1
|
Bhardwaj S, Grewal AK, Singh S, Dhankar V, Jindal A. An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer's disease: targeting molecular approach Nrf2, NF-κB, and CREB. Inflammopharmacology 2024; 32:2943-2960. [PMID: 38951436 DOI: 10.1007/s10787-024-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a most prevalent neurologic disorder characterized by cognitive dysfunction, amyloid-β (Aβ) protein accumulation, and excessive neuroinflammation. It affects various life tasks and reduces thinking, memory, capability, reasoning and orientation ability, decision, and language. The major parts responsible for these abnormalities are the cerebral cortex, amygdala, and hippocampus. Excessive inflammatory markers release, and microglial activation affect post-synaptic neurotransmission. Various mechanisms of AD pathogenesis have been explored, but still, there is a need to debate the role of NF-κB, Nrf2, inflammatory markers, CREB signaling, etc. In this review, we have briefly discussed the signaling mechanisms and function of the NF-ĸB signaling pathway, inflammatory mediators, microglia activation, and alteration of autophagy. NF-κB inhibition is a current strategy to counter neuroinflammation and neurodegeneration in the brain of individuals with AD. In clinical trials, numbers of NF-κB modulators are being examined. Recent reports revealed that molecular and cellular pathways initiate complex pathological competencies that cause AD. Moreover, this review will provide extensive knowledge of the cAMP response element binding protein (CREB) and how these nuclear proteins affect neuronal plasticity.
Collapse
Affiliation(s)
- Shaveta Bhardwaj
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Anu Jindal
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| |
Collapse
|
2
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
3
|
Sun X, Cao S, Mao C, Sun F, Zhang X, Song Y. Post-translational modifications of p65: state of the art. Front Cell Dev Biol 2024; 12:1417502. [PMID: 39050887 PMCID: PMC11266062 DOI: 10.3389/fcell.2024.1417502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
P65, a protein subunit of NF-κB, is a widely distributed transcription factor in eukaryotic cells and exerts diverse regulatory functions. Post-translational modifications such as phosphorylation, acetylation, methylation and ubiquitination modulate p65 transcriptional activity and function, impacting various physiological and pathological processes including inflammation, immune response, cell death, proliferation, differentiation and tumorigenesis. The intricate interplay between these modifications can be antagonistic or synergistic. Understanding p65 post-translational modifications not only elucidates NF-κB pathway regulation but also facilitates the identification of therapeutic targets and diagnostic markers for associated clinical conditions.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Cao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengqi Sun
- Department of Pathology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuanming Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Li B, Adam Eichhorn PJ, Chng WJ. Targeting the ubiquitin pathway in lymphoid malignancies. Cancer Lett 2024; 594:216978. [PMID: 38795760 DOI: 10.1016/j.canlet.2024.216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore; Department of Medicine, School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Steinmetz T, Thomas J, Reimann L, Himmelreich AK, Schulz SR, Golombek F, Castiglione K, Jäck HM, Brodesser S, Warscheid B, Mielenz D. Identification of TFG- and Autophagy-Regulated Proteins and Glycerophospholipids in B Cells. J Proteome Res 2024; 23:1615-1633. [PMID: 38649144 PMCID: PMC11077586 DOI: 10.1021/acs.jproteome.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Autophagy supervises the proteostasis and survival of B lymphocytic cells. Trk-fused gene (TFG) promotes autophagosome-lysosome flux in murine CH12 B cells, as well as their survival. Hence, quantitative proteomics of CH12tfgKO and WT B cells in combination with lysosomal inhibition should identify proteins that are prone to lysosomal degradation and contribute to autophagy and B cell survival. Lysosome inhibition via NH4Cl unexpectedly reduced a number of proteins but increased a large cluster of translational, ribosomal, and mitochondrial proteins, independent of TFG. Hence, we propose a role for lysosomes in ribophagy in B cells. TFG-regulated proteins include CD74, BCL10, or the immunoglobulin JCHAIN. Gene ontology (GO) analysis reveals that proteins regulated by TFG alone, or in concert with lysosomes, localize to mitochondria and membrane-bound organelles. Likewise, TFG regulates the abundance of metabolic enzymes, such as ALDOC and the fatty acid-activating enzyme ACOT9. To test consequently for a function of TFG in lipid metabolism, we performed shotgun lipidomics of glycerophospholipids. Total phosphatidylglycerol is more abundant in CH12tfgKO B cells. Several glycerophospholipid species with similar acyl side chains, such as 36:2 phosphatidylethanolamine and 36:2 phosphatidylinositol, show a dysequilibrium. We suggest a role for TFG in lipid homeostasis, mitochondrial functions, translation, and metabolism in B cells.
Collapse
Affiliation(s)
- Tobit
D. Steinmetz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Jana Thomas
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Lena Reimann
- CIBSS
Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Ann-Kathrin Himmelreich
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Sebastian R. Schulz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Florian Golombek
- Chair
of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Kathrin Castiglione
- Chair
of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
- FAU
Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Susanne Brodesser
- Cologne
Excellence Cluster on Cellular Stress Responses in Aging-associated
Diseases (CECAD), University of Köln, D-50931 Köln, Germany
| | - Bettina Warscheid
- CIBSS
Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
- Department
of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Dirk Mielenz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
- FAU
Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| |
Collapse
|
6
|
Li Y, Jiang C, Liu Q, Zhou P, Tian D, Zeng Y, Xiang M. USP15 facilitates the progression of bladder cancer by amplifying the activation of the NF-κB signaling pathway. Aging (Albany NY) 2024; 16:6757-6772. [PMID: 38656882 PMCID: PMC11087123 DOI: 10.18632/aging.205696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 04/26/2024]
Abstract
USP15, a pivotal member of the deubiquitinase family, plays a crucial role in orchestrating numerous vital biological processes, including the regulation of NF-κB signaling pathway and deubiquitination of proto-oncogenes. In various cancers, USP15 has been validated to exhibit up-regulated expression, impacting the initiation and progression of cancer. However, its precise mechanism in bladder cancer remains elusive. Our study shed light on the significant overexpression of USP15 in bladder cancer cells compared to normal bladder cells, correlating with a poorer prognosis for bladder cancer patients. Strikingly, attenuation of USP15 expression greatly attenuated the proliferation, migration, and invasion of bladder cancer cells. Moreover, upregulation of USP15 was found to drive cancer progression through the activation of the NF-κB signaling pathway. Notably, USP15 directly deubiquitinates BRCC3, heightening its expression level, and subsequent overexpression of BRCC3 counteracted the antitumoral efficacy of USP15 downregulation. Overall, our findings elucidated the carcinogenic effects of USP15 in bladder cancer, primarily mediated by the excessive activation of the NF-κB signaling pathway, thereby promoting tumor development. These results underscore the potential of USP15 as a promising therapeutic target for bladder cancer in the future.
Collapse
Affiliation(s)
- Yun Li
- Department of Ophthalmology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chenghang Jiang
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Quanqi Liu
- Department of Urology, Jinhua Hospital Affiliated to Zhejiang University School of Medicine, Jinhua, China
| | - Pengfei Zhou
- Department of Urology, Jinhua Hospital Affiliated to Zhejiang University School of Medicine, Jinhua, China
| | - Daxue Tian
- Department of Urology, Jinhua Hospital Affiliated to Zhejiang University School of Medicine, Jinhua, China
| | - Ying Zeng
- Department of Ophthalmology, The First Affiliated Hospital, Sun-Yat-sen University, Guangzhou, China
| | - Mingfeng Xiang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Anilkumar S, Wright-Jin E. NF-κB as an Inducible Regulator of Inflammation in the Central Nervous System. Cells 2024; 13:485. [PMID: 38534329 DOI: 10.3390/cells13060485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
The NF-κB (nuclear factor K-light-chain-enhancer of activated B cells) transcription factor family is critical for modulating the immune proinflammatory response throughout the body. During the resting state, inactive NF-κB is sequestered by IκB in the cytoplasm. The proteasomal degradation of IκB activates NF-κB, mediating its translocation into the nucleus to act as a nuclear transcription factor in the upregulation of proinflammatory genes. Stimuli that initiate NF-κB activation are diverse but are canonically attributed to proinflammatory cytokines and chemokines. Downstream effects of NF-κB are cell type-specific and, in the majority of cases, result in the activation of pro-inflammatory cascades. Acting as the primary immune responders of the central nervous system, microglia exhibit upregulation of NF-κB upon activation in response to pathological conditions. Under such circumstances, microglial crosstalk with other cell types in the central nervous system can induce cell death, further exacerbating the disease pathology. In this review, we will emphasize the role of NF-κB in triggering neuroinflammation mediated by microglia.
Collapse
Affiliation(s)
- Sudha Anilkumar
- Neonatal Brain Injury Laboratory, Division of Biomedical Research, Nemours Children's Health, Wilmington, DE 19803, USA
| | - Elizabeth Wright-Jin
- Neonatal Brain Injury Laboratory, Division of Biomedical Research, Nemours Children's Health, Wilmington, DE 19803, USA
- Division of Neurology, Department of Pediatrics, Nemours Children's Health, Wilmington, DE 19803, USA
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Wartalski K, Wiater J, Maciak P, Pastuła A, Lis GJ, Samiec M, Trzcińska M, Duda M. Anabolic Steroids Activate the NF-κB Pathway in Porcine Ovarian Putative Stem Cells Independently of the ZIP-9 Receptor. Int J Mol Sci 2024; 25:2833. [PMID: 38474077 DOI: 10.3390/ijms25052833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Boldenone (Bdn) and nandrolone (Ndn) are anabolic androgenic steroids (AASs) that, as our previous studies have shown, may increase the risk of neoplastic transformation of porcine ovarian putative stem cells (poPSCs). The NF-κB pathway may be important in the processes of carcinogenesis and tumour progression. Therefore, in this work, we decided to test the hypothesis of whether Bdn and Ndn can activate the NF-κB pathway by acting through the membrane androgen receptor ZIP-9. For this purpose, the expression profiles of both genes involved in the NF-κB pathway and the gene coding for the ZIP-9 receptor were checked. The expression and localization of proteins of this pathway in poPSCs were also examined. Additionally, the expression of the ZIP-9 receptor and the concentration of the NF-κB1 and 2 protein complex were determined. Activation of the NF-κB pathway was primarily confirmed by an increase in the relative abundances of phosphorylated forms of RelA protein and IκBα inhibitor. Reduced quantitative profiles pinpointed not only for genes representing this pathway but also for unphosphorylated proteins, and, simultaneously, decreased concentration of the NF-κB1 and 2 complex may indicate post-activation silencing by negative feedback. However, the remarkably and sustainably diminished expression levels noticed for the SLC39A9 gene and ZIP-9 protein suggest that this receptor does not play an important role in the regulation of the NF-κB pathway.
Collapse
Affiliation(s)
- Kamil Wartalski
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland
| | - Jerzy Wiater
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland
| | - Patrycja Maciak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Agnieszka Pastuła
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Grzegorz J Lis
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland
| | - Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| |
Collapse
|
9
|
Sokołowska P, Seweryn Karbownik M, Jóźwiak-Bębenista M, Dobielska M, Kowalczyk E, Wiktorowska-Owczarek A. Antidepressant mechanisms of ketamine's action: NF-κB in the spotlight. Biochem Pharmacol 2023; 218:115918. [PMID: 37952898 DOI: 10.1016/j.bcp.2023.115918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Ketamine recently approved for therapy of treatment-resistant depression shows a complex and not fully understood mechanism of action. Apart from its classical glutamatergic N-methyl-D-aspartate receptor antagonistic action, it is thought that anti-inflammatory properties of the drug are of clinical relevance due to the contribution of activated inflammatory mediators to the pathophysiology of depression and non-responsiveness of a group of patients to current antidepressant therapies. In a search of the mechanism underlying anti-inflammatory effects of ketamine, the nuclear factor kappa B transcription factor (NF-κB) has been proposed as a target for ketamine. The NF-κB forms precisely regulated protein signaling cascades enabling a rapid response to cellular stimuli. In the central nervous systems, NF-κB signaling appears to have pleiotropic but double-edged functions: on the one hand it participates in the regulation of processes that are crucial in the treatment of depression, such as neuroplasticity, neurogenesis or neuronal survival, on the other - in the activation of neuroinflammation and cell death. Ketamine has been found to reduce inflammation mediated by NF-κB, leading to decreased level of pro-inflammatory cytokines and other inflammatory or stress mediators. Therefore, this review presents recent data on the significance of the NF-κB cascade in the mechanism of ketamine's action and its future perspectives in designing new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Paulina Sokołowska
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland.
| | - Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Maria Dobielska
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| |
Collapse
|
10
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
11
|
Shi P, Xu J, Cui H. The Recent Research Progress of NF-κB Signaling on the Proliferation, Migration, Invasion, Immune Escape and Drug Resistance of Glioblastoma. Int J Mol Sci 2023; 24:10337. [PMID: 37373484 PMCID: PMC10298967 DOI: 10.3390/ijms241210337] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and invasive primary central nervous system tumor in humans, accounting for approximately 45-50% of all primary brain tumors. How to conduct early diagnosis, targeted intervention, and prognostic evaluation of GBM, in order to improve the survival rate of glioblastoma patients, has always been an urgent clinical problem to be solved. Therefore, a deeper understanding of the molecular mechanisms underlying the occurrence and development of GBM is also needed. Like many other cancers, NF-κB signaling plays a crucial role in tumor growth and therapeutic resistance in GBM. However, the molecular mechanism underlying the high activity of NF-κB in GBM remains to be elucidated. This review aims to identify and summarize the NF-κB signaling involved in the recent pathogenesis of GBM, as well as basic therapy for GBM via NF-κB signaling.
Collapse
Affiliation(s)
- Pengfei Shi
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Jie Xu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| |
Collapse
|
12
|
Chen Y, Liu X, Yan D, Xu J, Luan S, Xiao C, Huang Q. Exposure to emamectin benzoate confers cytotoxic effects on human molt-4 T-cells and possible ameliorative role of vitamin E and dithiothreitol. Drug Chem Toxicol 2023; 46:413-422. [PMID: 35266429 DOI: 10.1080/01480545.2022.2044350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Emamectin benzoate (EMB) is an avermectin insecticide that is extensively used for pest control, but there are few reports concerning its cytotoxic effects on human lymphocytes. In the current study, the hematotoxicity of EMB was evaluated in Molt-4 T-cells, a human T-lymphoblastic cell line with high motility, and the role of vitamin E (VitE) and dithiothreitol (DTT) in attenuating EMB cytotoxicity was characterized. Exposure of Molt-4 cells to EMB decreased cell viability and proliferation, induced a loss of cell clusters, and significantly increased membrane collapse and chromatin condensation. Moreover, EMB significantly increased cell death and suppressed transglutaminase activity. EMB treatment modulated the NF-κB signaling pathway, decreased the expression of p105, p50, and p65/RelA in cytosolic and nuclear fractions, and increased nuclear IκBα expression. EMB increased oxidative stress, as demonstrated by a significant increase in the levels of reactive oxygen species (ROS). Treatment with non-cytotoxic concentrations of VitE or DTT ameliorated the hematotoxicity induced by pretreatment with EMB, increased Molt-4 cell viability, raised the IC50 values of EMB, limited intracellular ROS generation, and mitigated EMB-mediated effects on NF-κB signaling. The results indicate the potential cytotoxicity of EMB on human lymphocytes, and demonstrate that VitE and DTT treatment can reduce the cytotoxic effects of EMB.
Collapse
Affiliation(s)
- Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xuefeng Liu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dongmei Yan
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jialin Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ciying Xiao
- School of Biochemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Zhu S, Sun P, Bennett S, Charlesworth O, Tan R, Peng X, Gu Q, Kujan O, Xu J. The therapeutic effect and mechanism of parthenolide in skeletal disease, cancers, and cytokine storm. Front Pharmacol 2023; 14:1111218. [PMID: 37033622 PMCID: PMC10080395 DOI: 10.3389/fphar.2023.1111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and identified as a small molecule cancer inhibitor. PTL has the chemical structure of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the biological property of inhibiting DNA biosynthesis of cancer cells. In this review, we summarise the recent research progress of medicinal PTL, including the therapeutic effects on skeletal diseases, cancers, and inflammation-induced cytokine storm. Mechanistic investigations reveal that PTL predominantly inhibits NF-κB activation and other signalling pathways, such as reactive oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several cytokines, including RANKL, TNF-α, IL-1β, together with LPS induced activation of NF-κB and NF-κB -mediated specific gene expression such as IL-1β, TNF-α, COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via blocking the activation of NF-κB signalling. Understanding the pharmacologic properties of PTL will assist us in developing its therapeutic application for medical conditions, including arthritis, osteolysis, periodontal disease, cancers, and COVID-19-related disease.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| | - Ping Sun
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Oscar Charlesworth
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| | - Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| |
Collapse
|
14
|
Li R, Dong F, Zhang L, Ni X, Lin G. Role of adipocytokines in endometrial cancer progression. Front Pharmacol 2022; 13:1090227. [PMID: 36578551 PMCID: PMC9791063 DOI: 10.3389/fphar.2022.1090227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is considered a significant barrier to increasing life expectancy and remains one of the most common malignant cancers among women in many countries worldwide. The increasing mortality rates are potentially proportional to the increasing obesity incidence. Adipose tissue secretes numerous adipocytokines, which may play important roles in endometrial cancer progression. In this scenario, we describe the role of adipocytokines in cell proliferation, cell invasion, cell adhesion, inflammation, angiogenesis, and anti-apoptotic action. A better understanding of the mechanisms of these adipocytokines may open up new therapeutic avenues for women with endometrial cancer. In the future, larger prospective studies focusing on adipocytokines and specific inhibitors should be directed at preventing the rapidly increasing prevalence of gynecological malignancies.
Collapse
Affiliation(s)
- Ran Li
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Fang Dong
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Ling Zhang
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Xiuqin Ni
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Guozhi Lin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital to Shandong First Medical University, Taian, China,*Correspondence: Guozhi Lin,
| |
Collapse
|
15
|
Christofoletti CR, Fernandes AC, Gandra RL, Martins IM, Gambero A, Macedo GA, Macedo JA. “Wine residues extracts modulating in vitro metabolic syndrome”. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Martin M, Mundade R, Hartley AV, Jiang G, Jin J, Sun S, Safa A, Sandusky G, Liu Y, Lu T. Using VBIM Technique to Discover ARMC4/ODAD2 as a Novel Negative Regulator of NF-κB and a New Tumor Suppressor in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23052732. [PMID: 35269880 PMCID: PMC8910849 DOI: 10.3390/ijms23052732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
Since nuclear factor (NF) κB plays pivotal roles in inflammation and cancer, understanding its regulation holds great promise for disease therapy. Using the powerful validation-based insertional mutagenesis (VBIM) technique established by us previously, we discovered armadillo repeat-containing protein 4 (ARMC4)/outer dynein arm docking complex subunit 2 (ODAD2), a rarely studied protein known to date, as a novel negative regulator of NF-κB in colorectal cancer (CRC). High expression of ARMC4 downregulated the expression of NF-κB-dependent genes, dramatically reduced NF-κB activity, cellular proliferation, anchorage-independent growth, and migratory ability in vitro, and significantly decreased xenograft tumor growth in vivo. Co-immunoprecipitation experiments demonstrated that ARMC4 forms a complex with NF-κB. Importantly, the lower ARMC4 expression in patient tumors than normal tissues indicates its potential tumor suppressor function in CRC. Collectively, we uncovered a completely new facet of ARMC4 function by identifying it as a novel NF-κB negative regulator, thus uncovering ARMC4 as a potential new therapeutic target in CRC.
Collapse
Affiliation(s)
- Matthew Martin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - Rasika Mundade
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - Antja-Voy Hartley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Medical Research and Library Building, IB 130, Indianapolis, IN 46202, USA; (G.J.); (Y.L.)
| | - Jiamin Jin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - Steven Sun
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - Ahmad Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 340 West 10th Street, Fairbanks Hall, Suite 6200, Indianapolis, IN 46202, USA;
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Medical Research and Library Building, IB 130, Indianapolis, IN 46202, USA; (G.J.); (Y.L.)
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (R.M.); (A.-V.H.); (J.J.); (S.S.); (A.S.)
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Medical Research and Library Building, IB 130, Indianapolis, IN 46202, USA; (G.J.); (Y.L.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
17
|
Guo JJ, Wang H, Liu JC, Chang XY, Li JN, Liu XL. Interleukin-1β enhances the expression of two antimicrobial peptides in grass carp (Ctenopharyngodon idella) against Vibrio mimicus via activating NF-κB pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 122:334-344. [PMID: 34922017 DOI: 10.1016/j.fsi.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Vibrio mimicus (V. mimicus) is a pathogen causing serious vibriosis in aquatic animals. Hepcidin and β-Defensin1 are two important antibacterial peptides (AMPs) with broad-spectrum antibacterial activity in fish. In mammals, some evidences demonstrated that interleukin-1β (IL-1β) primarily promote AMPs expression via activating classical NF-κB pathway, but it still remains unclear in fish. Here, the temporal and spatial expression patterns of grass carp IL-1β (gcIL-1β) gene and two AMPs genes (gchepcidin and gcβ-defensin1) in tissues post-V. mimicus infection and anti-V. mimicus activity of these two AMPs in vitro were detected, showing that V. mimicus infection significantly elevated the mRNA levels of these three genes in the immune-related tissues although their expression patterns were not entirely consistent, and both gcHepcidin and gcβ-Defensin1 possessed anti-V. mimicus activity in vitro. Subsequently, the recombinant gcIL-1β (rgcIL-1β) was expressed prokaryotically in an inclusion body, which could promote proliferation of grass carp head kidney leukocytes (gcHKLs) and enhance respiratory burst activity and phagocytic activity of head kidney macrophages. Stimulation with rgcIL-1β was able to significantly regulate the mRNA expression of key regulatory genes (il-1RI, traf6, tak1, ikkβ, iκBα and p65) involved in the activation of classical NF-κB pathway, and then induce gcTAK1 phosphorylation, promote gcp65 nuclear translocation and enhance endogenous gcIL-1β expression at both mRNA and protein levels, implying NF-κB pathway was activated. More importantly, exogenous rgcIL-1β stimulation also significantly up-regulated both gcHepcidin and gcβ-Defensin1 mRNA levels against V. mimicus, and the regulatory effect was blocked or inhibited by NF-κB inhibitor PDTC. Taken together, our results demonstrated for the first time that grass carp IL-1β stimulation could significantly enhance the expression of these two anti-V.mimicus AMPs via activating classical NF-κB pathway.
Collapse
Affiliation(s)
- Jia-Jing Guo
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Hong Wang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jun-Cai Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xin-Yue Chang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jin-Nian Li
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| | - Xue-Lan Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
18
|
Guégan JP, Pollet J, Ginestier C, Charafe-Jauffret E, Peter ME, Legembre P. CD95/Fas suppresses NF-κB activation through recruitment of KPC2 in a CD95L/FasL-independent mechanism. iScience 2021; 24:103538. [PMID: 34917906 PMCID: PMC8666665 DOI: 10.1016/j.isci.2021.103538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022] Open
Abstract
CD95 expression is preserved in triple-negative breast cancers (TNBCs), and CD95 loss in these cells triggers the induction of a pro-inflammatory program, promoting the recruitment of cytotoxic NK cells impairing tumor growth. Herein, we identify a novel interaction partner of CD95, Kip1 ubiquitination-promoting complex protein 2 (KPC2), using an unbiased proteomic approach. Independently of CD95L, CD95/KPC2 interaction contributes to the partial degradation of p105 (NF-κB1) and the subsequent generation of p50 homodimers, which transcriptionally represses NF-κB-driven gene expression. Mechanistically, KPC2 interacts with the C-terminal region of CD95 and serves as an adaptor to recruit RelA (p65) and KPC1, which acts as E3 ubiquitin-protein ligase promoting the degradation of p105 into p50. Loss of CD95 in TNBC cells releases KPC2, limiting the formation of the NF-κB inhibitory homodimer complex (p50/p50), promoting NF-κB activation and the production of pro-inflammatory cytokines, which might contribute to remodeling the immune landscape in TNBC cells.
Collapse
Affiliation(s)
| | - Justine Pollet
- Technological core facility BISCEm, Université de Limoges, US042 Inserm, UMS 2015 CNRS, Centre hospitalo-universitaire de Limoges, Limoges, France
| | - Christophe Ginestier
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Marcus E. Peter
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick Legembre
- Contrôle de la Réponse Immune B et lymphoproliférations, CRIBL, Université Limoges, UMR CNRS 7276, INSERM 1262, Limoges, France
| |
Collapse
|
19
|
Campos-Sánchez JC, Mayor-Lafuente J, González-Silvera D, Guardiola FA, Esteban MÁ. Acute inflammatory response in the skin of gilthead seabream (Sparus aurata) caused by carrageenin. FISH & SHELLFISH IMMUNOLOGY 2021; 119:623-634. [PMID: 34656758 DOI: 10.1016/j.fsi.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Although inflammation is a well-characterized process in mammals, few studies have dealt with the mechanisms involved in this process in fish. The present study evaluated the expression of inflammation-related genes in the skin of fish injected with carrageenin, which has previously been used in inflammatory models in mammals. In our case, fish were injected subcutaneously with PBS (as control) or carrageenin (1%), and skin samples from the injection site were collected 1.5, 3 and 6 h post-injection. The gene expression of inflammatory markers (csfr1, mhc-ii and phox40), several pro-inflammatory cytokines (il1b, tnfa, il6, il8 and il18) and other molecules related (such as myd88 and c-rel) were up-regulated at 1.5 and 3 h in fish injected with carrageenin compared with control levels. By contrast, the gene expression of anti-inflammatory molecules (nlrx1, nlrc5 isoform 1, ctsd and ctss) was down-regulated in fish injected with carrageenin and sampled 3 h post injection, again compared to the gene expression in control fish. According to our results, carrageenin can be considered not only a good stimulator to study skin inflammation in gilthead seabream but also this method might be use to study the modulation of fish inflammatory process caused by internal or external factors.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Javier Mayor-Lafuente
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Daniel González-Silvera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
20
|
Liu Z, Ren Y, Meng L, Li L, Beatson R, Deng J, Zhang T, Liu J, Han X. Epigenetic Signaling of Cancer Stem Cells During Inflammation. Front Cell Dev Biol 2021; 9:772211. [PMID: 34722553 PMCID: PMC8554148 DOI: 10.3389/fcell.2021.772211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant tumors pose a great challenge to human health, which has led to many studies increasingly elucidating the tumorigenic process. Cancer Stem Cells (CSCs) have profound impacts on tumorigenesis and development of drug resistance. Recently, there has been increased interest in the relationship between inflammation and CSCs but the mechanism underlying this relationship has not been fully elucidated. Inflammatory cytokines produced during chronic inflammation activate signaling pathways that regulate the generation of CSCs through epigenetic mechanisms. In this review, we focus on the effects of inflammation on cancer stem cells, particularly the role of signaling pathways such as NF-κB pathway, STAT3 pathway and Smad pathway involved in regulating epigenetic changes. We hope to provide a novel perspective for improving strategies for tumor treatment.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingfang Meng
- Department of Ultrasound, Zhengzhou Sixth People's Hospital, Henan Infectious Disease Hospital, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Richard Beatson
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
21
|
Effects of Roasted Schisandra Chinensis (Turcz.) Baill and Lycium Chinense Mill. and Their Combinational Extracts on Antioxidant and Anti-Inflammatory Activities in RAW 264.7 Cells and in Alcohol-Induced Liver Damage Mice Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6633886. [PMID: 34567217 PMCID: PMC8463187 DOI: 10.1155/2021/6633886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/08/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022]
Abstract
Schisandra chinensis (Turcz.) Baill (SC) and Lycium chinense Mill. (LC) are widely distributed in Asia, where the fruit has traditionally been used for medicinal herbs. We previously reported that the roasting process improved the antioxidant and their hangover relieving effects. In this study, we assessed the antioxidant and anti-inflammatory effects of water extract of SC, LC, and a mass ratio 1 : 1 mixture (SL), after roasting in RAW264.7 macrophage cells stimulated with lipopolysaccharide (LPS). Roasted SL (RSL) extracts showed greater enhancement potential than the others, based on the inhibition of NO (nitric oxide) and intracellular reactive oxygen species (ROS) production in RAW264.7 cells. RSL also significantly decreased the proinflammatory markers (e.g., iNOS, COX-2, TNF-α, and IL-1β) and NAD(P)H oxidase (NOX) signaling proteins (i.e., NOX (-1, -2, and -4), p22phox, p47phox, and p67phox). The inflammatory cytokine, tumor necrosis factor-alpha, interferon-1 beta levels, NF-kB, and mitogen-activated kinase activations were also significantly inhibited by RSL treatment. Based on the results of cellular levels, we compared the promotion effects of RSL extract on liver injury mediated by alcohol-induced inflammation and oxidative stress in mice. Mice were fed a Lieber-DeCarli regular liquid alcohol diet with or without SL and RSL extracts for six weeks. Alcohol intake caused liver injury, evidenced by an increase in serum alanine aminotransferase and aspartate aminotransferase activities. Consistent with the results in cell levels, RSL treatment remarkably downregulated ROS and inflammatory factors, as well as their signaling molecules, in serum and tissues. These results suggest that the roasting of SC and LC could potentially elevate the inhibition effect on alcohol-induced inflammation and oxidative stress and consequently prevent alcoholic liver damage. Also, the combination of SC and LC may provide a more synergistic effect than either alone.
Collapse
|
22
|
Pihl C, Togsverd-Bo K, Andersen F, Haedersdal M, Bjerring P, Lerche CM. Keratinocyte Carcinoma and Photoprevention: The Protective Actions of Repurposed Pharmaceuticals, Phytochemicals and Vitamins. Cancers (Basel) 2021; 13:cancers13153684. [PMID: 34359586 PMCID: PMC8345172 DOI: 10.3390/cancers13153684] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Keratinocyte carcinoma is the most common type of cancer. Sun exposure and ultraviolet radiation are significant contributors to the development of carcinogenesis, mediated by DNA damage, increased oxidative stress, inflammation, immunosuppression and dysregulated signal transduction. Photoprevention involves using different compounds to delay or prevent ultraviolet radiation-induced skin cancer. In this review, we look at new avenues for systemic photoprevention that are based on pharmaceuticals, plant-derived phytochemicals and vitamins. We also investigate the mechanisms underlying these strategies for preventing the onset of carcinogenesis. Abstract Ultraviolet radiation (UVR) arising from sun exposure represents a major risk factor in the development of keratinocyte carcinomas (KCs). UVR exposure induces dysregulated signal transduction, oxidative stress, inflammation, immunosuppression and DNA damage, all of which promote the induction and development of photocarcinogenesis. Because the incidence of KCs is increasing, better prevention strategies are necessary. In the concept of photoprevention, protective compounds are administered either topically or systemically to prevent the effects of UVR and the development of skin cancer. In this review, we provide descriptions of the pathways underlying photocarcinogenesis and an overview of selected photoprotective compounds, such as repurposed pharmaceuticals, plant-derived phytochemicals and vitamins. We discuss the protective potential of these compounds and their effects in pre-clinical and human trials, summarising the mechanisms of action involved in preventing photocarcinogenesis.
Collapse
Affiliation(s)
- Celina Pihl
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| | - Katrine Togsverd-Bo
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Flemming Andersen
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
- Private Hospital Molholm, 7100 Vejle, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Peter Bjerring
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
| | - Catharina Margrethe Lerche
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Mockenhaupt K, Gonsiewski A, Kordula T. RelB and Neuroinflammation. Cells 2021; 10:1609. [PMID: 34198987 PMCID: PMC8307460 DOI: 10.3390/cells10071609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation within the central nervous system involves multiple cell types that coordinate their responses by secreting and responding to a plethora of inflammatory mediators. These factors activate multiple signaling cascades to orchestrate initial inflammatory response and subsequent resolution. Activation of NF-κB pathways in several cell types is critical during neuroinflammation. In contrast to the well-studied role of p65 NF-κB during neuroinflammation, the mechanisms of RelB activation in specific cell types and its roles during neuroinflammatory response are less understood. In this review, we summarize the mechanisms of RelB activation in specific cell types of the CNS and the specialized effects this transcription factor exerts during neuroinflammation.
Collapse
Affiliation(s)
| | | | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA; (K.M.); (A.G.)
| |
Collapse
|
24
|
Luo X, Zhang R, Lu M, Liu S, Baba HA, Gerken G, Wedemeyer H, Broering R. Hippo Pathway Counter-Regulates Innate Immunity in Hepatitis B Virus Infection. Front Immunol 2021; 12:684424. [PMID: 34113355 PMCID: PMC8185339 DOI: 10.3389/fimmu.2021.684424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 01/17/2023] Open
Abstract
Whether hepatitis B virus (HBV) activates or represses innate immunity continues to be debated. Toll-like receptor (TLR) 2 has been identified to recognize HBV particles in human hepatocytes. The Hippo pathway, known for growth control, is suggested to play a vital role in immune regulation. Here, molecular interactions between HBV-triggered TLR signaling and the Hippo pathway were comprehensively investigated. Reanalysis of GSE69590 data, in which human hepatocytes have been treated with cell culture-derived HBV particles, identified changes in Hippo and NF-κB signaling. Immunocytochemical staining and western blotting revealed time-dependent nuclear translocation of YAP and NF-κB in HBV-exposed primary human and murine hepatocytes (PMH). Analysis of PMH isolated from MyD88- or IRAK4-deficient mice and the inhibition of TLR2 and MST1/2 in vitro confirmed the relation between TLR2 and Hippo signaling in HBV-induced immunity. Loss and gain of function experiments implied that Hippo-downstream effector YAP directly regulated IκBα expression. Functional investigations confirmed the regulation of Nfkbia promoter activity by the YAP/TEAD4 transcription factor complex. Administration of TLR ligands to mice highlighted the relevance of the TLR2-MyD88-IRAK4-Hippo axis in hepatic immunity. Interestingly, reanalysis of gene expression pattern in liver biopsies of patients chronically infected with HBV (GSE83148, GSE65359) indicated an activation of TLR2 and however, an MST1-dominated Hippo control in the immune clearance phase of patients with chronic HBV infection. We demonstrated that MyD88-dependent TLR signaling activates NF-κB and Hippo signaling, with YAP prompting the IκBα-mediated negative feedback, alongside NF-κB. Imbalance between immune induction and Hippo activation may have implications for the safety of novel HBV cure strategies interfering with pathogen recognition receptors.
Collapse
Affiliation(s)
- Xufeng Luo
- Institute for Lymphoma Research, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rui Zhang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life sciences, Wuhan University, Wuhan, China
| | - Hideo A Baba
- Institute for Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Moser B, Hochreiter B, Basílio J, Gleitsmann V, Panhuber A, Pardo-Garcia A, Hoesel B, Salzmann M, Resch U, Noreen M, Schmid JA. The inflammatory kinase IKKα phosphorylates and stabilizes c-Myc and enhances its activity. Mol Cancer 2021; 20:16. [PMID: 33461590 PMCID: PMC7812655 DOI: 10.1186/s12943-021-01308-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Background The IκB kinase (IKK) complex, comprising the two enzymes IKKα and IKKβ, is the main activator of the inflammatory transcription factor NF-κB, which is constitutively active in many cancers. While several connections between NF-κB signaling and the oncogene c-Myc have been shown, functional links between the signaling molecules are still poorly studied. Methods Molecular interactions were shown by co-immunoprecipitation and FRET microscopy. Phosphorylation of c-Myc was shown by kinases assays and its activity by improved reporter gene systems. CRISPR/Cas9-mediated gene knockout and chemical inhibition were used to block IKK activity. The turnover of c-Myc variants was determined by degradation in presence of cycloheximide and by optical pulse-chase experiments.. Immunofluorescence of mouse prostate tissue and bioinformatics of human datasets were applied to correlate IKKα- and c-Myc levels. Cell proliferation was assessed by EdU incorporation and apoptosis by flow cytometry. Results We show that IKKα and IKKβ bind to c-Myc and phosphorylate it at serines 67/71 within a sequence that is highly conserved. Knockout of IKKα decreased c-Myc-activity and increased its T58-phosphorylation, the target site for GSK3β, triggering polyubiquitination and degradation. c-Myc-mutants mimicking IKK-mediated S67/S71-phosphorylation exhibited slower turnover, higher cell proliferation and lower apoptosis, while the opposite was observed for non-phosphorylatable A67/A71-mutants. A significant positive correlation of c-Myc and IKKα levels was noticed in the prostate epithelium of mice and in a variety of human cancers. Conclusions Our data imply that IKKα phosphorylates c-Myc on serines-67/71, thereby stabilizing it, leading to increased transcriptional activity, higher proliferation and decreased apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01308-8.
Collapse
Affiliation(s)
- Bernhard Moser
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Viola Gleitsmann
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Anja Panhuber
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Alan Pardo-Garcia
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Ulrike Resch
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Mamoona Noreen
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.
| |
Collapse
|
26
|
Jamal A, Husein A, Bihari C, Kumar V. Ubiquitin ligase TRUSS augments the expression of interleukin-10 via proteasomal processing of NF-κB1/p105 to NF-κB/p50. Cell Signal 2020; 75:109766. [PMID: 32889079 DOI: 10.1016/j.cellsig.2020.109766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
The NF-κB/Rel family of transcription factors that play critical roles in a variety of cellular processes. Their production in the cell and physiological activation are tightly regulated. The proteasomal processing of inactive NF-κB1/p105 to active p50, with an anti-inflammatory role, is not well characterized. Here we show that ubiquitin ligase TRUSS is a mediator of transcriptional activation of anti-inflammatory cytokine IL-10 gene. Enforced expression of TRUSS led to enhanced IL-10 expression that could be inhibited in the presence of chemical inhibitors of NF-κB [BAY11-7082] and PI3K/Akt [LY249002] or after p65 overexpression. p50 was actively recruited on IL10 promoter in the presence of TRUSS but competed by p65 for binding. TRUSS facilitated the ubiquitination of NF-κB1/p105 and promoted its proteolytic processing to generate excess of p50. Our immune-histochemical studies confirmed enhanced expression of p105/p50 in the human HCC tumors. Further, the hepatic tumors of HCC patient as well as transgenic mice showed decreased levels of p50 as well as TRUSS and accumulation of p105. Thus, enhanced expression of IL-10 gene in the presence of TRUSS and regulation of NF-κB1/p105 processing could be an important regulatory mechanism for inflammatory response and tumorgenic transformation.
Collapse
Affiliation(s)
- Azfar Jamal
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Atahar Husein
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Molecular & Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India.
| |
Collapse
|
27
|
Kang MS, Lee GH, Choi GE, Yoon HG, Hyun KY. Neuroprotective Effect of Nypa fruticans Wurmb by Suppressing TRPV1 Following Sciatic Nerve Crush Injury in a Rat. Nutrients 2020; 12:E2618. [PMID: 32867278 PMCID: PMC7551127 DOI: 10.3390/nu12092618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
Peripheral nerve injury can result in severe functional impairment and decreased quality of life due to loss of sensory and motor function. Nypa fruticans wurmb (NF) has been used in diverse folk remedies in East Asia. We have previously shown that Nypa fruticans wurmb extract has antinociceptive and anti-inflammatory effects by suppressing TRPV1 in the sciatic nerve injury. The present study investigated the effects of NF on the control of TRPV1 in relation to neuroprotective effects of a sciatic nerve crush injury. To evaluate the neuroprotective effects, an animal behavior test and a physiological function test were performed. Functional recovery and nerve recovery were improved in the NF and NF + SB (SB366791; TRPV1 antagonist) treated group. In the histomorphology evaluation, the neuronal regenerative effect of NF on the injured sciatic nerve was confirmed via hematoxylin and eosin (H&E) staining. In this study, the NF and NF + SB treated group showed neuroprotective and functional recovery effects from the sciatic nerve crush injury. Furthermore, the expression of NF-κB and iNOS showed a significantly suppressive effect on NF (p < 0.01), SB (p < 0.01), and NF + SB (p < 0.01) treated group at the 7th and 14th day compared to the vehicle group. This study confirmed the neuroprotective effects of NF on suppressing TRPV1 in a sciatic nerve crush injury. The findings of this study establish the effect of NF as a neurotherapeutic agent to protect the peripheral nerve after a sciatic nerve crush injury.
Collapse
Affiliation(s)
- Mi-Sun Kang
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
| | - Gil-Hyun Lee
- Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Korea;
| | - Go-Eun Choi
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea;
| | - Hae-Gyung Yoon
- Department of Art & Design, Dong-Eui University, Busan 47340, Korea;
| | - Kyung-Yae Hyun
- Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Korea;
| |
Collapse
|
28
|
AEBP1 is a Novel Oncogene: Mechanisms of Action and Signaling Pathways. JOURNAL OF ONCOLOGY 2020; 2020:8097872. [PMID: 32565808 PMCID: PMC7273425 DOI: 10.1155/2020/8097872] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) is a transcriptional repressor involved in the regulation of critical biological processes including adipogenesis, mammary gland development, inflammation, macrophage cholesterol homeostasis, and atherogenesis. Several years ago, we first reported the ability of AEBP1 to exert a positive control over the canonical NF-κB pathway. Indeed, AEBP1 positively regulates NF-κB activity via its direct interaction with IκBα, a key NF-κB inhibitor. AEBP1 overexpression results in uncontrollable activation of NF-κB, which may have severe pathogenic outcomes. Recently, the regulatory relationship between AEBP1 and NF-κB pathway has been of great interest to many researchers primarily due to the implication of NF-κB signaling in critical cellular processes such as inflammation and cancer. Since constitutive activation of NF-κB is widely implicated in carcinogenesis, AEBP1 overexpression is associated with tumor development and progression. Recent studies sought to explore the effects of the overexpression of AEBP1, as a potential oncogene, in different types of cancer. In this review, we analyze the effects of AEBP1 overexpression in a variety of malignancies (e.g., breast cancer, glioblastoma, bladder cancer, gastric cancer, colorectal cancer, ovarian cancer, and skin cancer), with a specific focus on the AEBP1-mediated control over the canonical NF-κB pathway. We also underscore the ability of AEBP1 to regulate crucial cancer-related events like cell proliferation and apoptosis in light of other key pathways (e.g., PI3K-Akt, sonic hedgehog (Shh), p53, parthanatos (PARP-1), and PTEN). Identifying AEBP1 as a potential biomarker for cancer prognosis may lead to a novel therapeutic target for the prevention and/or treatment of various types of cancer.
Collapse
|
29
|
Cai M, Liao Z, Zou X, Xu Z, Wang Y, Li T, Li Y, Ou X, Deng Y, Guo Y, Peng T, Li M. Herpes Simplex Virus 1 UL2 Inhibits the TNF-α-Mediated NF-κB Activity by Interacting With p65/p50. Front Immunol 2020; 11:549. [PMID: 32477319 PMCID: PMC7237644 DOI: 10.3389/fimmu.2020.00549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a large double-stranded DNA virus that encodes at least 80 viral proteins, many of which are involved in the virus-host interaction and are beneficial to the viral survival and reproduction. However, the biological functions of some HSV-1-encoded proteins are not fully understood. Nuclear factor κB (NF-κB) activation is the major antiviral innate response, which can be triggered by various signals induced by cellular receptors from different pathways. Here, we demonstrated that HSV-1 UL2 protein could antagonize the tumor necrosis factor α (TNF-α)-mediated NF-κB activation. Co-immunoprecipitation assays showed that UL2 could interact with the NF-κB subunits p65 and p50, which also revealed the region of amino acids 9 to 17 of UL2 could suppress the NF-κB activation and interact with p65 and p50, and UL2 bound to the immunoglobulin-like plexin transcription factor functional domain of p65. However, UL2 did not affect the formation of p65/p50 dimerization and their nuclear localizations. Yet, UL2 was demonstrated to inhibit the NF-κB activity by attenuating TNF-α-induced p65 phosphorylation at Ser536 and therefore decreasing the expression of downstream inflammatory chemokine interleukin 8. Taken together, the attenuation of NF-κB activation by UL2 may contribute to the escape of host's antiviral innate immunity for HSV-1 during its infection.
Collapse
Affiliation(s)
- Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zongmin Liao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Department of Scientific Research and Education, Yuebei People's Hospital, Shaoguan, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tong Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yangxi Deng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yingjie Guo
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.,South China Vaccine Corporation Limited, Guangzhou Science Park, Guangzhou, China
| | - Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Significance of nuclear factor - kappa beta activation on prostate needle biopsy samples in the evaluation of Gleason score 6 prostatic carcinoma indolence. Radiol Oncol 2020; 54:194-200. [PMID: 32324163 PMCID: PMC7276643 DOI: 10.2478/raon-2020-0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background The goal of our study was to find out whether the immunohistochemical expression of nuclear factor-kappa beta (NF-κB) p65 in biopsy samples with Gleason score 3 + 3 = 6 (GS 6) can be a negative predictive factor for Prostate cancer (PCa) indolence. Patients and methods Study was conducted on a retrospective cohort of 123 PCa patients with initial total PSA ≤ 10 ng/ml, number of needle biopsy specimens ≥ 8, GS 6 on biopsy and T1/T2 estimated clinical stage who underwent laparoscopic radical prostatectomy and whose archived formalin-fixed and paraffin-embedded (FFPE) prostate needle biopsy specimens were used for additional immunohistochemistry staining for detection of NF-κB p65. Both cytoplasmic and nuclear NF-κB p65 expression in biopsy cores with PCa were correlated with postoperative pathological stage, positive surgical margins, GS and biochemical progression of disease. Results After follow-up of 66 months, biochemical progression (PSA ≥ 0.2 ng/ml) occurred in 6 (5.1%) patients, 3 (50%) with GS 6 and 3 (50%) with GS 7 after radical prostatectomy. Both cytoplasmic and nuclear NF-κB p65 expressions were not significantly associated with pathological stage, positive surgical margin and postoperative GS. Patients with positive cytoplasmic NF-kB reaction had significantly more frequent biochemical progression than those with negative cytoplasmic NF-kB reaction with PSA 0.2 ng/ml as cutoff point (p = 0.015) and a trend towards more biochemical progression with PSA ≥ 0.05 ng/ml as cutoff point (p = 0.068). Conclusions Cytoplasmic expression of NF-κB is associated with more biochemical progression and might be an independent prognostic factor for recurrence-free survival (RFS), but further studies including larger patient cohorts are needed to confirm these initial results.
Collapse
|
31
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 988] [Impact Index Per Article: 247.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
32
|
Wang Y, Deng X, Dai Y, Niu X, Zhou M. miR-27a Downregulation Promotes Cutaneous Squamous Cell Carcinoma Progression via Targeting EGFR. Front Oncol 2020; 9:1565. [PMID: 32039029 PMCID: PMC6985147 DOI: 10.3389/fonc.2019.01565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second common malignant cancer around the worldwide and is etiologically linked to ultraviolet radiation. miRNAs play an important role in the initiation and progression of cancers. However, the functions of miRNAs in cSCC remain to be elucidated. Here, we screened and identified miR-27a as a consistently downregulated miRNA after UVB irradiation in HaCaT cells. It was found that miR-27a expression was significantly decreased in cSCC cells and tissues. in vitro and in vivo experiments showed that miR-27a inhibited cell proliferation and invasion of cSCC cells. Mechanistically, EGFR was identified to be directly targeted by miR-27a and miR-27a suppressed the phosphorylation of EGFR and its downstream NF-κB signaling pathway. Overall, these findings suggest that downregulation of miR-27a promotes tumor growth and metastasis via targeting EGFR and its downstream NF-κB signaling pathway, reminding that miR-27a plays a vital role in the progression of cSCC and could be a new therapeutic target.
Collapse
Affiliation(s)
- Yinghui Wang
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China.,Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuyi Deng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Dai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinli Niu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
34
|
Zhou Y, Zhou Y, Kang X, Meng C, Zhang R, Guo Y, Xiong D, Song L, Jiao X, Pan Z. Molecular cloning and functional characterisation of duck ( Anas platyrhynchos) tumour necrosis factor receptor-associated factor 3. Br Poult Sci 2019; 60:357-365. [PMID: 31046421 DOI: 10.1080/00071668.2019.1614528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Tumour necrosis factor receptor-associated factor 3 (TRAF3) is a key regulator of innate immunity and acquired immunity, and has a salient anti-viral role. 2. In this experiment, the duck TRAF3 (DuTRAF3) gene was cloned according to the Anas platyrhynchos TRAF3 sequence to explore its function. The TRAF3 open reading frame contains 1704 bp that encode a protein of 567 amino acids, which contain a RING finger domain, two zinc finger motifs, a coiled-coil region, and a MATH domain. 3. Reverse transcription-polymerase chain reaction showed that DuTRAF3 was expressed in all the examined tissues, with a comparatively higher expression in the spleen and brain tissues. 4. In HEK293T cells, DuTRAF3 overexpression resulted in a significantly increased NF-κB activity and interferon (IFN)-β promoter activation. 5. Following resiquimod (R848) and poly(I:C) stimulation of duck peripheral blood mononuclear cells (PBMCs), the expressions of TRAF3 and IFN-β were significantly upregulated; in addition, following R848 stimulation, the mRNA levels of IL-6, IL-8 and IL-10 were also significantly upregulated. After infection with the Newcastle Disease Virus LaSota vaccine strain, the mRNA levels of IL-6 and IL-10 were significantly upregulated, while that of TRAF3 was downregulated. 6. These results suggest that DuTRAF3 has an important role to play in innate antiviral immune responses.
Collapse
Affiliation(s)
- Y Zhou
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Y Zhou
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - X Kang
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - C Meng
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - R Zhang
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Y Guo
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - D Xiong
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - L Song
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - X Jiao
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Z Pan
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| |
Collapse
|
35
|
Dimitrakopoulos FID, Antonacopoulou AG, Kottorou AE, Panagopoulos N, Kalofonou F, Sampsonas F, Scopa C, Kalofonou M, Koutras A, Makatsoris T, Dougenis D, Papadaki H, Brock M, Kalofonos HP. Expression Of Intracellular Components of the NF-κB Alternative Pathway (NF-κB2, RelB, NIK and Bcl3) is Associated With Clinical Outcome of NSCLC Patients. Sci Rep 2019; 9:14299. [PMID: 31586084 PMCID: PMC6778110 DOI: 10.1038/s41598-019-50528-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
A growing number of studies has shed light on the role of the NF-κΒ in non-small-cell lung cancer (NSCLC). To address the significance of major effectors of the NF-κΒ alternative pathway, we investigated the relationship between NF-κΒ2, RelB, NIK and Bcl3 expression (mRNA and protein) and the clinical outcome of NSCLC patients. NF-κΒ2, RelB, NIK and Bcl3 protein expression levels were assessed by immunohistochemistry in tissue samples from 151 NSCLC patients who had curative resection. mRNA levels were also evaluated in 69 patients using quantitative real-time PCR. Although all studied proteins were overexpressed in NSCLC (P < 0.001 for all), only RelB mRNA levels were strongly increased in cancerous specimens compared to tumor-adjacent non-neoplastic tissues (P = 0.009). Moreover, NF-κB2, RelB and Bcl3 expression was associated with overall survival (OS). In particular, cytoplasmic and mRNA expression of RelB was related to 5-year OS (P = 0.014 and P = 0.006, respectively). Multivariate analysis also showed that Bcl3 expression (nuclear and cytoplasmic) was associated with increased 5-year OS (P = 0.002 and P = 0.036, respectively). In addition, higher Bcl3 mRNA levels were associated with inferior OS in stages I & II and improved OS in stages III and IV after 5-year follow-up (P = 0.004 and P = 0.001, respectively). Furthermore, stage I patients with lower NF-κB2 mRNA levels had better 5-year survival in univariate and multivariate analysis (P = 0.031 and P = 0.028, respectively). Interestingly, RelB expression (cytoplasmic and mRNA) was inversely associated with relapse rates (P = 0.027 and P = 0.015, respectively), while low NIK cytoplasmic expression was associated with lower relapse rates (P = 0.019). Cytoplasmic NIK expression as well as NF-κB2/ Bcl3 detection was associated with lymph node infiltration (P = 0.039 and P = 0.014, respectively). The present study confirms the deregulation of the NF-κB alternative pathway in NSCLC and also demonstrates the importance of this pathway in prognosis, recurrence and infiltration of regional lymph nodes.
Collapse
Affiliation(s)
- Foteinos-Ioannis D Dimitrakopoulos
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Anna G Antonacopoulou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Anastasia E Kottorou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Nikolaos Panagopoulos
- Department of Cardiothoracic Surgery, Medical School, University of Patras, Patras, Greece
| | - Fotini Kalofonou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Chrisoula Scopa
- Department of Pathology, Medical School, University of Patras, Patras, Greece
| | - Melpomeni Kalofonou
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Angelos Koutras
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Thomas Makatsoris
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Dimitrios Dougenis
- Department of Cardiothoracic Surgery, Medical School, University of Patras, Patras, Greece
| | - Helen Papadaki
- Department of Anatomy, Medical School, University of Patras, Patras, Greece
| | - Malcolm Brock
- Division of Thoracic Surgery, Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Haralabos P Kalofonos
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
36
|
Jia R, Gu Z, He Q, Du J, Cao L, Jeney G, Xu P, Yin G. Anti-oxidative, anti-inflammatory and hepatoprotective effects of Radix Bupleuri extract against oxidative damage in tilapia (Oreochromis niloticus) via Nrf2 and TLRs signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2019; 93:395-405. [PMID: 31374313 DOI: 10.1016/j.fsi.2019.07.080] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Radix Bupleuri extract (RBE) is one of the most popular oriental herbal medicines, which has anti-oxidative and anti-inflammatory properties. However, its protective effects and underlying molecular mechanisms on oxidative damage in tilapia are still unclear. The aims of the study were to explore the anti-oxidative, anti-inflammatory and hepatoprotective effects of RBE against oxidative damage, and to elucidate underlying molecular mechanisms in fish. Tilapia received diet containing three doses of RBE (0, 1 and 3 g/kg diet) for 60 days, and then were given an intraperitoneal injection of H2O2 or saline. Before injection, RBE treatments improved growth performance and partial anti-oxidative capacity in tilapia. After oxidative damage, RBE pretreatments were able to signally reduce the higher serum aminotransferases, alkaline phosphatase (AKP) and liver necrosis. In serum and liver, the abnormal lipid peroxidation level and antioxidant status induced by H2O2 injection were restored by RBE treatments. Furthermore, RBE treatments activated erythroid 2-related factor 2 (Nrf2) signaling pathway, which promoted the gene expression of heme oxygenase 1 (HO-1), NAD(P) H:quinone oxidoreductase 1 (NQO-1), glutathione-S-transferase (GST) and catalase (CAT). Meanwhile, RBE treatments reduced inflammatory response by inhibiting TLRs-MyD88-NF-κB signaling pathway, accompanied by the lower interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-8 mRNA levels. In addition, RBE treatments upregulated complement (C3) gene expression and downregulated heat shock protein (HSP70) gene expression. In conclusion, the current study suggested that RBE pretreatments protected against H2O2-induced oxidative damage in tilapia. The beneficial activity of RBE may be due to the modulation of Nrf2/ARE and TLRs-Myd88-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxim, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Zhengyan Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qin He
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxim, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxim, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Galina Jeney
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; National Agricultural Research Center, Research Institute for Fisheries and Aquaculture, Anna Light 8, Szarvas, 5440, Hungary
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxim, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxim, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
37
|
Chen T, Wang Y, Xu Z, Zou X, Wang P, Ou X, Li Y, Peng T, Chen D, Li M, Cai M. Epstein-Barr virus tegument protein BGLF2 inhibits NF-κB activity by preventing p65 Ser536 phosphorylation. FASEB J 2019; 33:10563-10576. [PMID: 31337264 DOI: 10.1096/fj.201901196rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Epstein-Barr virus (EBV), a ubiquitous gammaherpesvirus, can regulate the antiviral response of NF-κB signaling, which is critical for cell survival, growth transformation, and virus latency. Here, we showed that tegument protein BGLF2 could inhibit TNF-α-induced NF-κB activity. BGLF2 was shown to interplay with the NF-κB subunits p65 and p50, and the Rel homology domain of p65 was the pivotal region to interact with BGLF2. Nonetheless, BGLF2 did not influence the development of p65-p50 dimerization. Yet, overexpression of BGLF2 inhibited the phosphorylation of p65 Ser536 (but not Ser276) and blocked the nuclear translocation of p65. In addition, knockdown of BGLF2 during EBV lytic replication elevated NF-κB activity and the phosphorylation of p65 Ser536. Taken together, these results suggest that the inhibition of NF-κB activation may serve as a strategy to escape the host's antiviral innate immunity to EBV during its lytic infection.-Chen, T., Wang, Y., Xu, Z., Zou, X., Wang, P., Ou, X., Li, Y., Peng, T., Chen, D., Li, M., Cai, M. Epstein-Barr virus tegument protein BGLF2 inhibits NF-κB activity by preventing p65 Ser536 phosphorylation.
Collapse
Affiliation(s)
- Tao Chen
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ping Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China.,South China Vaccine Corporation Limited, Guangzhou, Guangdong, China
| | - Daixiong Chen
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Pourhanifeh MH, Mohammadi R, Noruzi S, Hosseini SA, Fanoudi S, Mohamadi Y, Hashemzehi M, Asemi Z, Mirzaei HR, Salarinia R, Mirzaei H. The role of fibromodulin in cancer pathogenesis: implications for diagnosis and therapy. Cancer Cell Int 2019; 19:157. [PMID: 31198406 PMCID: PMC6558739 DOI: 10.1186/s12935-019-0870-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
Fibromodulin (FMOD) is known as one of very important extracellular matrix small leucine-rich proteoglycans. This small leucine-rich proteoglycan has critical roles in the extracellular matrix organization and necessary for repairing of tissue in many organs. Given that the major task of FMOD is the modulation of collagen fibrillogenesis. However, recently observed that FMOD plays very important roles in the modulation of a variety of pivotal biological processes including angiogenesis, regulation of TGF-β activity, and differentiation of human fibroblasts into pluripotent cells, inflammatory mechanisms, apoptosis and metastatic related phenotypes. Besides these roles, FMOD has been considered as a new tumor-related antigen in some malignancies such as lymphoma, leukemia, and leiomyoma. Taken together, these findings proposed that FMOD could be introduced as diagnostic and therapeutic biomarkers in treatment of various cancers. Herein, for first time, we highlighted the various roles of FMOD in the cancerous conditions. Moreover, we summarized the diagnostic and therapeutic applications of FMOD in cancer therapy.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Mohammadi
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Somaye Noruzi
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyede Atefe Hosseini
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- 3Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Mohamadi
- 4Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Milad Hashemzehi
- Iranshahr University of Medical Sciences, Iranshahr, Iran.,6Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zatollah Asemi
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Mirzaei
- 7Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Mirzaei
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
39
|
Fouani L, Kovacevic Z, Richardson DR. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxid Redox Signal 2019; 30:1096-1123. [PMID: 29161883 DOI: 10.1089/ars.2017.7387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nuclear factor kappa B (NF-κB) signaling is essential under physiologically relevant conditions. However, aberrant activation of this pathway plays a pertinent role in tumorigenesis and contributes to resistance. Recent Advances: The importance of the NF-κB pathway means that its targeting must be specific to avoid side effects. For many currently used therapeutics and those under development, the ability to generate reactive oxygen species (ROS) is a promising strategy. CRITICAL ISSUES As cancer cells exhibit greater ROS levels than their normal counterparts, they are more sensitive to additional ROS, which may be a potential therapeutic niche. It is known that ROS are involved in (i) the activation of NF-κB signaling, when in sublethal amounts; and (ii) high levels induce cytotoxicity resulting in apoptosis. Indeed, ROS-induced cytotoxicity is valuable for its capabilities in killing cancer cells, but establishing the potency of ROS for effective inhibition of NF-κB signaling is necessary. Indeed, some cancer treatments, currently used, activate NF-κB and may stimulate oncogenesis and confer resistance. FUTURE DIRECTIONS Thus, combinatorial approaches using ROS-generating agents alongside conventional therapeutics may prove an effective tactic to reduce NF-κB activity to kill cancer cells. One strategy is the use of thiosemicarbazones, which form redox-active metal complexes that generate high ROS levels to deliver potent antitumor activity. These agents also upregulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which functions as an NF-κB signaling inhibitor. It is proposed that targeting NF-κB signaling may proffer a new therapeutic niche to improve the efficacy of anticancer regimens.
Collapse
Affiliation(s)
- Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
Elgawish RA, Abdelrazek HMA, Ismail SAA, Loutfy NM, Soliman MTA. Hepatoprotective activity of Uncaria tomentosa extract against sub-chronic exposure to fipronil in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:199-207. [PMID: 30387063 DOI: 10.1007/s11356-018-3615-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
The effects of fipronil (FPN) on the liver of rats were studied. Rats (n = 6) were treated with 9.7 mg/kg (1/10 of FPN LD50), and other rats (n = 6) received 120 mg/kg of 10% Uncaria tomentosa extract, while a mixture of 9.7 mg/kg FPN and 120 mg/kg of 10% Uncaria tomentosa extract were administered orally to the rats (n = 6) daily for 6 weeks. Body, hepatic weights, liver enzymes, and lipid profile were determined. Hepatic activities of MDA, TNO, TAC, TNF-α, and IL-6 in liver homogenate were measured. Immunohistochemistry of NF-kB and liver histopathology were performed. Fipronil-treated rats had a significant (P = 0.02) lower weight gain. Moreover, relative liver weight was significantly (P = 0.003) increased in FPN-treated rats. Rats administrated with FPN exhibited a significantly (P = 0.02) higher liver enzymes and promoted levels of MDA, TNO, TNF-α, and IL-6 (P < 0.0001) than that in the other groups. Immunostaining of NF-κB was increased (P < 0.0001) in FPN-treated rats. Interestingly, Uncaria tomentosa alone or with FPN decreased the liver immunostaining of NF-κB. In conclusion, FPN produced liver injury through lipid peroxidation and stimulation of NF-κB. However, Uncaria tomentosa combated the oxidative stress and liver damage induced by FPN via inhibition of NF-κB.
Collapse
Affiliation(s)
- Rania Abdelrahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Shimaa A A Ismail
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa M Loutfy
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed T A Soliman
- Department of Clinical Pathology, College of Applied Medical Sciences, Bisha University, Bisha, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Zhang F, Lu S, Jin S, Chen K, Li J, Huang B, Cao Y. Lidanpaidu prescription alleviates lipopolysaccharide-induced acute kidney injury by suppressing the NF-κB signaling pathway. Biomed Pharmacother 2018; 99:245-252. [PMID: 29334668 DOI: 10.1016/j.biopha.2018.01.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/24/2022] Open
Abstract
The Lidanpaidu Prescription (LDP), a hospital preparation, composed of Chinese classical preparations, has been reported to have antiendotoxin, anticoagulant and other effects. However, its therapeutic effect on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and the mechanisms remain unclear. Therefore, we administered LPD pretreatment at different doses to examine the protective effects and mechanisms in LPS-induced AKI in mice. The kidney injury induced by LPS was assessed by histological examination. ELISA was used to detect the levels of inflammatory cytokines. The mRNA expression of the inflammatory genes IKKβ and TNF-α in kidney tissues was assessed by RT-PCR. Finally, Western blot was performed to assess the NF-κB signaling pathway related proteins, and the nuclear translocation of NF-kB P65 was detected by immunofluorescence laser confocal microscopy. The findings suggested that LDP significantly improved at 48 h animal survival (66.7%), compared with the LPS group (26.7%), determined by a Kaplan-Meier analysis. LDP attenuated the kidney histopathological changes induced by LPS and decreased the inflammatory cytokine levels in serum and renal tissue. Moreover, LDP markedly inhibited the expression of inflammatory genes and suppressed the activation of relevant proteins in the nucleus. In summary, these findings suggest that LDP reduces LPS-induced AKI via a mechanism related to the suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shan Lu
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Siyi Jin
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Keli Chen
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Juan Li
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Bisheng Huang
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yan Cao
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
42
|
Identification of host cellular proteins LAGE3 and IGFBP6 that interact with orf virus protein ORFV024. Gene 2018; 661:60-67. [DOI: 10.1016/j.gene.2018.03.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/07/2018] [Accepted: 03/28/2018] [Indexed: 11/19/2022]
|
43
|
Evans SM, Rodino KG, Adcox HE, Carlyon JA. Orientia tsutsugamushi uses two Ank effectors to modulate NF-κB p65 nuclear transport and inhibit NF-κB transcriptional activation. PLoS Pathog 2018; 14:e1007023. [PMID: 29734393 PMCID: PMC5957444 DOI: 10.1371/journal.ppat.1007023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/17/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023] Open
Abstract
Orientia tsutsugamushi causes scrub typhus, a potentially fatal infection that threatens over one billion people. Nuclear translocation of the transcription factor, NF-κB, is the central initiating cellular event in the antimicrobial response. Here, we report that NF-κB p65 nuclear accumulation and NF-κB-dependent transcription are inhibited in O. tsutsugamushi infected HeLa cells and/or primary macrophages, even in the presence of TNFα. The bacterium modulates p65 subcellular localization by neither degrading it nor inhibiting IκBα degradation. Rather, it exploits host exportin 1 to mediate p65 nuclear export, as this phenomenon is leptomycin B-sensitive. O. tsutsugamushi antagonizes NF-κB-activated transcription even when exportin 1 is inhibited and NF-κB consequently remains in the nucleus. Two ankyrin repeat-containing effectors (Anks), Ank1 and Ank6, each of which possess a C-terminal F-box and exhibit 58.5% amino acid identity, are linked to the pathogen's ability to modulate NF-κB. When ectopically expressed, both translocate to the nucleus, abrogate NF-κB-activated transcription in an exportin 1-independent manner, and pronouncedly reduce TNFα-induced p65 nuclear levels by exportin 1-dependent means. Flag-tagged Ank 1 and Ank6 co-immunoprecipitate p65 and exportin 1. Both also bind importin β1, a host protein that is essential for the classical nuclear import pathway. Importazole, which blocks importin β1 activity, abrogates Ank1 and Ank6 nuclear translocation. The Ank1 and Ank6 regions that bind importin β1 also mediate their transport into the nucleus. Yet, these regions are distinct from those that bind p65/exportin 1. The Ank1 and Ank6 F-box and the region that lies between it and the ankyrin repeat domain are essential for blocking p65 nuclear accumulation. These data reveal a novel mechanism by which O. tsutsugamushi modulates the activity and nuclear transport of NF-κB p65 and identify the first microbial proteins that co-opt both importin β1 and exportin 1 to antagonize a critical arm of the antimicrobial response.
Collapse
Affiliation(s)
- Sean M. Evans
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| | - Kyle G. Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
44
|
Andreas N, Riemann M, Castro CN, Groth M, Koliesnik I, Engelmann C, Sparwasser T, Kamradt T, Haenold R, Weih F. A new RelB-dependent CD117 + CD172a + murine DC subset preferentially induces Th2 differentiation and supports airway hyperresponses in vivo. Eur J Immunol 2018; 48:923-936. [PMID: 29485182 DOI: 10.1002/eji.201747332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/10/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
Abstract
The NF-κB transcription factor subunit RelB is important for the full activation of conventional dendritic cells (cDCs) during T-cell-dependent immune responses. Although the number of splenic DCs is greatly reduced in RelBnull mice, the cause and consequences of this deficiency are currently unknown. To circumvent the impact of the pleiotropic defects in RelBnull mice we used a reporter model for RelB expression (RelBKatushka mice) and conditionally deleted RelB in DCs (RelBCD11c-Cre mice). Thereby, we can show here that RelB is essential for the differentiation of a CD117+ CD172a+ cDC subpopulation that highly expresses RelB. Surprisingly, these DCs depend on p50 for their development and are negatively regulated by a constitutive p52 activation in absence of p100. The absence of p52/p100 had no influence on the homeostasis of CD117+ CD172a+ cDCs. RelB-dependent CD117+ CD172a+ DCs strongly induce the production of the type 2 cytokines IL-4 and IL-13, as well as GM-CSF from naïve Th cells. Consequently, mice lacking RelB in cDCs show an attenuated bronchial hyperresponsiveness with reduced eosinophil infiltration. Taken together, we have identified a new splenic RelB-dependent CD117+ CD172a+ cDC population that preferentially induces Th2 responses.
Collapse
Affiliation(s)
- Nico Andreas
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Marc Riemann
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Carla N Castro
- Institute of Infection Immunology/TWINCORE Centre for Experimental and Clinical Infection Research GmbH, Hannover, Germany
| | - Marco Groth
- High-Throughput Sequencing (HTS) Core Facility, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ievgen Koliesnik
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Christian Engelmann
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology/TWINCORE Centre for Experimental and Clinical Infection Research GmbH, Hannover, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Ronny Haenold
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Falk Weih
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| |
Collapse
|
45
|
Dimitrakopoulos FID, Antonacopoulou AG, Kottorou AE, Maroussi S, Panagopoulos N, Koukourikou I, Scopa C, Kalofonou M, Koutras A, Makatsoris T, Papadaki H, Dougenis D, Brock M, Kalofonos HP. NF-kB2 Genetic Variations are Significantly Associated with Non-Small Cell Lung Cancer Risk and Overall Survival. Sci Rep 2018; 8:5259. [PMID: 29588475 PMCID: PMC5869671 DOI: 10.1038/s41598-018-23324-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/20/2018] [Indexed: 01/16/2023] Open
Abstract
During the last decade, a growing number of publications implicate NF-kB2 in NSCLC pathogenesis. Here, we investigated the clinical relevance of NF-kB2 single nucleotide polymorphisms (SNPs) rs7897947, rs11574852 and rs12769316 in NSCLC and their association with NF-kB2 protein and mRNA levels. Our data show that TT (rs7897947T >G) and AA (rs12769316G >A) genotypes were strongly associated with an increased risk for NSCLC (P = 0.019 and P = 0.003, respectively). Additionally, in multivariate analysis, TT (rs7897947T >G) homozygosity was associated with worse 2- and 3-year survival rates (P = 0.030 and P = 0.028, respectively), especially among patients with stages III/IV, who had worse 2, 3 and 5-year survival (P = 0.001, P = 0.022 and P = 0.035, respectively). In chemotherapy-treated patients, TT (rs12769316G >A) homozygosity was also associated with worse 2- and 3-year survival compared to G allele carriers (P = 0.006 and P = 0.014, respectively). Furthermore, rs12769316 was correlated with survival outcome of stage I and II patients (P = 0.031 and P = 0.006, respectively). Interestingly, amongst the patients who developed metastases, A allele carriers had better 5-year survival (P = 0.020). In addition, rs12769316 was associated with NF-kB2 protein (P = 0.001) and mRNA expression (P = 0.017) as well as with tumor maximum diameter (P = 0.025). Overall, this study suggests that rs7897947 and rs12769316 are involved in NSCLC susceptibility, in treatment response and in clinical outcome.
Collapse
Affiliation(s)
- Foteinos-Ioannis D Dimitrakopoulos
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Anna G Antonacopoulou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Anastasia E Kottorou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stella Maroussi
- "G. Gennimatas" General Hospital of Athens, Neurology Department, Athens, Greece
| | - Nikolaos Panagopoulos
- Department of Cardiothoracic Surgery, Medical School, University of Patras, Patras, Greece
| | - Ioulia Koukourikou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Chrisoula Scopa
- Department of Pathology, Medical School, University of Patras, Patras, Greece
| | - Melpomeni Kalofonou
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Angelos Koutras
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Thomas Makatsoris
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Helen Papadaki
- Department of Anatomy, Medical School, University of Patras, Patras, Greece
| | - Dimitrios Dougenis
- Department of Cardiothoracic Surgery, Medical School, University of Patras, Patras, Greece
| | - Malcolm Brock
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haralabos P Kalofonos
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
46
|
Wang X, Wang R, Luo M, Li C, Wang HX, Huan CC, Qu YR, Liao Y, Mao X. (DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget 2018; 8:33197-33213. [PMID: 28402257 PMCID: PMC5464861 DOI: 10.18632/oncotarget.16593] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/17/2017] [Indexed: 01/29/2023] Open
Abstract
Asp-Glu-Ala-Asp (DEAD)-box RNA helicase 3 (DDX3), an ATP-dependent RNA helicase, is associated with RNA splicing, mRNA export, transcription, translation, and RNA decay. Recent studies revealed that DDX3 participates in innate immune response during virus infection by interacting with TBK1 and regulating the production of IFN-β. In our studies, we demonstrated that DDX3 regulated NF-κB signal pathway. We found that DDX3 knockdown reduced the phosphorylation of p65 and IKK-β and ultimately attenuated the production of inflammatory cytokines induced by poly(I:C) or TNF-α stimulation. The regulatory effect of DDX3 on NF-κB signal pathway was not affected by the loss of its ATPase or helicase activity. We further identified PP2A C subunit (PP2A-C) as an interaction partner of DDX3 by co-immunoprecipitation and mass spectrum analysis. We confirmed that DDX3 formed the complex with PP2A-C/IKK-β and regulated the interaction between IKK-β and PP2A-C. Furthermore, we demonstrated that DDX3 modulated the activity of PP2A by controlling the phosphorylation of PP2A-C, which might enable PP2A-C to regulate NF-κB signal pathway by dephosphorylating IKK-β. All these findings suggested DDX3 plays multiple roles in modulating innate immune system.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Rui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Miao Luo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Chen Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Hua-Xia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Chang-Chao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yu-Rong Qu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| |
Collapse
|
47
|
Synergistic therapeutic effect of diethylstilbestrol and CX-4945 in human acute T-lymphocytic leukemia cells. Biomed Pharmacother 2018; 98:357-363. [DOI: 10.1016/j.biopha.2017.12.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023] Open
|
48
|
Velloso FJ, Bianco AFR, Farias JO, Torres NEC, Ferruzo PYM, Anschau V, Jesus-Ferreira HC, Chang THT, Sogayar MC, Zerbini LF, Correa RG. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. Onco Targets Ther 2017; 10:5491-5524. [PMID: 29200866 PMCID: PMC5701508 DOI: 10.2147/ott.s142154] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the disease with highest public health impact in developed countries. Particularly, breast cancer has the highest incidence in women worldwide and the fifth highest mortality in the globe, imposing a significant social and economic burden to society. The disease has a complex heterogeneous etiology, being associated with several risk factors that range from lifestyle to age and family history. Breast cancer is usually classified according to the site of tumor occurrence and gene expression profiling. Although mutations in a few key genes, such as BRCA1 and BRCA2, are associated with high breast cancer risk, the large majority of breast cancer cases are related to mutated genes of low penetrance, which are frequently altered in the whole population. Therefore, understanding the molecular basis of breast cancer, including the several deregulated genes and related pathways linked to this pathology, is essential to ensure advances in early tumor detection and prevention. In this review, we outline key cellular pathways whose deregulation has been associated with breast cancer, leading to alterations in cell proliferation, apoptosis, and the delicate hormonal balance of breast tissue cells. Therefore, here we describe some potential breast cancer-related nodes and signaling concepts linked to the disease, which can be positively translated into novel therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Valesca Anschau
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ted Hung-Tse Chang
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | | | - Luiz F Zerbini
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
49
|
Hou J, Jiang S, Zhao J, Zhu D, Zhao X, Cai JC, Zhang SQ. N-Myc-Interacting Protein Negatively Regulates TNF-α-Induced NF-κB Transcriptional Activity by Sequestering NF-κB/p65 in the Cytoplasm. Sci Rep 2017; 7:14579. [PMID: 29109532 PMCID: PMC5674077 DOI: 10.1038/s41598-017-15074-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
NF-κB is a major regulator of gene transcription involved in immune, inflammation, apoptosis and stress responses. However, the regulation of NF-κB is not completely understood. Here, we report that the N-Myc and STATs Interactor (NMI), an IFN-inducible protein, is an important negative regulator of NF-κB activity. We found that NMI negatively regulates TNF-α-induced IL-6 and IL-1β production in HeLa cells. Overexpression of NMI inhibits NF-κB transcriptional activity, in contrast, depletion of NMI by shRNA increases NF-κB transcriptional activity. Mechanistically, NMI associates with NF-κB/p65 and inhibits NF-κB/p65 nuclear translocation and thereby negatively regulates NF-κB/p65 transcriptional activity. Taken together, our results demonstrate that NMI modulates the NF-κB signaling pathway by sequestering NF-κB/p65 in the cytoplasm, resulting in reduced IL-6 and IL-1β production after TNF-α stimulation. Treatment with IFNα in the presence of NMI leads to increased apoptosis in tumor cells. These findings reveal a novel mechanism by which NMI regulates NF-κB activity.
Collapse
Affiliation(s)
- Jingjing Hou
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Shihao Jiang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiabao Zhao
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dong Zhu
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xinmeng Zhao
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jian-Chun Cai
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Si Qing Zhang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
50
|
Adeniran C, Hamelberg D. Redox-Specific Allosteric Modulation of the Conformational Dynamics of κB DNA by Pirin in the NF-κB Supramolecular Complex. Biochemistry 2017; 56:5002-5010. [DOI: 10.1021/acs.biochem.7b00528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charles Adeniran
- Department of Chemistry and the Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry and the Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|