full-length protein DevS. The DevS truncated construct quantitatively binds heme in a 1:1 stoichiometry, and the complex of the protein with ferrous heme reversibly binds O2, NO, and CO. UV-vis and resonance Raman spectroscopy of the wild-type protein and the H149A mutant confirm that His149 is the proximal ligand to the heme iron atom. While the heme-CO complex is present as two conformers in the GAF-A domain, a single set of [Fe-C-O] vibrations is observed with the full-length protein, suggesting that interactions between domains within DevS influence the distal pocket environment of the heme in the GAF-A domain.
Collapse
Affiliation(s)
- Alexandra Ioanoviciu
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Erik T. Yukl
- Department of Environmental & Biomolecular Systems, 20,000 NW Walker Road, OGI School of Science and Engineering, Oregon Health & Sciences University, Beaverton, Oregon 97006-8921
| | - Pierre Moënne-Loccoz
- Department of Environmental & Biomolecular Systems, 20,000 NW Walker Road, OGI School of Science and Engineering, Oregon Health & Sciences University, Beaverton, Oregon 97006-8921
| | - Paul R. Ortiz de Montellano
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
- To whom editorial correspondence should be addressed: Dr. Paul Ortiz de Montellano, University of California, Genentech Hall GH-N572D, 600 16 Street, Box 2280, San Francisco, CA 94158-2517, TEL: (415) 476-2903, FAX: (415) 502-4728, e-mail:
| |
Collapse
|
27
|
Sharma D, Bose A, Shakila H, Das TK, Tyagi JS, Ramanathan VD. Expression of mycobacterial cell division protein, FtsZ, and dormancy proteins, DevR and Acr, within lung granulomas throughout guinea pig infection. ACTA ACUST UNITED AC 2006; 48:329-36. [PMID: 17059468 DOI: 10.1111/j.1574-695x.2006.00160.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The ability of Mycobacterium tuberculosis to persist in a dormant state is a hallmark of tuberculosis. An insight into the expression of mycobacterial proteins will contribute to our understanding of bacterial physiology in vivo. To this end, the expression of FtsZ, Acr and DevR was assessed in the lung granulomas of guinea pigs infected with M. tuberculosis. Antigen immunostaining was then compared with the detection of acid-fast bacilli (AFB) and mycobacterial DNA. Surprisingly, immunostaining for all three antigens was observed throughout the course of infection; maximum expression of all antigens was noted at 20 weeks of infection. The intensity of immunostaining correlated well with the presence of intact bacteria, suggesting that mycobacterial antigens in the extracellular fraction have a short half-life; in contrast to protein, extracellular bacterial DNA was found to be more stable. Immunostaining for bacterial division and dormancy markers could not clearly distinguish between replicating and non-replicating organisms during the course of infection. The detection of Acr and DevR from 4 weeks onwards indicates that the dormancy proteins are expressed from early on in infection. Both antigen staining and DNA detection from intact bacilli were useful for detecting intact mycobacteria in the absence of AFB.
Collapse
Affiliation(s)
- Deepak Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | | | | | |
Collapse
|
28
|
Franzmann TM. Matrix-assisted refolding of oligomeric small heat-shock protein Hsp26. Int J Biol Macromol 2006; 39:104-10. [PMID: 16626802 DOI: 10.1016/j.ijbiomac.2006.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/27/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Recombinant gene expression in the prokaryotic host Escherichia coli is of general interest for both biotechnology and basic research. Use of E. coli is inexpensive and advantageous due to the fully developed genetic accessibility. However, often insoluble target protein (inclusion body) accumulates in the cell. Especially when producing eukaryotic or disulfide bridged proteins in E. coli, inclusion body formation is observed. Nonetheless, insoluble protein can be regained and refolded in vitro. Commonly, renaturation of proteins is accomplished by methods involving dilution and/or dialysis. An interesting alternative is matrix-assisted refolding in which the denatured protein is refolded in the immobilized state. Here, matrix-assisted refolding was applied to refold a double cysteine variant of Hsp26, a small heat-shock protein from Saccharomyces cerevisiae which was insoluble after biosynthesis in E. coli BL21 (DE3) cells. This oligomeric protein was efficiently recovered from the insoluble fraction and refolded to its native oligomeric and chaperone-active state using ion exchange and size exclusion chromatography.
Collapse
Affiliation(s)
- Titus M Franzmann
- Department Chemie, Technische Universität München, 85747 Garching, Germany.
| |
Collapse
|
29
|
Wang BL, Xu Y, Wu CQ, Xu YM, Wang HH. Cloning, expression, and refolding of a secretory protein ESAT-6 of Mycobacterium tuberculosis. Protein Expr Purif 2005; 39:184-8. [PMID: 15642469 DOI: 10.1016/j.pep.2004.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/29/2004] [Indexed: 11/17/2022]
Abstract
A DNA encoding the 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis was inserted into a bacterial expression vector of pQE30 resulting in a 6x His-esat-6 fusion gene construction. This plasmid was transformed into Escherichia coli strain M15 and effectively expressed. The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea or 6M guanidine-hydrochloride at pH 7.4, and the recombinant protein was purified by Ni-NTA column. The purified fusion protein was refolded by dialysis with a gradient of decreasing concentration of urea or guanidine hydrochloride or by the size exclusion protein refolding system. The yield of refolded protein obtained from urea dialysis was 20 times higher than that from guanidine-hydrochloride. Sixty-six percent of recombinant ESAT-6 was successfully refolded as monomer protein by urea gradient dialysis, while 69% of recombinant ESAT-6 was successfully refolded as monomer protein by using Sephadex G-200 size exclusion column. These results indicate that urea is more suitable than guanidine-hydrochloride in extracting and refolding the protein. Between the urea gradient dialysis and the size exclusion protein refolding system, the yield of the monomer protein was almost the same, but the size exclusion protein refolding system needs less time and reagents.
Collapse
Affiliation(s)
- Bao-Lin Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, PR China.
| | | | | | | | | |
Collapse
|
30
|
Rodrigues MHC, Rodrigues KM, Oliveira TR, Cômodo AN, Rodrigues MM, Kocken CHM, Thomas AW, Soares IS. Antibody response of naturally infected individuals to recombinant Plasmodium vivax apical membrane antigen-1. Int J Parasitol 2004; 35:185-92. [PMID: 15710439 DOI: 10.1016/j.ijpara.2004.11.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/03/2004] [Accepted: 11/03/2004] [Indexed: 11/28/2022]
Abstract
In the present study, we evaluate the naturally acquired antibody response to the Plasmodium vivax apical membrane antigen 1 (PvAMA-1), a leading vaccine candidate against malaria. The gene encoding the PvAMA-1 ectodomain region (amino acids 43-487) was cloned by PCR using genomic DNA from a Brazilian individual with patent P. vivax infection. The predicted amino acid sequence displayed a high degree of identity (97.3%) with a previously published sequence from the P. vivax Salvador strain. A recombinant protein representing the PvAMA-1 ectodomain was expressed in Escherichia coli and refolded. By ELISA, this recombinant protein reacted with 85 and 48.5% of the IgG or IgM antibodies, respectively, from Brazilian individuals with patent P. vivax malaria. IgG1 was the predominant subclass of IgG. The frequency of response increased according to the number of malaria episodes, reaching 100% in individuals in their fourth malaria episode. The high degree of recognition of PvAMA-1 by human antibodies was confirmed using a second recombinant protein expressed in Pichia pastoris (PV66/AMA-1). The observation that recognition of the bacterial recombinant PvAMA-1 was only slightly lower than that of the highly immunogenic 19kDa C-terminal domain of the P. vivax Merozoite Surface Protein-1 was also important. DNA sequencing of the PvAMA-1 variable domain from 20 Brazilian isolates confirmed the limited polymorphism of PvAMA-1 suggested by serological analysis. In conclusion, we provide evidence that PvAMA-1 is highly immunogenic during natural infection in humans and displays limited polymorphism in Brazil. Based on these observations, we conclude that PvAMA-1 merits further immunological studies as a vaccine candidate against P. vivax malaria.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibody Formation/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Brazil
- Cloning, Molecular/methods
- DNA, Protozoan/analysis
- Endemic Diseases
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/immunology
- Humans
- Immunoglobulin G/immunology
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria, Vivax/immunology
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Merozoite Surface Protein 1
- Plasmodium vivax/genetics
- Plasmodium vivax/immunology
- Polymorphism, Genetic/genetics
- Polymorphism, Genetic/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombinant Proteins/immunology
- Sequence Analysis, Protein/methods
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Maria Helena C Rodrigues
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof Lineu Prestes, 580, Cidade Universitária, São Paulo SP 05508-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The correct folding of solubilized recombinant proteins is of key importance for their production in industry. On-column refolding of proteins is mainly achieved by three methods: size-exclusion chromatography, ion exchange chromatography and affinity chromatography using immobilized metal chelates. The principles of these methods were first laid down in the 1990s, but many recent improvements have been made to these processes including sophisticated changes to the mobile phase composition and the recycling of aggregates to improve yield. Advances have also been made in the use of immobilized metal affinity chromatography and by mimicking the natural folding process with artificial chaperones.
Collapse
Affiliation(s)
- Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | | | | |
Collapse
|
32
|
Saini DK, Malhotra V, Tyagi JS. Cross talk between DevS sensor kinase homologue, Rv2027c, and DevR response regulator of Mycobacterium tuberculosis. FEBS Lett 2004; 565:75-80. [PMID: 15135056 DOI: 10.1016/j.febslet.2004.02.092] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 02/13/2004] [Accepted: 02/17/2004] [Indexed: 11/19/2022]
Abstract
Rv2027c is a putative orphan histidine sensor kinase that bears strong homology to DevS of the hypoxia-responsive DevR-DevS two-component system in M. tuberculosis. The cytosolic C-terminal domain of Rv2027c protein (Rv2027c(194)) was overexpressed in E. coli and biochemically characterized. Rv2027c(194) underwent autophosphorylation at a conserved His(392) residue and engaged in phosphotransfer with DevR response regulator. The rates of autophosphorylation and the stabilities of the phosphorylated species were broadly similar in Rv2027c and DevS. However, unlike DevS, Rv2027c utilized Ca(2+) as an alternative divalent ion during autophosphorylation. In contrast to DevS which completed phosphotransfer to DevR in 5-10 min, phosphotransfer from Rv2027c approximately P was only partial at 30 min. Unlike devS transcription that was hypoxia-responsive, Rv2027c transcript levels were not upregulated from basal levels during hypoxia. The differential regulation of devS and Rv2027c genes, the ability of Rv2027c to utilize Ca(2+) as a divalent cation in autophosphorylation at physiological concentrations and to engage in phosphotransfer with DevR suggests that the DevR regulon could be modulated by more than one environmental cue relayed through DevS and Rv2027c.
Collapse
Affiliation(s)
- Deepak Kumar Saini
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | |
Collapse
|
33
|
Saini DK, Malhotra V, Dey D, Pant N, Das TK, Tyagi JS. DevR–DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology (Reading) 2004; 150:865-875. [PMID: 15073296 DOI: 10.1099/mic.0.26218-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component systems play a central role in the adaptation of pathogenic bacteria to the environment prevailing within host tissues. The genes encoding the response regulator DevR (Rv3133c/DosR) and the cytoplasmic portion (DevS201) of the histidine kinase DevS (Rv3132c/DosS), a putative two-component system ofMycobacterium tuberculosis, were cloned and the protein products were overexpressed, purified and refolded as N-terminally His6-tagged proteins fromEscherichia coli. DevS201underwent autophosphorylation and participated in rapid phosphotransfer to DevR in a Mg2+-dependent manner. Chemical stability analysis and site-directed mutagenesis implicated the highly conserved residues His395and Asp54as the sites of phosphorylation in DevS and DevR, respectively. Mutations in Asp8and Asp9residues, postulated to form the acidic Mg2+-binding pocket, and the invariant Lys104of DevR, abrogated phosphoryl transfer from DevS201to DevR. DevR–DevS was thus established as a typical two-component regulatory system based on His-to-Asp phosphoryl transfer. Expression of theRv3134c–devR–devSoperon was induced at the RNA level in hypoxic cultures ofM. tuberculosisH37Rv and was associated with an increase in the level of DevR protein. However, in adevRmutant strain expressing the N-terminal domain of DevR, induction was observed at the level of RNA expression but not at that of protein. DevS was translated independently of DevR and induction ofdevStranscripts was not associated with an increase in protein level in either wild-type or mutant strains, reflecting differential regulation of this locus during hypoxia.
Collapse
Affiliation(s)
- Deepak Kumar Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Malhotra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepanwita Dey
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neha Pant
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Taposh K Das
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
34
|
Roberts DM, Liao RP, Wisedchaisri G, Hol WGJ, Sherman DR. Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem 2004; 279:23082-7. [PMID: 15033981 PMCID: PMC1458500 DOI: 10.1074/jbc.m401230200] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current estimates indicate that nearly a third of the world's population is latently infected with Mycobacterium tuberculosis. Reduced oxygen tension and nitric oxide exposure are two conditions encountered by bacilli in vivo that may promote latency. In vitro exposure to hypoxia or nitric oxide results in bacterial stasis with concomitant induction of a 47-gene regulon controlled by the transcription factor DosR. In this report we demonstrate that both the dosS gene adjacent to dosR and another gene, dosT (Rv2027c), encode sensor kinases, each of which can autophosphorylate at a conserved histidine and then transfer phosphate to an aspartate residue of DosR. Mutant bacteria lacking both sensors are unable to activate expression of DosR-regulated genes. These data indicate that DosR/DosS/DosT comprise a two-component signaling system that is required for the M. tuberculosis genetic response to hypoxia and nitric oxide, two conditions that produce reversible growth arrest in vitro and may contribute to latency in vivo.
Collapse
Affiliation(s)
- David M Roberts
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
35
|
Malhotra V, Sharma D, Ramanathan VD, Shakila H, Saini DK, Chakravorty S, Das TK, Li Q, Silver RF, Narayanan PR, Tyagi JS. Disruption of response regulator gene,devR, leads to attenuation in virulence ofMycobacterium tuberculosis. FEMS Microbiol Lett 2004; 231:237-45. [PMID: 14987770 DOI: 10.1016/s0378-1097(04)00002-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 10/16/2003] [Accepted: 12/17/2003] [Indexed: 11/22/2022] Open
Abstract
The devR-devS two-component system of Mycobacterium tuberculosis was identified earlier and partially characterized in our laboratory. A devR::kan mutant of M. tuberculosis was constructed by allelic exchange. The devR mutant strain showed reduced cell-to-cell adherence in comparison to the parental strain in laboratory culture media. This phenotype was reversed on complementation with a wild-type copy of devR. The devR mutant and parental strains grew at equivalent rates within human monocytes either in the absence or in the presence of lymphocytic cells. The expression of DevR was not modulated upon entry of M. tuberculosis into human monocytes. However, guinea pigs infected with the mutant strain showed a significant decrease in gross lesions in lung, liver and spleen; only mild pathological changes in liver and lung; and a nearly 3 log lower bacterial burden in spleen compared to guinea pigs infected with the parental strain. Our results suggest that DevR is required for virulence in guinea pigs but is not essential for entry, survival and multiplication of M. tuberculosis within human monocytes in vitro. The attenuation in virulence of the devR mutant in guinea pigs together with DevR-DevS being a bona fide signal transduction system indicates that DevR plays a critical and regulatory role in the adaptation and survival of M. tuberculosis within tissues.
Collapse
Affiliation(s)
- Vandana Malhotra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 2003; 48:833-43. [PMID: 12694625 PMCID: PMC1992516 DOI: 10.1046/j.1365-2958.2003.03474.x] [Citation(s) in RCA: 549] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unlike many pathogens that are overtly harmful to their hosts, Mycobacterium tuberculosis can persist for years within humans in a clinically latent state. Latency is often linked to hypoxic conditions within the host. Among M. tuberculosis genes induced by hypoxia is a putative transcription factor, Rv3133c/DosR. We performed targeted disruption of this locus followed by transcriptome analysis of wild-type and mutant bacilli. Nearly all the genes powerfully regulated by hypoxia require Rv3133c/DosR for their induction. Computer analysis identified a consensus motif, a variant of which is located upstream of nearly all M. tuberculosis genes rapidly induced by hypoxia. Further, Rv3133c/DosR binds to the two copies of this motif upstream of the hypoxic response gene alpha-crystallin. Mutations within the binding sites abolish both Rv3133c/DosR binding as well as hypoxic induction of a downstream reporter gene. Also, mutation experiments with Rv3133c/DosR confirmed sequence-based predictions that the C-terminus is responsible for DNA binding and that the aspartate at position 54 is essential for function. Together, these results demonstrate that Rv3133c/DosR is a transcription factor of the two-component response regulator class, and that it is the primary mediator of a hypoxic signal within M. tuberculosis.
Collapse
Affiliation(s)
- Heui-Dong Park
- Department of Pathobiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Obligately aerobic tubercle bacilli are capable of adapting to survive hypoxia by developing into a nonreplicating or dormant form. Dormant bacilli maintain viability for extended periods. Furthermore, they are resistant to antimycobacterials, and hence, dormancy might play a role in the persistence of tuberculosis infection despite prolonged chemotherapy. Previously, we have grown dormant Mycobacterium bovis BCG in an oxygen-limited Wayne culture system and subjected the bacilli to proteome analysis. This work revealed the upregulation of the response regulator Rv3133c and three other polypeptides (alpha-crystallin and two "conserved hypothetical" proteins) upon entry into dormancy. Here, we replaced the coding sequence of the response regulator with a kanamycin resistance cassette and demonstrated that the loss-of-function mutant died after oxygen starvation-induced termination of growth. Thus, the disruption of this dormancy-induced transcription factor resulted in loss of the ability of BCG to adapt to survival of hypoxia. Two-dimensional gel electrophoresis of protein extracts from the gene-disrupted strain showed that the genetic loss of the response regulator caused loss of the induction of the other three dormancy proteins. Thus, the upregulation of these dormancy proteins requires the response regulator. Based on these two functions, dormancy survival and regulation, we named the Rv3133c gene dosR for dormancy survival regulator. Our results provide conclusive evidence that DosR is a key regulator in the oxygen starvation-induced mycobacterial dormancy response.
Collapse
Affiliation(s)
- Calvin Boon
- Mycobacterium Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Republic of Singapore
| | | |
Collapse
|