1
|
Nakamura AM, Godoy AS, Kadowaki MAS, Trentin LN, Gonzalez SET, Skaf MS, Polikarpov I. Structures of BlEst2 from Bacillus licheniformis in its propeptide and mature forms reveal autoinhibitory effects of the C-terminal domain. FEBS J 2024. [PMID: 39073006 DOI: 10.1111/febs.17229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Carboxylesterases comprise a major class of α/β-fold hydrolases responsible for the cleavage and formation of ester bonds. Found ubiquitously in nature, these enzymes are crucial for the metabolism of both endogenous and exogenous carboxyl esters in animals, plants and microorganisms. Beyond their essential physiological roles, carboxylesterases stand out as one of the important classes of biocatalysts for biotechnology. BlEst2, an enzyme previously classified as Bacillus licheniformis esterase, remains largely uncharacterized. In the present study, we elucidate the structural biology, molecular dynamics and biochemical features of BlEst2. Our findings reveal a canonical α/β-hydrolase fold similar to the ESTHER block L of lipases, further augmented by two additional accessory C-terminal domains. Notably, the catalytic domain demonstrates two insertions, which occupy conserved locations in α/β-hydrolase proteins and commonly form the lid domain in lipase structures. Intriguingly, our in vitro cleavage of C-terminal domains revealed the structure of the active form of BlEst2. Upon activation, BlEst2 showed a markedly elevated hydrolytic activity. This observation implies that the intramolecular C-terminal domain serves as a regulatory intramolecular inhibitor. Interestingly, despite exhibiting esterase-like activity, BlEst2 structural characteristics align more closely with lipases. This suggests that BlEst2 could potentially represent a previously unrecognized subgroup within the realm of carboxyl ester hydrolases.
Collapse
Affiliation(s)
| | | | | | - Lucas N Trentin
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas - UNICAMP, Brazil
| | - Sinkler E T Gonzalez
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas - UNICAMP, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas - UNICAMP, Brazil
| | - Igor Polikarpov
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| |
Collapse
|
2
|
Hong T, Pan R, Ke J, Luo Y, Hao Y, Chen L, Tu D, Dai Y, Chen T, Chen S. Expression, purification, and enzymatic characterization of an extracellular protease from Halococcus salifodinae. Braz J Microbiol 2023; 54:2689-2703. [PMID: 37661213 PMCID: PMC10689711 DOI: 10.1007/s42770-023-01114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular proteases from halophilic archaea displays increased enzymatic activities in hypersaline environment. In this study, an extracellular protease-coding gene, hly34, from the haloarchaeal strain Halococcus salifodinae PRR34, was obtained through homologous search. The protease activity produced by this strain at 20% NaCl, 42 °C, and pH 7.0 was 32.5 ± 0.5 (U·mL-1). The codon-optimized hly34 which is specific for Escherichia coli can be expressed in E. coli instead of native hly34. It exhibits proteolytic activity under a wide range of low- or high-salt concentrations, slightly acidic or alkaline conditions, and slightly higher temperatures. The Hly34 presented the highest proteolytic activity at 50 °C, pH 9.0, and 0-1 M NaCl. It was found that the Hly34 showed a higher enzyme activity under low-salt conditions. Hly34 has good stability at different NaCl concentrations (1-4 M) and pH (6.0-10.0), as well as good tolerance to some metal ions. However, at 60 °C, the stability is reduced. It has a good tolerance to some metal ions. The proteolytic activity was completely inhibited by phenylmethanesulfonyl fluoride, suggesting that the Hly34 is a serine protease. This study further deepens our understanding of haloarchaeal extracellular protease, most of which found in halophilic archaea are classified as serine proteases. These proteases exhibit a certain level of alkaline resistance and moderate heat resistance, and they may emerge with higher activity under low-salt conditions than high-salt conditions. The protease Hly34 is capable of degrading a number of proteins, including substrate proteins, such as azocasein, whey protein and casein. It has promising applications in industrial production.
Collapse
Affiliation(s)
- Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Ruru Pan
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Juntao Ke
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yuqing Luo
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yuling Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Demei Tu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yongpei Dai
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Tingting Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 10010, China.
| |
Collapse
|
3
|
Constitutive Expression in Komagataella phaffii of Mature Rhizopus oryzae Lipase Jointly with Its Truncated Prosequence Improves Production and the Biocatalyst Operational Stability. Catalysts 2021. [DOI: 10.3390/catal11101192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rhizopus oryzae lipase (ROL) containing 28 C-terminal amino acids of the prosequence fused to the N-terminal mature sequence in ROL (proROL) was successfully expressed in the methylotrophic yeast Komagataella phaffii (Pichia pastoris) under the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP). Although the sequence encoding the mature lipase (rROL) was also transformed, no clones were obtained after three transformation cycles, which highlights the importance of the truncated prosequence to obtain viable transformed clones. Batch cultures of the K. phaffii strain constitutively expressing proROL scarcely influenced growth rate and exhibited a final activity and volumetric productivity more than six times higher than those obtained with proROL from K. phaffii under the methanol-inducible alcohol oxidase 1 promoter (PAOX1). The previous differences were less marked in fed-batch cultures. N-terminal analysis confirmed the presence of the 28 amino acids in proROL. In addition, immobilized proROL exhibited increased tolerance of organic solvents and an operational stability 0.25 and 3 times higher than that of immobilized rROL in biodiesel and ethyl butyrate production, respectively. Therefore, the truncated prosequence enables constitutive proROL production, boosts bioprocess performance and provides a more stable biocatalyst in two reactions in which lipases are mostly used at industrial level, esterification (ethyl butyrate) and transesterification (biodiesel).
Collapse
|
4
|
Goetting-Minesky MP, Godovikova V, Fenno JC. Approaches to Understanding Mechanisms of Dentilisin Protease Complex Expression in Treponema denticola. Front Cell Infect Microbiol 2021; 11:668287. [PMID: 34084756 PMCID: PMC8167434 DOI: 10.3389/fcimb.2021.668287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022] Open
Abstract
The oral spirochete Treponema denticola is a keystone periodontal pathogen that, in association with members of a complex polymicrobial oral biofilm, contributes to tissue damage and alveolar bone loss in periodontal disease. Virulence-associated behaviors attributed to T. denticola include disruption of the host cell extracellular matrix, tissue penetration and disruption of host cell membranes accompanied by dysregulation of host immunoregulatory factors. T. denticola dentilisin is associated with several of these behaviors. Dentilisin is an outer membrane-associated complex of acylated subtilisin-family PrtP protease and two other lipoproteins, PrcB and PrcA, that are unique to oral spirochetes. Dentilisin is encoded in a single operon consisting of prcB-prcA-prtP. We employ multiple approaches to study mechanisms of dentilisin assembly and PrtP protease activity. To determine the role of each protein in the protease complex, we have made targeted mutations throughout the protease locus, including polar and nonpolar mutations in each gene (prcB, prcA, prtP) and deletions of specific PrtP domains, including single base mutagenesis of key PrtP residues. These will facilitate distinguishing between host cell responses to dentilisin protease activity and its acyl groups. The boundaries of the divergent promoter region and the relationship between dentilisin and the adjacent iron transport operon are being resolved by incremental deletions in the sequence immediately 5’ to the protease locus. Comparison of the predicted three-dimensional structure of PrtP to that of other subtilisin-like proteases shows a unique PrtP C-terminal domain of approximately 250 residues. A survey of global gene expression in the presence or absence of protease gene expression reveals potential links between dentilisin and iron uptake and homeostasis in T. denticola. Understanding the mechanisms of dentilisin transport, assembly and activity of this unique protease complex may lead to more effective prophylactic or therapeutic treatments for periodontal disease.
Collapse
Affiliation(s)
- M Paula Goetting-Minesky
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Valentina Godovikova
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
The role of propeptide-mediated autoinhibition and intermolecular chaperone in the maturation of cognate catalytic domain in leucine aminopeptidase. J Struct Biol 2021; 213:107741. [PMID: 33989771 DOI: 10.1016/j.jsb.2021.107741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022]
Abstract
Leucyl aminopeptidase A from Aspergillus oryzae RIB40 (AO-LapA) is an exo-acting peptidase, widely utilised in food debittering applications. AO-LapA is secreted as a zymogen by the host and requires enzymatic cleavage of the autoinhibitory propeptide to reveal its full activity. Scarcity of structural data of zymogen aminopeptidases hampers a better understanding of the details of their molecular action of autoinhibition and how this might be utilised to improve the properties of such enzymes by recombinant methods for more effective bioprocessing. To address this gap in the literature, herein we report high-resolution crystal structures of recombinantly expressed AO-LapA precursor (AO-proLapA), mature LapA (AO-mLapA) and AO-mLapA complexed with reaction product l-leucine (AO-mLapA-Leu), all purified from Pichia pastoris culture supernatant. Our structures reveal a plausible molecular mechanism of LapA catalytic domain autoinhibition by propeptide and highlights the role of intramolecular chaperone (IMC). Our data suggest an absolute requirement for IMC in the maturation of cognate catalytic domain of AO-LapA. This observation is reinforced by our expression and refolding data of catalytic domain only (AO-refLapA) from Escherichia coli inclusion bodies, revealing a limited active conformation. Our work supports the notion that known synthetic aminopeptidase inhibitors and substrates mimic key polar contacts between propeptide and corresponding catalytic domain, demonstrated in our AO-proLapA zymogen crystal structure. Furthermore, understanding the atomic details of the autoinhibitory mechanism of cognate catalytic domains by native propeptides has wider reaching implications toward synthetic production of more effective inhibitors of bimetallic aminopeptidases and other dizinc enzymes that share an analogous reaction mechanism.
Collapse
|
6
|
Toxin-like neuropeptides in the sea anemone Nematostella unravel recruitment from the nervous system to venom. Proc Natl Acad Sci U S A 2020; 117:27481-27492. [PMID: 33060291 DOI: 10.1073/pnas.2011120117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The sea anemone Nematostella vectensis (Anthozoa, Cnidaria) is a powerful model for characterizing the evolution of genes functioning in venom and nervous systems. Although venom has evolved independently numerous times in animals, the evolutionary origin of many toxins remains unknown. In this work, we pinpoint an ancestral gene giving rise to a new toxin and functionally characterize both genes in the same species. Thus, we report a case of protein recruitment from the cnidarian nervous to venom system. The ShK-like1 peptide has a ShKT cysteine motif, is lethal for fish larvae and packaged into nematocysts, the cnidarian venom-producing stinging capsules. Thus, ShK-like1 is a toxic venom component. Its paralog, ShK-like2, is a neuropeptide localized to neurons and is involved in development. Both peptides exhibit similarities in their functional activities: They provoke contraction in Nematostella polyps and are toxic to fish. Because ShK-like2 but not ShK-like1 is conserved throughout sea anemone phylogeny, we conclude that the two paralogs originated due to a Nematostella-specific duplication of a ShK-like2 ancestor, a neuropeptide-encoding gene, followed by diversification and partial functional specialization. ShK-like2 is represented by two gene isoforms controlled by alternative promoters conferring regulatory flexibility throughout development. Additionally, we characterized the expression patterns of four other peptides with structural similarities to studied venom components and revealed their unexpected neuronal localization. Thus, we employed genomics, transcriptomics, and functional approaches to reveal one venom component, five neuropeptides with two different cysteine motifs, and an evolutionary pathway from nervous to venom system in Cnidaria.
Collapse
|
7
|
Bahun M, Hartman K, Poklar Ulrih N. Periplasmic production of pernisine in Escherichia coli and determinants for its high thermostability. Appl Microbiol Biotechnol 2020; 104:7867-7878. [PMID: 32734388 DOI: 10.1007/s00253-020-10791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 07/19/2020] [Indexed: 11/25/2022]
Abstract
Pernisine is a subtilisin-like serine proteinase secreted by the hyperthermophilic archaeon Aeropyrum pernix. The significant properties of this proteinase are remarkable stability and ability to degrade the infectious prion proteins. Here we show the production of pernisine in the periplasm of Escherichia coli. This strategy prevented the aggregation of pernisine in the cytoplasm and increased the purity of the isolated pernisine. The thermostability of this recombinant pernisine was significantly increased compared with previous studies. In addition, several truncated pernisine variants were constructed and expressed in E. coli to identify the minimally active domain. The catalytic domain of pernisine consists of the αẞα structurally similar core flanked by the N-terminal and C-terminal outer regions. The deletion of the C-terminal α helix did not affect the pernisine activity at 90 °C. However, the complete deletion of the C-terminal outer region resulted in loss of proteolytic activity. The pernisine variant, in which the N-terminal outer region was deleted, had a reduced activity at 90 °C. These results underline the importance of the Ca2+ binding sites predicted in these outer regions for stability and activity of pernisine. KEY POINTS: • Aggregation of produced pernisine was prevented by translocation into periplasm. • Thermostability of mature pernisine was increased. • The outer regions of the catalytic core are required for pernisine thermostability.
Collapse
Affiliation(s)
- Miha Bahun
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kevin Hartman
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia. .,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia.
| |
Collapse
|
8
|
Khaitlina S, Bozhokina E, Tsaplina O, Efremova T. Bacterial Actin-Specific Endoproteases Grimelysin and Protealysin as Virulence Factors Contributing to the Invasive Activities of Serratia. Int J Mol Sci 2020; 21:E4025. [PMID: 32512842 PMCID: PMC7311988 DOI: 10.3390/ijms21114025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
The article reviews the discovery, properties and functional activities of new bacterial enzymes, proteases grimelysin (ECP 32) of Serratia grimesii and protealysin of Serratia proteamaculans, characterized by both a highly specific "actinase" activity and their ability to stimulate bacterial invasion. Grimelysin cleaves the only polypeptide bond Gly42-Val43 in actin. This bond is not cleaved by any other proteases and leads to a reversible loss of actin polymerization. Similar properties were characteristic for another bacterial protease, protealysin. These properties made grimelysin and protealysin a unique tool to study the functional properties of actin. Furthermore, bacteria Serratia grimesii and Serratia proteamaculans, producing grimelysin and protealysin, invade eukaryotic cells, and the recombinant Escherichia coli expressing the grimelysin or protealysins gene become invasive. Participation of the cellular c-Src and RhoA/ROCK signaling pathways in the invasion of eukaryotic cells by S. grimesii was shown, and involvement of E-cadherin in the invasion has been suggested. Moreover, membrane vesicles produced by S. grimesii were found to contain grimelysin, penetrate into eukaryotic cells and increase the invasion of bacteria into eukaryotic cells. These data indicate that the protease is a virulence factor, and actin can be a target for the protease upon its translocation into the host cell.
Collapse
Affiliation(s)
- Sofia Khaitlina
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (E.B.); (O.T.); (T.E.)
| | | | | | | |
Collapse
|
9
|
Differential effects of 'resurrecting' Csp pseudoproteases during Clostridioides difficile spore germination. Biochem J 2020; 477:1459-1478. [PMID: 32242623 PMCID: PMC7200643 DOI: 10.1042/bcj20190875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 01/02/2023]
Abstract
Clostridioides difficile is a spore-forming bacterial pathogen that is the leading cause of hospital-acquired gastroenteritis. C. difficile infections begin when its spore form germinates in the gut upon sensing bile acids. These germinants induce a proteolytic signaling cascade controlled by three members of the subtilisin-like serine protease family, CspA, CspB, and CspC. Notably, even though CspC and CspA are both pseudoproteases, they are nevertheless required to sense germinants and activate the protease, CspB. Thus, CspC and CspA are part of a growing list of pseudoenzymes that play important roles in regulating cellular processes. However, despite their importance, the structural properties of pseudoenzymes that allow them to function as regulators remain poorly understood. Our recently solved crystal structure of CspC revealed that its pseudoactive site residues align closely with the catalytic triad of CspB, suggesting that it might be possible to ‘resurrect' the ancestral protease activity of the CspC and CspA pseudoproteases. Here, we demonstrate that restoring the catalytic triad to these pseudoproteases fails to resurrect their protease activity. We further show that the pseudoactive site substitutions differentially affect the stability and function of the CspC and CspA pseudoproteases: the substitutions destabilized CspC and impaired spore germination without affecting CspA stability or function. Thus, our results surprisingly reveal that the presence of a catalytic triad does not necessarily predict protease activity. Since homologs of C. difficile CspA occasionally carry an intact catalytic triad, our results indicate that bioinformatic predictions of enzyme activity may underestimate pseudoenzymes in rare cases.
Collapse
|
10
|
Moroz OV, Blagova E, Reiser V, Saikia R, Dalal S, Jørgensen CI, Bhatia VK, Baunsgaard L, Andersen B, Svendsen A, Wilson KS. Novel Inhibitory Function of the Rhizomucor miehei Lipase Propeptide and Three-Dimensional Structures of Its Complexes with the Enzyme. ACS OMEGA 2019; 4:9964-9975. [PMID: 31460089 PMCID: PMC6648591 DOI: 10.1021/acsomega.9b00612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Many proteins are synthesized as precursors, with propeptides playing a variety of roles such as assisting in folding or preventing them from being active within the cell. While the precise role of the propeptide in fungal lipases is not completely understood, it was previously reported that mutations in the propeptide region of the Rhizomucor miehei lipase have an influence on the activity of the mature enzyme, stressing the importance of the amino acid composition of this region. We here report two structures of this enzyme in complex with its propeptide, which suggests that the latter plays a role in the correct maturation of the enzyme. Most importantly, we demonstrate that the propeptide shows inhibition of lipase activity in standard lipase assays and propose that an important role of the propeptide is to ensure that the enzyme is not active during its expression pathway in the original host.
Collapse
Affiliation(s)
- Olga V. Moroz
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Elena Blagova
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Verena Reiser
- Novozymes
A/S, Krogshøjvej
36, DK-2880 Bagsværd, Denmark
| | - Rakhi Saikia
- Novozymes
A/S, Plot No. 32, 47-50,
Genisys Building, Whitefield, EPIP Zone, Brookefield, Bengaluru, Karnataka 560066, India
| | - Sohel Dalal
- Novozymes
A/S, Plot No. 32, 47-50,
Genisys Building, Whitefield, EPIP Zone, Brookefield, Bengaluru, Karnataka 560066, India
| | | | | | | | | | - Allan Svendsen
- Novozymes
A/S, Krogshøjvej
36, DK-2880 Bagsværd, Denmark
| | - Keith S. Wilson
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| |
Collapse
|
11
|
Li K, Zhu Y, Yan W, Deng X, Xiao Y, Song L, Fang R, Jia Y, Tang X. Two components of the rhpPC operon coordinately regulate the type III secretion system and bacterial fitness in Pseudomonas savastanoi pv. phaseolicola. PLoS Pathog 2019; 15:e1007673. [PMID: 30998769 PMCID: PMC6490944 DOI: 10.1371/journal.ppat.1007673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/30/2019] [Accepted: 03/02/2019] [Indexed: 12/17/2022] Open
Abstract
Many plant bacterial pathogens including Pseudomonas species, utilize the type III secretion system (T3SS) to deliver effector proteins into plant cells. Genes encoding the T3SS and its effectors are repressed in nutrient-rich media but are rapidly induced after the bacteria enter a plant or are transferred into nutrient-deficient media. To understand how the T3SS genes are regulated, we screened for P. savastanoi pv. phaseolicola (Psph) mutants displaying diminished induction of avrPto-luc, a reporter for the T3SS genes, in Arabidopsis. A mutant carrying transposon insertion into a gene coding for a small functional unknown protein, designated as rhpC, was identified that poorly induced avrPto-luc in plants and in minimal medium (MM). Interestingly, rhpC is located immediately downstream of a putative metalloprotease gene named rhpP, and the two genes are organized in an operon rhpPC; but rhpP and rhpC displayed different RNA expression patterns in nutrient-rich King’s B medium (KB) and MM. Deletion of the whole rhpPC locus did not significantly affect the avrPto-luc induction, implying coordinated actions of rhpP and rhpC in regulating the T3SS genes. Further analysis showed that RhpC was a cytoplasmic protein that interacted with RhpP and targeted RhpP to the periplasm. In the absence of RhpC, RhpP was localized in the cytoplasm and caused a reduction of HrpL, a key regulator of the T3SS genes, and also reduced the fitness of Psph. Expression of RhpP alone in E. coli inhibited the bacterial growth. The detrimental effect of RhpP on the fitness of Psph and E. coli required metalloprotease active sites, and was repressed when RhpC was co-expressed with RhpP. The coordination between rhpP and rhpC in tuning the T3SS gene expression and cell fitness reveals a novel regulatory mechanism for bacterial pathogenesis. The function of RhpP in the periplasm remains to be studied. The induction of the type III secretion system (T3SS) is of great importance to the pathogenesis of bacterial pathogens in host plants. Pseudomonas savastanoi pv. phaseolicola (Psph) causes halo blight disease on beans. We discovered that the bicistronic genes in the rhpPC locus of Psph act coordinately to regulate the T3SS gene expression, bacterial fitness, and pathogenicity. rhpP encodes a metalloprotease that can degrade the key T3SS regulator protein HrpL and reduce bacterial fitness. rhpC encodes a chaperone that inhibits the RhpP activity and mediates translocation of RhpP to the periplasm. The level of rhpP RNA is high in KB but decreases in MM, but the rhpC RNA is low in KB but increases in MM. The elevated rhpC/rhpP transcript ratio in MM plus the inhibition of RhpC on RhpP activity in cytoplasm provide double insurance that warrants high induction of the T3SS genes in MM and bacterial fitness. The coordination between rhpP and rhpC reveals a new mechanism regulating bacterial pathogenicity, and may provide an important target for controlling bacterial pathogens.
Collapse
Affiliation(s)
- Kun Li
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Yanan Zhu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Yan
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yanmei Xiao
- Department of Plant Pathology, Kansas State University, Kansas, United States of America
| | - Liyang Song
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- * E-mail: (RF); (YJ); (XT)
| | - Yantao Jia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- * E-mail: (RF); (YJ); (XT)
| | - Xiaoyan Tang
- Guangdong Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- * E-mail: (RF); (YJ); (XT)
| |
Collapse
|
12
|
Hong Y, Kang JM, Joo SY, Song SM, Lê HG, Thái TL, Lee J, Goo YK, Chung DI, Sohn WM, Na BK. Molecular and Biochemical Properties of a Cysteine Protease of Acanthamoeba castellanii. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:409-418. [PMID: 30419726 PMCID: PMC6243185 DOI: 10.3347/kjp.2018.56.5.409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022]
Abstract
Acanthamoeba spp. are free-living protozoa that are opportunistic pathogens for humans. Cysteine proteases of Acanthamoeba have been partially characterized, but their biochemical and functional properties are not clearly understood yet. In this study, we isolated a gene encoding cysteine protease of A. castellanii (AcCP) and its biochemical and functional properties were analyzed. Sequence analysis of AcCP suggests that this enzyme is a typical cathepsin L family cysteine protease, which shares similar structural characteristics with other cathepsin L-like enzymes. The recombinant AcCP showed enzymatic activity in acidic conditions with an optimum at pH 4.0. The recombinant enzyme effectively hydrolyzed human proteins including hemoglobin, albumin, immunoglobuins A and G, and fibronectin at acidic pH. AcCP mainly localized in lysosomal compartment and its expression was observed in both trophozoites and cysts. AcCP was also identified in cultured medium of A. castellanii. Considering to lysosomal localization, secretion or release by trophozoites and continuous expression in trophozoites and cysts, the enzyme could be a multifunctional enzyme that plays important biological functions for nutrition, development and pathogenicity of A. castellanii. These results also imply that AcCP can be a promising target for development of chemotherapeutic drug for Acanthamoeba infections.
Collapse
Affiliation(s)
- Yeonchul Hong
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - So-Young Joo
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Su-Min Song
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
13
|
Škerlová J, Bláha J, Pachl P, Hofbauerová K, Kukačka Z, Man P, Pompach P, Novák P, Otwinowski Z, Brynda J, Vaněk O, Řezáčová P. Crystal structure of native β‐
N
‐acetylhexosaminidase isolated from
Aspergillus oryzae
sheds light onto its substrate specificity, high stability, and regulation by propeptide. FEBS J 2017; 285:580-598. [DOI: 10.1111/febs.14360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/03/2017] [Accepted: 12/08/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jana Škerlová
- Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Prague Czech Republic
- Institute of Molecular Genetics The Czech Academy of Sciences Prague Czech Republic
| | - Jan Bláha
- Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Prague Czech Republic
| | - Kateřina Hofbauerová
- Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
- Institute of Physics Faculty of Mathematics and Physics Charles University Prague Czech Republic
| | - Zdeněk Kukačka
- Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
- Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
| | - Petr Man
- Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
- Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
| | - Petr Pompach
- Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
| | - Petr Novák
- Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
- Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
| | | | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Prague Czech Republic
- Institute of Molecular Genetics The Czech Academy of Sciences Prague Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Prague Czech Republic
- Institute of Molecular Genetics The Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
14
|
Kinsella RL, Lopez J, Palmer LD, Salinas ND, Skaar EP, Tolia NH, Feldman MF. Defining the interaction of the protease CpaA with its type II secretion chaperone CpaB and its contribution to virulence in Acinetobacter species. J Biol Chem 2017; 292:19628-19638. [PMID: 28982978 PMCID: PMC5712607 DOI: 10.1074/jbc.m117.808394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/02/2017] [Indexed: 11/06/2022] Open
Abstract
Acinetobacter baumannii, Acinetobacter nosocomialis, and Acinetobacter pittii are a frequent cause of multidrug-resistant, healthcare-associated infections. Our previous work demonstrated that A. nosocomialis M2 possesses a functional type II secretion system (T2SS) that is required for full virulence. Further, we identified the metallo-endopeptidase CpaA, which has been shown previously to cleave human Factor V and deregulate blood coagulation, as the most abundant type II secreted effector protein. We also demonstrated that its secretion is dependent on CpaB, a membrane-bound chaperone. In this study, we show that CpaA expression and secretion are conserved across several medically relevant Acinetobacter species. Additionally, we demonstrate that deletion of cpaA results in attenuation of A. nosocomialis M2 virulence in moth and mouse models. The virulence defects resulting from the deletion of cpaA were comparable with those observed upon abrogation of T2SS activity. The virulence defects resulting from the deletion of cpaA are comparable with those observed upon abrogation of T2SS activity. We also show that CpaA and CpaB strongly interact, forming a complex in a 1:1 ratio. Interestingly, deletion of the N-terminal transmembrane domain of CpaB results in robust secretion of CpaA and CpaB, indicating that the transmembrane domain is dispensable for CpaA secretion and likely functions to retain CpaB inside the cell. Limited proteolysis of spheroplasts revealed that the C-terminal domain of CpaB is exposed to the periplasm, suggesting that this is the site where CpaA and CpaB interact in vivo Last, we show that CpaB does not abolish the proteolytic activity of CpaA against human Factor V. We conclude that CpaA is, to the best of our knowledge, the first characterized, bona fide virulence factor secreted by Acinetobacter species.
Collapse
Affiliation(s)
- Rachel L Kinsella
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
- the Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada, and
| | - Juvenal Lopez
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Lauren D Palmer
- the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Nichole D Salinas
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Eric P Skaar
- the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Niraj H Tolia
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Mario F Feldman
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110,
| |
Collapse
|
15
|
Wang Z, Lv P, Luo W, Yuan Z, He D. Expression in Pichia pastoris and characterization of Rhizomucor miehei lipases containing a new propeptide region. J GEN APPL MICROBIOL 2017; 62:25-30. [PMID: 26923128 DOI: 10.2323/jgam.62.25] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A large number of propeptide regions from various proteins have been identified which function as intramolecular chaperones and assist the folding of the respective functional domains. The same polypeptide can fold into an altered conformation because of a mutated intramolecular chaperone and can maintain the "memory" of the folding process (new physicochemical properties). Two new kinds of Rhizomucor miehei lipase (RML) were constructed by replacing its propeptide region with that from either Rhizopus chinensis lipase (RCL) or Rhizopus oryzae lipase (ROL). The enzymatic properties were also analyzed and compared between wild-type RML and the mutants. The results indicated that the same polypeptide can fold into different conformations because of changes in the propeptide region.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
| | | | | | | | | |
Collapse
|
16
|
Abstract
Many anaerobic spore-forming clostridial species are pathogenic, and some are industrially useful. Although many are strict anaerobes, the bacteria persist under aerobic and growth-limiting conditions as multilayered metabolically dormant spores. For many pathogens, the spore form is what most commonly transmits the organism between hosts. After the spores are introduced into the host, certain proteins (germinant receptors) recognize specific signals (germinants), inducing spores to germinate and subsequently grow into metabolically active cells. Upon germination of the spore into the metabolically active vegetative form, the resulting bacteria can colonize the host and cause disease due to the secretion of toxins from the cell. Spores are resistant to many environmental stressors, which make them challenging to remove from clinical environments. Identifying the conditions and the mechanisms of germination in toxin-producing species could help develop affordable remedies for some infections by inhibiting germination of the spore form. Unrelated to infectious disease, spore formation in species used in the industrial production of chemicals hinders the optimum production of the chemicals due to the depletion of the vegetative cells from the population. Understanding spore germination in acetone-butanol-ethanol-producing species can help boost the production of chemicals, leading to cheaper ethanol-based fuels. Until recently, clostridial spore germination is assumed to be similar to that of Bacillus subtilis However, recent studies in Clostridium difficile shed light on a mechanism of spore germination that has not been observed in any endospore-forming organisms to date. In this review, we focus on the germinants and the receptors recognizing these germinants in various clostridial species.
Collapse
|
17
|
Demidyuk IV, Shubin AV, Gasanov EV, Kostrov SV. Propeptides as modulators of functional activity of proteases. Biomol Concepts 2015; 1:305-22. [PMID: 25962005 DOI: 10.1515/bmc.2010.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.
Collapse
|
18
|
Subbian E, Williamson DM, Shinde U. Protein Folding Mediated by an Intramolecular Chaperone: Energy Landscape for Unimolecular Pro-Subtilisin E Maturation. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.62008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 2014; 71:4729-45. [PMID: 25107634 PMCID: PMC11113775 DOI: 10.1007/s00018-014-1699-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
20
|
Jia Y, Cao X, Deng Y, Bao W, Tang C, Ding H, Zheng Z, Zou G. Four residues of propeptide are essential for precursor folding of nattokinase. Acta Biochim Biophys Sin (Shanghai) 2014; 46:957-64. [PMID: 25267722 DOI: 10.1093/abbs/gmu093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Subtilisin propeptide functions as an intramolecular chaperone that guides precursor folding. Nattokinase, a member of subtilisin family, is synthesized as a precursor consisting of a signal peptide, a propeptide, and a subtilisin domain, and the mechanism of its folding remains to be understood. In this study, the essential residues of nattokinase propeptide which contribute to precursor folding were determined. Deletion analysis showed that the conserved regions in propeptide were important for precursor folding. Single-site and multi-site mutagenesis studies confirmed the role of Tyr10, Gly13, Gly34, and Gly35. During stage (i) and (ii) of precursor folding, Tyr10 and Gly13 would form the part of interface with subtilisin domain. While Gly34 and Gly35 connected with an α-helix that would stabilize the structure of propeptide. The quadruple Ala mutation, Y10A/G13A/G34A/G35A, resulted in a loss of the chaperone function for the propeptide. This work showed the essential residues of propeptide for precursor folding via secondary structure and kinetic parameter analyses.
Collapse
Affiliation(s)
- Yan Jia
- Beijing Key Laboratory of Plants Resource Research and Development, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Xinhua Cao
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Deng
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Bao
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Changyan Tang
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hanjing Ding
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongliang Zheng
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guolin Zou
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Identification of Interaction Site of Propeptide toward Mature Carboxypeptidase Y (mCPY) Based on the Similarity between Propeptide and CPY Inhibitor (IC). Biosci Biotechnol Biochem 2014; 76:153-6. [DOI: 10.1271/bbb.110668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Purification of Inactive Precursor of Carboxypeptidase Y Using Selective Cleavage Method Coupled with Molecular Display. Biosci Biotechnol Biochem 2014; 73:753-5. [DOI: 10.1271/bbb.80678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Godlewska M, Góra M, Buckle AM, Porebski BT, Kemp EH, Sutton BJ, Czarnocka B, Banga JP. A redundant role of human thyroid peroxidase propeptide for cellular, enzymatic, and immunological activity. Thyroid 2014; 24:371-82. [PMID: 23668778 PMCID: PMC3926150 DOI: 10.1089/thy.2013.0127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Thyroid peroxidase (TPO) is a dimeric membrane-bound enzyme of thyroid follicular cells, responsible for thyroid hormone biosynthesis. TPO is also a common target antigen in autoimmune thyroid disease (AITD). With two active sites, TPO is an unusual enzyme, and thus there is much interest in understanding its structure and role in AITD. Homology modeling has shown TPO to be composed of different structural modules, as well as a propeptide sequence. During the course of studies to obtain homogeneous preparations of recombinant TPO for structural studies, we investigated the role of the large propeptide sequence in TPO. METHODS An engineered recombinant human TPO preparation expressed in Chinese hamster ovary (CHO) cells lacking the propeptide (TPOΔpro; amino acid residues 21-108) was characterized and its properties compared to wild-type TPO. Plasma membrane localization was determined by cell surface protein biotinylation, and biochemical studies were performed to evaluate enzymatic activity and the effect of deglycosylation. Immunological investigations using autoantibodies from AITD patients and other epitope-specific antibodies that recognize conformational determinants on TPO were evaluated for binding to TPOΔpro by flow cytometry, immunocytochemistry, and capture enzyme-linked immunosorbent assay. Molecular modeling and dynamics simulation of TPOΔpro comprising a dimer of myeloperoxidase-like domains was performed in order to investigate the impact of propeptide removal and the role of glycosylation. RESULTS The TPOΔpro was expressed on the cell surface at comparable levels to wild-type TPO. The TPOΔpro was enzymatically active and recognized by patients' autoantibodies and a panel of epitope-specific antibodies, confirming structural integrity of the two major conformational determinants recognized by autoantibodies. Faithful intracellular trafficking and N-glycosylation of TPOΔpro was also maintained. Molecular modeling and dynamics simulations were consistent with these observations. CONCLUSIONS Our results point to a redundant role for the propeptide sequence in TPO. The successful expression of TPOΔpro in a membrane-anchored, enzymatically active form that is insensitive to intramolecular proteolysis, and importantly is recognized by patients' autoantibodies, is a key advance for purification of substantial quantities of homogeneous preparation of TPO for crystallization, structural, and immunological studies.
Collapse
Affiliation(s)
- Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, Warsaw, Poland
| | - Monika Góra
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Australia
| | - Benjamin T. Porebski
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Australia
| | - E. Helen Kemp
- Department of Human Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Brian J. Sutton
- Randall Division of Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, Warsaw, Poland
| | - J. Paul Banga
- Division of Diabetes and Nutritional Sciences, School of Medicine, King's College London, London, United Kingdom
| |
Collapse
|
24
|
Wang S, Horimoto Y, Dee DR, Yada RY. Understanding the mechanism of prosegment-catalyzed folding by solution NMR spectroscopy. J Biol Chem 2014; 289:697-707. [PMID: 24265313 DOI: 10.1074/jbc.m113.505891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidomain protein folding is often more complex than a two-state process, which leads to the spontaneous folding of the native state. Pepsin, a zymogen-derived enzyme, without its prosegment (PS), is irreversibly denatured and folds to a thermodynamically stable, non-native conformation, termed refolded pepsin, which is separated from native pepsin by a large activation barrier. While it is known that PS binds refolded pepsin and catalyzes its conversion to the native form, little structural details are known regarding this conversion. In this study, solution NMR was used to elucidate the PS-catalyzed folding mechanism by examining the key equilibrium states, e.g. native and refolded pepsin, both in the free and PS-bound states, and pepsinogen, the zymogen form of pepsin. Refolded pepsin was found to be partially structured and lacked the correct domain-domain structure and active-site cleft formed in the native state. Analysis of chemical shift data revealed that upon PS binding refolded pepsin folds into a state more similar to that of pepsinogen than to native pepsin. Comparison of pepsin folding by wild-type and mutant PSs, including a double mutant PS, indicated that hydrophobic interactions between residues of prosegment and refolded pepsin lower the folding activation barrier. A mechanism is proposed for the binding of PS to refolded pepsin and how the formation of the native structure is mediated.
Collapse
|
25
|
Uehara R, Angkawidjaja C, Koga Y, Kanaya S. Formation of the High-Affinity Calcium Binding Site in Pro-subtilisin E with the Insertion Sequence IS1 of Pro-Tk-subtilisin. Biochemistry 2013; 52:9080-8. [DOI: 10.1021/bi401342k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryo Uehara
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Clement Angkawidjaja
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- International
College, Osaka University, 1-30 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Koga
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
pH-dependent activation of Streptomyces hygroscopicus transglutaminase mediated by intein. Appl Environ Microbiol 2013; 80:723-9. [PMID: 24242235 DOI: 10.1128/aem.02820-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial transglutaminase (MTG) from Streptomyces is naturally secreted as a zymogen (pro-MTG), which is then activated by the removal of its N-terminal proregion by additional proteases. Inteins are protein-intervening sequences that catalyze protein splicing without cofactors. In this study, a pH-dependent Synechocystis sp. strain PCC6803 DnaB mini-intein (SDB) was introduced into pro-MTG to simplify its activation process by controlling pH. The recombinant protein (pro-SDB-MTG) was obtained, and the activation process was determined to take 24 h at pH 7 in vitro. To investigate the effect of the first residue in MTG on the activity and the cleavage time, two variants, pro-SDB-MTG(D1S) and pro-SDB-MTG(ΔD1), were expressed, and the activation time was found to be 6 h and 30 h, respectively. The enzymatic property and secondary structure of the recombinant MTG and two variants were similar to those of the wild type, indicating that the insertion of mini-intein did not affect the function of MTG. This insignificant effect was further illustrated by molecular dynamics simulations. This study revealed a controllable and effective strategy to regulate the activation process of pro-MTG mediated by a mini-intein, and it may have great potential for industrial MTG production.
Collapse
|
27
|
Yuzaki K, Sanda Y, You DJ, Uehara R, Koga Y, Kanaya S. Increase in activation rate of Pro-Tk-subtilisin by a single nonpolar-to-polar amino acid substitution at the hydrophobic core of the propeptide domain. Protein Sci 2013; 22:1711-21. [PMID: 24115021 DOI: 10.1002/pro.2371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/03/2013] [Indexed: 11/07/2022]
Abstract
Tk-subtilisin (Gly70-Gly398) is a subtilisin homolog from Thermococcus kodakarensis. Active Tk-subtilisin is produced from its inactive precursor, Pro-Tk-subtilisin (Gly1-Gly398), by autoprocessing and degradation of the propeptide (Tk-propeptide, Gly1-Leu69). This activation process is extremely slow at moderate temperatures owing to high stability of Tk-propeptide. Tk-propeptide is stabilized by the hydrophobic core. To examine whether a single nonpolar-to-polar amino acid substitution at this core affects the activation rate of Pro-Tk-subtilisin, the Pro-Tk-subtilisin derivative with the Phe17 → His mutation (Pro-F17H), Tk-propeptide derivative with the same mutation (F17H-propeptide), and two active-site mutants of Pro-F17H (Pro-F17H/S324A and Pro-F17H/S324C) were constructed. The crystal structure of Pro-F17H/S324A was nearly identical to that of Pro-S324A, indicating that the mutation does not affect the structure of Pro-Tk-subtilisin. The refolding rate of Pro-F17H/S324A and autoprocessing rate of Pro-F17H/S324C were also nearly identical to those of their parent proteins (Pro-S324A and Pro-S324C). However, the activation rate of Pro-F17H greatly increased when compared with that of Pro-Tk-subtilisin, such that Pro-F17H is efficiently activated even at 40°C. The far-UV circular dichroism spectrum of F17H-propeptide did not exhibit a broad trough at 205-230 nm, which is observed in the spectrum of Tk-propeptide. F17H-propeptide is more susceptible to chymotryptic degradation than Tk-propeptide. These results suggest that F17H-propeptide is unfolded in an isolated form and is therefore rapidly degraded by Tk-subtilisin. Thus, destabilization of the hydrophobic core of Tk-propeptide by a nonpolar-to-polar amino acid substitution is an effective way to increase the activation rate of Pro-Tk-subtilisin.
Collapse
Affiliation(s)
- Kota Yuzaki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Williamson DM, Elferich J, Ramakrishnan P, Thomas G, Shinde U. The mechanism by which a propeptide-encoded pH sensor regulates spatiotemporal activation of furin. J Biol Chem 2013; 288:19154-65. [PMID: 23653353 PMCID: PMC3696687 DOI: 10.1074/jbc.m112.442681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/26/2013] [Indexed: 11/06/2022] Open
Abstract
The proprotein convertase furin requires the pH gradient of the secretory pathway to regulate its multistep, compartment-specific autocatalytic activation. Although His-69 within the furin prodomain serves as the pH sensor that detects transport of the propeptide-enzyme complex to the trans-Golgi network, where it promotes cleavage and release of the inhibitory propeptide, a mechanistic understanding of how His-69 protonation mediates furin activation remains unclear. Here we employ biophysical, biochemical, and computational approaches to elucidate the mechanism underlying the pH-dependent activation of furin. Structural analyses and binding experiments comparing the wild-type furin propeptide with a nonprotonatable His-69 → Leu mutant that blocks furin activation in vivo revealed protonation of His-69 reduces both the thermodynamic stability of the propeptide as well as its affinity for furin at pH 6.0. Structural modeling combined with mathematical modeling and molecular dynamic simulations suggested that His-69 does not directly contribute to the propeptide-enzyme interface but, rather, triggers movement of a loop region in the propeptide that modulates access to the cleavage site and, thus, allows for the tight pH regulation of furin activation. Our work establishes a mechanism by which His-69 functions as a pH sensor that regulates compartment-specific furin activation and provides insights into how other convertases and proteases may regulate their precise spatiotemporal activation.
Collapse
Affiliation(s)
- Danielle M. Williamson
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland Oregon 97239 and
| | - Johannes Elferich
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland Oregon 97239 and
| | - Parvathy Ramakrishnan
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland Oregon 97239 and
| | - Gary Thomas
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Ujwal Shinde
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland Oregon 97239 and
| |
Collapse
|
29
|
Adams CM, Eckenroth BE, Putnam EE, Doublié S, Shen A. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog 2013; 9:e1003165. [PMID: 23408892 PMCID: PMC3567191 DOI: 10.1371/journal.ppat.1003165] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/17/2012] [Indexed: 12/23/2022] Open
Abstract
Spores are the major transmissive form of the nosocomial pathogen Clostridium difficile, a leading cause of healthcare-associated diarrhea worldwide. Successful transmission of C. difficile requires that its hardy, resistant spores germinate into vegetative cells in the gastrointestinal tract. A critical step during this process is the degradation of the spore cortex, a thick layer of peptidoglycan surrounding the spore core. In Clostridium sp., cortex degradation depends on the proteolytic activation of the cortex hydrolase, SleC. Previous studies have implicated Csps as being necessary for SleC cleavage during germination; however, their mechanism of action has remained poorly characterized. In this study, we demonstrate that CspB is a subtilisin-like serine protease whose activity is essential for efficient SleC cleavage and C. difficile spore germination. By solving the first crystal structure of a Csp family member, CspB, to 1.6 Å, we identify key structural domains within CspB. In contrast with all previously solved structures of prokaryotic subtilases, the CspB prodomain remains tightly bound to the wildtype subtilase domain and sterically occludes a catalytically competent active site. The structure, combined with biochemical and genetic analyses, reveals that Csp proteases contain a unique jellyroll domain insertion critical for stabilizing the protease in vitro and in C. difficile. Collectively, our study provides the first molecular insight into CspB activity and function. These studies may inform the development of inhibitors that can prevent clostridial spore germination and thus disease transmission. Clostridium difficile is the leading cause of health-care associated diarrhea worldwide. C. difficile infections begin when its spores transform into vegetative cells during a process called germination. In Clostridium sp., germination requires that the spore cortex, a thick, protective layer, be removed by the cortex hydrolase SleC. While previous studies have shown that SleC activity depends on a subtilisin-like protease, CspB, the mechanisms regulating CspB function have not been characterized. In this study, we solved the first crystal structure of the Csp family of proteases and identified its key functional regions. We determined that CspB carries a unique jellyroll domain required for stabilizing the protein both in vitro and in C. difficile and a prodomain required for proper folding of the protease. Unlike all other prokaryotic subtilisin-like proteases, the prodomain remains bound to CspB and inhibits its protease activity until the germination signal is sensed. Our study provides new insight into how germination is regulated in C. difficile and may inform the development of inhibitors that can prevent germination and thus C. difficile transmission.
Collapse
Affiliation(s)
- Chloe M Adams
- Graduate Program in Cell, Molecular and Biomedical Sciences, University of Vermont, Burlington, Vermont, United States of America
| | | | | | | | | |
Collapse
|
30
|
Uehara R, Ueda Y, You D, Koga Y, Kanaya S. Accelerated maturation of Tk‐subtilisin by a
L
eu→
P
romutation at the
C
‐terminus of the propeptide, which reduces the binding of the propeptide to
T
k‐subtilisin. FEBS J 2013; 280:994-1006. [DOI: 10.1111/febs.12091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 02/07/2023]
Affiliation(s)
- Ryo Uehara
- Department of Material and Life Science Graduate School of Engineering Osaka University Japan
| | - Yasunori Ueda
- Department of Material and Life Science Graduate School of Engineering Osaka University Japan
| | - Dong‐Ju You
- Department of Material and Life Science Graduate School of Engineering Osaka University Japan
| | - Yuichi Koga
- Department of Material and Life Science Graduate School of Engineering Osaka University Japan
| | - Shigenori Kanaya
- Department of Material and Life Science Graduate School of Engineering Osaka University Japan
| |
Collapse
|
31
|
Houssen WE, Koehnke J, Zollman D, Vendome J, Raab A, Smith MCM, Naismith JH, Jaspars M. The Discovery of New Cyanobactins fromCyanothecePCC 7425 Defines a New Signature for Processing of Patellamides. Chembiochem 2012; 13:2683-9. [DOI: 10.1002/cbic.201200661] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Indexed: 11/07/2022]
|
32
|
Requirement of insertion sequence IS1 for thermal adaptation of Pro-Tk-subtilisin from hyperthermophilic archaeon. Extremophiles 2012; 16:841-51. [DOI: 10.1007/s00792-012-0479-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
33
|
Gamble M, Künze G, Brancale A, Wilson KS, Jones DD. The role of substrate specificity and metal binding in defining the activity and structure of an intracellular subtilisin. FEBS Open Bio 2012; 2:209-15. [PMID: 23650602 PMCID: PMC3642151 DOI: 10.1016/j.fob.2012.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022] Open
Abstract
The dimeric intracellular subtilisin proteases (ISPs) found throughout Gram-positive bacteria are a structurally distinct class of the subtilase family. Unlike the vast majority of subtilisin-like proteases, the ISPs function exclusively within the cell, contributing the majority of observed cellular proteolytic activity. Given that they are active within the cell, little is known about substrate specificity and the role of stress signals such as divalent metal ions in modulating ISP function. We demonstrate that both play roles in defining the proteolytic activity of Bacillus clausii ISP and propose the molecular basis of their effects. Enzyme kinetics reveal that one particular synthetic tetrapeptide substrate, Phe-Ala-Ala-Phe-pNA, is hydrolysed with a catalytic efficiency ∼100-fold higher than any other tested. Heat-denatured whole proteins were found to be better substrates for ISP than the native forms. Substrate binding simulations suggest that the S1, S2 and S4 sites form defined binding pockets. The deep S1 cavity and wide S4 site are fully occupied by the hydrophobic aromatic side-chains of Phe. Divalent metal ions, probably Ca2+, are proposed to be important for ISP activity through structural changes. The presence of >0.01 mM EDTA inactivates ISP, with CD and SEC suggesting that the protein becomes less structured and potentially monomeric. Removal of Ca2+ at sites close to the dimer interface and the S1 pocket are thought to be responsible for the effect. These studies provide a new insight into the potential physiological function of ISPs, by reconciling substrate specificity and divalent metal binding to associate ISP with the unfolded protein response under stress conditions.
Collapse
Affiliation(s)
- Michael Gamble
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | | | | |
Collapse
|
34
|
Dillon SL, Williamson DM, Elferich J, Radler D, Joshi R, Thomas G, Shinde U. Propeptides are sufficient to regulate organelle-specific pH-dependent activation of furin and proprotein convertase 1/3. J Mol Biol 2012; 423:47-62. [PMID: 22743102 DOI: 10.1016/j.jmb.2012.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 06/11/2012] [Accepted: 06/16/2012] [Indexed: 01/02/2023]
Abstract
The proprotein convertases (PCs) furin and proprotein convertase 1/3 (PC1) cleave substrates at dibasic residues along the eukaryotic secretory/endocytic pathway. PCs are evolutionarily related to bacterial subtilisin and are synthesized as zymogens. They contain N-terminal propeptides (PRO) that function as dedicated catalysts that facilitate folding and regulate activation of cognate proteases through multiple-ordered cleavages. Previous studies identified a histidine residue (His69) that functions as a pH sensor in the propeptide of furin (PRO(FUR)), which regulates furin activation at pH~6.5 within the trans-Golgi network. Although this residue is conserved in the PC1 propeptide (PRO(PC1)), PC1 nonetheless activates at pH~5.5 within the dense core secretory granules. Here, we analyze the mechanism by which PRO(FUR) regulates furin activation and examine why PRO(FUR) and PRO(PC1) differ in their pH-dependent activation. Sequence analyses establish that while both PRO(FUR) and PRO(PC1) are enriched in histidines when compared with cognate catalytic domains and prokaryotic orthologs, histidine content in PRO(FUR) is ~2-fold greater than that in PRO(PC1), which may augment its pH sensitivity. Spectroscopy and molecular dynamics establish that histidine protonation significantly unfolds PRO(FUR) when compared to PRO(PC1) to enhance autoproteolysis. We further demonstrate that PRO(FUR) and PRO(PC1) are sufficient to confer organelle sensing on folding and activation of their cognate proteases. Swapping propeptides between furin and PC1 transfers pH-dependent protease activation in a propeptide-dictated manner in vitro and in cells. Since prokaryotes lack organelles and eukaryotic PCs evolved from propeptide-dependent, not propeptide-independent prokaryotic subtilases, our results suggest that histidine enrichment may have enabled propeptides to evolve to exploit pH gradients to activate within specific organelles.
Collapse
Affiliation(s)
- Stephanie L Dillon
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97229, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Uehara R, Takeuchi Y, Tanaka SI, Takano K, Koga Y, Kanaya S. Requirement of Ca2+ Ions for the Hyperthermostability of Tk-Subtilisin from Thermococcus kodakarensis. Biochemistry 2012; 51:5369-78. [DOI: 10.1021/bi300427u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ryo Uehara
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Yuki Takeuchi
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Shun-ichi Tanaka
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| |
Collapse
|
36
|
Rahman MM, Wang L, Inoue A, Ojima T. cDNA cloning and bacterial expression of a PL-14 alginate lyase from a herbivorous marine snail Littorina brevicula. Carbohydr Res 2012; 360:69-77. [PMID: 22940178 DOI: 10.1016/j.carres.2012.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/07/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
Abstract
Herbivorous marine snails like Littorina species are known to possess alginate lyases in their digestive tracts. The Littorina enzymes have been identified as endolytic polymannuronate (poly(M)) lyases (EC 4.2.2.3); however, it is still unclear which polysaccharide-lyase family (PL) the Littorina enzymes belong to, since no complete primary structure of Littorina enzymes has been determined. Thus, in the present study, we analyzed the primary structure of LbAly28, a 28kDa alginate lyase isozyme of Littorina brevicula, by the cDNA method. LbAly28 cDNAs were amplified by PCR followed by 5'- and 3'-RACE PCRs from the L. brevicula hepatopancreas cDNA. A cDNA covering entire coding region of LbAly28 consisted of 1129bp and encoded an amino-acid sequence of 291 residues. The deduced amino-acid sequence comprised an initiation methionine, a putative signal peptide of 14 residues, a propeptide-like region of 16 residues, and a mature LbAly28 domain of 260 residues. The mature LbAly28 domain showed 43-53% amino-acid identities with other molluscan PL-14 enzymes. The catalytically important residues in PL-14 enzymes, which were identified in the Chlorella virus glucuronate-specific lyase vAL-1 and Aplysia poly(M) lyase AkAly30, were also conserved in LbAly28. Site-directed mutagenesis regarding these residues, that is, replacements of Lys94, Lys97, Thr121, Arg 123, Tyr135, and Tyr137 to Ala, decreased the activity of recombinant LbAly28 to various degrees. From these results we concluded that LbAly28 is a member of PL-14 alginate lyases. Besides the effects of above mutations, we noticed that the replacement of T121 by Ala changed the substrate preference of LbAly28. Namely, the activities toward sodium alginate and poly(MG)-block substrate increased and became comparable with the activity toward poly(M)-block substrate. This suggests that the region including T121 of LbAly28 closely relates to the recognition of poly(MG) region of alginate.
Collapse
Affiliation(s)
- Mohammad Matiur Rahman
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate 041-8611, Japan
| | | | | | | |
Collapse
|
37
|
Wang J, Wang D, Wang B, Mei ZH, Liu J, Yu HW. Enhanced activity of Rhizomucor miehei lipase by directed evolution with simultaneous evolution of the propeptide. Appl Microbiol Biotechnol 2012; 96:443-50. [PMID: 22584429 DOI: 10.1007/s00253-012-4049-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/29/2012] [Accepted: 03/21/2012] [Indexed: 12/18/2022]
Abstract
Propeptides are short sequences that facilitate the folding of their associated proteins. The present study found that the propeptide of Rhizomucor miehei lipase (RML) was not proteolytically removed in Escherichia coli. Moreover, RML was not expressed if the propeptide was removed artificially during the cloning process in E. coli. This behavior in E. coli permitted the application of directed evolution to full-length RML, which included both propeptide and catalytic domain, to explore the role played by the propeptide in governing enzyme activity. The catalytic rate constant, k (cat), of the most active mutant RML protein (Q5) was increased from 10.63 ± 0.80 to 71.44 ± 3.20 min(-1) after four rounds of screening. Sequence analysis of the mutant displayed three mutations in the propeptide (L57V, S65A, and V67A) and two mutations in the functional region (I111T and S168P). This result showed that improved activity was obtained with essential involvement by mutations in the propeptide, meaning that the majority of mutants with enhanced activity had simultaneous mutations in propeptide and catalytic domains. This observation leads to the hypothesis that directed evolution has simultaneous and synergistic effects on both functional and propeptide domains that arise from the role played by the propeptide in the folding and maturation of the enzyme. We suggest that directed evolution of full-length proteins including their propeptides is a strategy with general validity for extending the range of conformations available to proteins, leading to the enhancement of the catalytic rates of the enzymes.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Insights into the maturation of hyperthermophilic pyrolysin and the roles of its N-terminal propeptide and long C-terminal extension. Appl Environ Microbiol 2012; 78:4233-41. [PMID: 22504813 DOI: 10.1128/aem.00548-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrolysin-like proteases from hyperthermophiles are characterized by large insertions and long C-terminal extensions (CTEs). However, little is known about the roles of these extra structural elements or the maturation of these enzymes. Here, the recombinant proform of Pyrococcus furiosus pyrolysin (Pls) and several N- and C-terminal deletion mutants were successfully expressed in Escherichia coli. Pls was converted to mature enzyme (mPls) at high temperatures via autoprocessing of both the N-terminal propeptide and the C-terminal portion of the long CTE, indicating that the long CTE actually consists of the C-terminal propeptide and the C-terminal extension (CTEm), which remains attached to the catalytic domain in the mature enzyme. Although the N-terminal propeptide deletion mutant PlsΔN displayed weak activity, this mutant was highly susceptible to autoproteolysis and/or thermogenic hydrolysis. The N-terminal propeptide acts as an intramolecular chaperone to assist the folding of pyrolysin into its thermostable conformation. In contrast, the C-terminal propeptide deletion mutant PlsΔC199 was converted to a mature form (mPlsΔC199), which is the same size as but less stable than mPls, suggesting that the C-terminal propeptide is not essential for folding but is important for pyrolysin hyperthermostability. Characterization of the full-length (mPls) and CTEm deletion (mPlsΔC740) mature forms demonstrated that CTEm not only confers additional stability to the enzyme but also improves its catalytic efficiency for both proteineous and small synthetic peptide substrates. Our results may provide important clues about the roles of propeptides and CTEs in the adaptation of hyperthermophilic proteases to hyperthermal environments.
Collapse
|
39
|
|
40
|
Simões I, Faro R, Bur D, Kay J, Faro C. Shewasin A, an active pepsin homolog from the bacterium Shewanella amazonensis. FEBS J 2011; 278:3177-86. [PMID: 21749650 DOI: 10.1111/j.1742-4658.2011.08243.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The view has been widely held that pepsin-like aspartic proteinases are found only in eukaryotes, and not in bacteria. However, a recent bioinformatics search [Rawlings ND & Bateman A (2009) BMC Genomics10, 437] revealed that, in seven of ∼ 1000 completely sequenced bacterial genomes, genes were present encoding polypeptides that displayed the requisite hallmark sequence motifs of pepsin-like aspartic proteinases. The implications of this theoretical observation prompted us to generate biochemical data to validate this finding experimentally. The aspartic proteinase gene from one of the seven identified bacterial species, Shewanella amazonensis, was expressed in Escherichia coli. The recombinant protein, termed shewasin A, was produced in soluble form, purified to homogeneity, and shown to display properties remarkably similar to those of pepsin-like aspartic proteinases. Shewasin A was maximally active at acidic pH values, cleaving a substrate that has been widely used for assessment of the proteolytic activity of other aspartic proteinases, and displayed a clear preference for cleaving peptide bonds between hydrophobic residues in the P1*P1' positions of the substrate. It was completely inhibited by the general inhibitor of aspartic proteinases, pepstatin, and mutation of one of the catalytic Asp residues (in the Asp-Thr-Gly motif of the N-terminal domain) resulted in complete loss of enzymatic activity. It can thus be concluded unequivocally that this Shewanella gene encodes an active pepsin-like aspartic proteinase. It is now beyond doubt that pepsin-like aspartic proteinases are not confined to eukaryotes, but are encoded within some species of bacteria. The distinctions between the bacterial and eukaryotic polypeptides are discussed and their evolutionary relationships are outlined.
Collapse
Affiliation(s)
- Isaura Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
41
|
Rahman MM, Inoue A, Tanaka H, Ojima T. cDNA cloning of an alginate lyase from a marine gastropod Aplysia kurodai and assessment of catalytically important residues of this enzyme. Biochimie 2011; 93:1720-30. [PMID: 21689718 DOI: 10.1016/j.biochi.2011.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Herbivorous marine gastropods such as abalone and sea hare ingest brown algae as a major diet and degrade the dietary alginate with alginate lyase (EC 4.2.2.3) in their digestive fluid. To date alginate lyases from Haliotidae species such as abalone have been well characterized and the primary structure analyses have classified abalone enzymes into polysaccharide-lyase-family 14 (PL-14). However, other gastropod enzymes have not been so well investigated and only partial amino-acid sequences are currently available. To improve the knowledge for primary structure and catalytic residues of gastropod alginate lyases, we cloned the cDNA encoding an alginate lyase, AkAly30, from an Aplysiidae species Aplysia kurodai and assessed its catalytically important residues by site-directed mutagenesis. Alginate lyase cDNA fragments were amplified by PCR followed by 5'- and 3'-RACE from A. kurodai hepatopancreas cDNA. The finally cloned cDNA comprised 1313 bp which encoded an amino-acid sequence of 295 residues of AkAly30. The deduced sequence comprised an initiation methionine, a putative signal peptide for secretion (18 residues), a propeptide-like region (9 residues), and a mature AkAly30 domain (267 residues) which showed ∼40% amino-acid identity with abalone alginate lyases. An Escherichia coli BL21(DE3)-pCold I expression system for recombinant AkAly30 (recAkAly30) was constructed and site-directed mutagenesis was performed to assess catalytically important amino-acid residues which had been suggested in abalone and Chlorella virus PL-14 enzymes. Replacements of K99, S126, R128, Y140 and Y142 of recAkAly30 by Ala and/or Phe greatly decreased its activity as in the case of abalone and/or Chlorella virus enzymes. Whereas, H213 that was essential for Chlorella virus enzyme to exhibit the activity at pH 10.0 was originally replaced by N120 in AkAly30. The reverse replacement of N120 by His in recAkAly30 increased the activity at pH 10.0 from 8 U/mg to 93 U/mg; however, the activity level at pH 7.0, i.e., 774.8 U/mg, was still much higher than that at pH 10.0. This indicates that N120 is not directly related to the pH dependence of AkAly30 unlike H213 of vAL-1.
Collapse
Affiliation(s)
- Mohammad Matiur Rahman
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate 041-8611, Japan
| | | | | | | |
Collapse
|
42
|
Sinsereekul N, Foophow T, Yamanouchi M, Koga Y, Takano K, Kanaya S. An alternative mature form of subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis identified in the presence of Ca2+. FEBS J 2011; 278:1901-11. [PMID: 21443525 DOI: 10.1111/j.1742-4658.2011.08107.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pro-Tk-SP from Thermococcus kodakaraensis consists of the four domains: N-propeptide, subtilisin (EC 3.4.21.62) domain, β-jelly roll domain and C-propeptide. To analyze the maturation process of this protein, the Pro-Tk-SP derivative with the mutation of the active-site serine residue to Cys (Pro-Tk-S359C), Pro-Tk-S359C derivatives lacking the N-propeptide (ProC-Tk-S359C) and both propeptides (Tk-S359C), and a His-tagged form of the isolated C-propeptide (ProC*) were constructed. Pro-Tk-S359C was purified mostly in an autoprocessed form in which the N-propeptide is autoprocessed but the isolated N-propeptide (ProN) forms a stable complex with ProC-Tk-S359C, indicating that the N-propeptide is autoprocessed first. The subsequent maturation process was analyzed using ProC-Tk-S359C, instead of the ProN:ProC-Tk-S359C complex. The C-propeptide was autoprocessed and degraded when ProC-Tk-S359C was incubated at 80 °C in the absence of Ca(2+). However, it was not autoprocessed in the presence of Ca(2+). Comparison of the susceptibility of ProC* to proteolytic degradation in the presence and absence of Ca(2+) suggests that the C-propeptide becomes highly resistant to proteolytic degradation in the presence of Ca(2+). We propose that Pro-Tk-SP derivative lacking N-propeptide (Val114-Gly640) represents a mature form of Pro-Tk-SP in a natural environment. The enzymatic activity of ProC-Tk-S359C was higher than (but comparable to) that of Tk-S359C, suggesting that the C-propeptide is not important for activity. However, the T(m) value of ProC-Tk-S359C determined by far-UV CD spectroscopy was higher than that of Tk-S359C by 25.9 °C in the absence of Ca(2+) and 7.5 °C in the presence of Ca(2+), indicating that the C-propeptide contributes to the stabilization of ProC-Tk-S359C.
Collapse
Affiliation(s)
- Nitat Sinsereekul
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Regulation of an intracellular subtilisin protease activity by a short propeptide sequence through an original combined dual mechanism. Proc Natl Acad Sci U S A 2011; 108:3536-41. [PMID: 21307308 DOI: 10.1073/pnas.1014229108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A distinct class of the biologically important subtilisin family of serine proteases functions exclusively within the cell and forms a major component of the bacilli degradome. However, the mode and mechanism of posttranslational regulation of intracellular protease activity are unknown. Here we describe the role played by a short N-terminal extension prosequence novel amongst the subtilisins that regulates intracellular subtilisin protease (ISP) activity through two distinct modes: active site blocking and catalytic triad rearrangement. The full-length proenzyme (proISP) is inactive until specific proteolytic processing removes the first 18 amino acids that comprise the N-terminal extension, with processing appearing to be performed by ISP itself. A synthetic peptide corresponding to the N-terminal extension behaves as a mixed noncompetitive inhibitor of active ISP with a K(i) of 1 μM. The structure of the processed form has been determined at 2.6 Å resolution and compared with that of the full-length protein, in which the N-terminal extension binds back over the active site. Unique to ISP, a conserved proline introduces a backbone kink that shifts the scissile bond beyond reach of the catalytic serine and in addition the catalytic triad is disrupted. In the processed form, access to the active site is unblocked by removal of the N-terminal extension and the catalytic triad rearranges to a functional conformation. These studies provide a new molecular insight concerning the mechanisms by which subtilisins and protease activity as a whole, especially within the confines of a cell, can be regulated.
Collapse
|
44
|
Shinde U, Thomas G. Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin. Methods Mol Biol 2011; 768:59-106. [PMID: 21805238 DOI: 10.1007/978-1-61779-204-5_4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prokaryotic subtilisins and eukaryotic proprotein convertases (PCs) are two homologous protease subfamilies that belong to the larger ubiquitous super-family called subtilases. Members of the subtilase super-family are produced as zymogens wherein their propeptide domains function as dedicated intramolecular chaperones (IMCs) that facilitate correct folding and regulate precise activation of their cognate catalytic domains. The molecular and cellular determinants that modulate IMC-dependent folding and activation of PCs are poorly understood. In this chapter we review what we have learned from the folding and activation of prokaryotic subtilisin, discuss how this has molded our understanding of furin maturation, and foray into the concept of pH sensors, which may represent a paradigm that PCs (and possibly other IMC-dependent eukaryotic proteins) follow for regulating their biological functions using the pH gradient in the secretory pathway.
Collapse
Affiliation(s)
- Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97229, USA.
| | | |
Collapse
|
45
|
Jia Y, Liu H, Bao W, Weng M, Chen W, Cai Y, Zheng Z, Zou G. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase. FEBS Lett 2010; 584:4789-96. [DOI: 10.1016/j.febslet.2010.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
46
|
Vévodová J, Gamble M, Künze G, Ariza A, Dodson E, Jones DD, Wilson KS. Crystal structure of an intracellular subtilisin reveals novel structural features unique to this subtilisin family. Structure 2010; 18:744-55. [PMID: 20541512 DOI: 10.1016/j.str.2010.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/11/2010] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
Abstract
The intracellular subtilisin proteases (ISPs) are the only known members of the important and ubiquitous subtilisin family that function exclusively within the cell, constituting a major component of the degradome in many Gram-positive bacteria. The first ISP structure reported herein at a spacing of 1.56 A reveals features unique among subtilisins that has enabled potential functional and physiological roles to be assigned to sequence elements exclusive to the ISPs. Unlike all other subtilisins, ISP from B. clausii is dimeric, with residues from the C terminus making a major contribution to the dimer interface by crossing over to contact the partner subunit. A short N-terminal extension binds back across the active site to provide a potential novel regulatory mechanism of intrinsic proteolytic activity: a proline residue conserved throughout the ISPs introduces a kink in the polypeptide backbone that lifts the target peptide bond out of reach of the catalytic residues.
Collapse
Affiliation(s)
- Jitka Vévodová
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Foophow T, Tanaka SI, Angkawidjaja C, Koga Y, Takano K, Kanaya S. Crystal Structure of a Subtilisin Homologue, Tk-SP, from Thermococcus kodakaraensis: Requirement of a C-terminal β-Jelly Roll Domain for Hyperstability. J Mol Biol 2010; 400:865-77. [DOI: 10.1016/j.jmb.2010.05.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/17/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
|
48
|
Bryksa BC, Horimoto Y, Yada RY. Rational redesign of porcine pepsinogen containing an antimicrobial peptide. Protein Eng Des Sel 2010; 23:711-9. [PMID: 20601363 DOI: 10.1093/protein/gzq039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel strategy for the controlled release and localization of bioactive peptides within digestive and immunity-related enzymes was developed. The N-terminus of porcine pepsinogen A was fused to the basic amino acid-rich region of bovine lactoferricin B termed 'tLfcB', a cationic antimicrobial/anticancer peptide. Recombinant tLfcB-porcine pepsinogen A was expressed in soluble form in Escherichia coli as a thioredoxin (Trx) fusion protein. Thioredoxin-tLfcB-porcine pepsinogen A was found to activate autocatalytically under acidic conditions. Recombinant pepsin A derived from the activation of the fusion protein had a catalytic rate and substrate affinity similar to that derived from the recombinant thioredoxin-porcine pepsinogen A control. Pepsin-treated thioredoxin-tLfcB-porcine pepsinogen A yielded increased antimicrobial activity against the Gram-negative bacteria E.coli relative to control suggesting that a second function (antimicrobial activity) was successfully engineered into a functional peptidase. The novel design strategy described herein presents a potential strategy for targeted delivery of antimicrobial or therapeutic peptides in transgenic organisms via re-engineering native proteins critical to plant and animal defense mechanisms.
Collapse
Affiliation(s)
- Brian C Bryksa
- Department of Food Science, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | |
Collapse
|
49
|
Pohl S, Harwood CR. Heterologous Protein Secretion by Bacillus Species. ADVANCES IN APPLIED MICROBIOLOGY 2010; 73:1-25. [DOI: 10.1016/s0065-2164(10)73001-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Contributions of the pre- and pro-regions of a Staphylococcus hyicus lipase to secretion of a heterologous protein by Bacillus subtilis. Appl Environ Microbiol 2009; 76:659-69. [PMID: 19948853 DOI: 10.1128/aem.01671-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis is a well-established cell factory for efficient secretion of many biotechnologically relevant enzymes that are naturally produced by it or related organisms. However, the use of B. subtilis as a host for production of heterologous secretory proteins can be complicated by problems related to inefficient translocation of the foreign proteins across the plasma membrane or to inefficient release of the exported proteins from the cell surface into the surrounding medium. Therefore, there is a clear need for tools that allow more efficient membrane targeting, translocation, and release during the production of these proteins. In the present study, we investigated the contributions of the pre (pre(lip)) and pro (pro(lip)) sequences of a Staphylococcus hyicus lipase to secretion of a heterologous protein, the alkaline phosphatase PhoA of Escherichia coli, by B. subtilis. The results indicate that the presence of the pro(lip)-peptide, in combination with the lipase signal peptide (pre(lip)), contributes significantly to the efficient secretion of PhoA by B. subtilis and that pre(lip) directs PhoA secretion more efficiently than the authentic signal peptide of PhoA. Genome-wide transcriptional analyses of the host cell responses indicate that, under the conditions tested, no known secretion or membrane-cell wall stress responses were provoked by the production of PhoA with any of the pre- and pro-region sequences used. Our data underscore the view that the pre-pro signals of the S. hyicus lipase are very useful tools for secretion of heterologous proteins in B. subtilis.
Collapse
|