1
|
Abstract
As a biological clock, circadian rhythms evolve to accomplish a stable (robust) entrainment to environmental cycles, of which light is the most obvious. The mechanism of photic entrainment is not known, but two models of entrainment have been proposed based on whether light has a continuous (parametric) or discrete (nonparametric) effect on the circadian pacemaker. A novel sensitivity analysis is developed to study the circadian entrainment in silico based on a limit cycle approach and applied to a model of Drosophila circadian rhythm. The comparative analyses of complete and skeleton photoperiods suggest a trade-off between the contribution of period modulation (parametric effect) and phase shift (nonparametric effect) in Drosophila circadian entrainment. The results also give suggestions for an experimental study to (in)validate the two models of entrainment.
Collapse
Affiliation(s)
- Rudiyanto Gunawan
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106-5080, USA
| | | |
Collapse
|
2
|
Mirsky HP, Liu AC, Welsh DK, Kay SA, Doyle FJ. A model of the cell-autonomous mammalian circadian clock. Proc Natl Acad Sci U S A 2009; 106:11107-12. [PMID: 19549830 PMCID: PMC2699375 DOI: 10.1073/pnas.0904837106] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Indexed: 11/18/2022] Open
Abstract
Circadian timekeeping by intracellular molecular clocks is evident widely in prokaryotes and eukaryotes. The clockworks are driven by autoregulatory feedback loops that lead to oscillating levels of components whose maxima are in fixed phase relationships with one another. These phase relationships are the key metric characterizing the operation of the clocks. In this study, we built a mathematical model from the regulatory structure of the intracellular circadian clock in mice and identified its parameters using an iterative evolutionary strategy, with minimum cost achieved through conformance to phase separations seen in cell-autonomous oscillators. The model was evaluated against the experimentally observed cell-autonomous circadian phenotypes of gene knockouts, particularly retention of rhythmicity and changes in expression level of molecular clock components. These tests reveal excellent de novo predictive ability of the model. Furthermore, sensitivity analysis shows that these knockout phenotypes are robust to parameter perturbation.
Collapse
Affiliation(s)
- Henry P. Mirsky
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9611
| | - Andrew C. Liu
- Department of Cell and Developmental Biology, Division of Biological Sciences and
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121
- Department of Biology, University of Memphis, Memphis, TN 38152
| | - David K. Welsh
- Department of Cell and Developmental Biology, Division of Biological Sciences and
- Department of Psychiatry, University of California at San Diego, La Jolla, CA 92093
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92161; and
| | - Steve A. Kay
- Department of Cell and Developmental Biology, Division of Biological Sciences and
| | - Francis J. Doyle
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9611
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
| |
Collapse
|
3
|
The G-alpha protein GNA3 of Hypocrea jecorina (Anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. EUKARYOTIC CELL 2009; 8:410-20. [PMID: 19136572 DOI: 10.1128/ec.00256-08] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the enzymes enabling Hypocrea jecorina (anamorph Trichoderma reesei) to degrade the insoluble substrate cellulose have been investigated in some detail, little is still known about the mechanism by which cellulose signals its presence to the fungus. In order to investigate the possible role of a G-protein/cyclic AMP signaling pathway, the gene encoding GNA3, which belongs to the adenylate cyclase-activating class III of G-alpha subunits, was cloned. gna3 is clustered in tandem with the mitogen-activated protein kinase gene tmk3 and the glycogen phosphorylase gene gph1. The gna3 transcript is upregulated in the presence of light and is almost absent in the dark. A strain bearing a constitutively activated version of GNA3 (gna3QL) exhibits strongly increased cellulase transcription in the presence of the inducer cellulose and in the presence of light, whereas a gna3 antisense strain showed delayed cellulase transcription under this condition. However, the gna3QL mutant strain was unable to form cellulases in the absence of cellulose. The necessity of light for stimulation of cellulase transcription by GNA3 could not be overcome in a mutant which expressed gna3 under control of the constitutive gpd1 promoter also in darkness. We conclude that the previously reported stimulation of cellulase gene transcription by light, but not the direct transmission of the cellulose signal, involves the function and activation of GNA3. The upregulation of gna3 by light is influenced by the light modulator ENVOY, but GNA3 itself has no effect on transcription of the light regulator genes blr1, blr2, and env1. Our data for the first time imply an involvement of a G-alpha subunit in a light-dependent signaling event in fungi.
Collapse
|
4
|
Duffield G, Loros JJ, Dunlap JC. Analysis of circadian output rhythms of gene expression in Neurospora and mammalian cells in culture. Methods Enzymol 2008; 393:315-41. [PMID: 15817297 DOI: 10.1016/s0076-6879(05)93014-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The true biology of chronobiology lies in the spectrum of processes that are controlled by the circadian clock. Although this biology plays out at the level of the whole organism, it derives, finally, from clock-driven changes in physiology, and frequently in gene expression, that occur at the level of individual cells. For this reason, analysis of gene expression rhythms measured in cell culture or in organisms that elaborate only a few cell types provides insights not possible in multicellular organisms. In this context we have used mammalian fibroblasts in culture as well as the eukaryotic filamentous fungus Neurospora crassa to study circadian output, in particular the output rhythms in gene expression that underlie so much of circadian biology. Each cell type has its own advantages: Data from mammalian cells are obviously immediately pertinent to animal cell rhythms, but the system allows little genetics and only limited amounts of material can be collected. Alternatively, Neurospora allows genetic and molecular analyses and is useful for developing concepts and models of output that can be examined in other contexts. This methods article focuses on these two systems for analysis, providing an overview of how control is presently viewed followed by current methods for its analysis.
Collapse
Affiliation(s)
- Giles Duffield
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
5
|
Vallone D, Lahiri K, Dickmeis T, Foulkes NS. Zebrafish cell clocks feel the heat and see the light! Zebrafish 2008; 2:171-87. [PMID: 18248192 DOI: 10.1089/zeb.2005.2.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The zebrafish has rapidly become established as one of the most valuable vertebrate models for studying circadian clock function. A major initial attraction was its utility in large-scale genetic screens. It subsequently emerged that most zebrafish cells possess circadian clocks that can be entrained directly by exposure to temperature or light dark cycles, a property shared by several zebrafish cell lines. This is not the case for mammals, where the retina is the primary source of light input to the clock. Furthermore, mammalian cell culture clocks can only be entrained by acute culture treatments such as serum shocks. Thus, the zebrafish is proving invaluable to study light and temperature input to the vertebrate clock. In addition, the accessibility of its early developmental stages has placed the zebrafish at the forefront of studies aimed at understanding how the circadian clock is established during embryogenesis.
Collapse
Affiliation(s)
- Daniela Vallone
- Max-Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
6
|
To TL, Henson MA, Herzog ED, Doyle FJ. A molecular model for intercellular synchronization in the mammalian circadian clock. Biophys J 2007; 92:3792-803. [PMID: 17369417 PMCID: PMC1868999 DOI: 10.1529/biophysj.106.094086] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 01/22/2007] [Indexed: 11/18/2022] Open
Abstract
The mechanisms and consequences of synchrony among heterogeneous oscillators are poorly understood in biological systems. We present a multicellular, molecular model of the mammalian circadian clock that incorporates recent data implicating the neurotransmitter vasoactive intestinal polypeptide (VIP) as the key synchronizing agent. The model postulates that synchrony arises among circadian neurons because they release VIP rhythmically on a daily basis and in response to ambient light. Two basic cell types, intrinsically rhythmic pacemakers and damped oscillators, are assumed to arise from a distribution of Period gene transcription rates. Postsynaptic neurons show time-of-day dependent responses to VIP binding through a signaling cascade that activates Period mRNA transcription. The heterogeneous cell ensemble model self-synchronizes, entrains to ambient light-dark cycles, and desynchronizes in constant bright light or upon removal of VIP signaling. The degree of synchronicity observed depends on cell-specific features (e.g., mean and variability of parameters within the rhythm-generating loop), in addition to the more commonly studied effect of intercellular coupling strength. These simulations closely replicate experimental data and predict that heterogeneous oscillations (e.g., sustained, damped, and arrhythmic) arise from small differences in the molecular parameters between cells, that damped oscillators participate in entrainment and synchrony of the ensemble of cells, and that constant light desynchronizes oscillators by maximizing VIP release.
Collapse
Affiliation(s)
- Tsz-Leung To
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
7
|
Sveric K, Mason M, Roenneberg T, Merrow M. Novel strategies for identification of clock genes in Neurospora with insertional mutagenesis. Methods Mol Biol 2007; 362:173-85. [PMID: 17417009 DOI: 10.1007/978-1-59745-257-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As the molecular mechanism of circadian clocks has reached high complexity, the fungal model system, Neurospora crassa, is increasingly important for clock research. It offers the possibility of extensive biochemical experimentation and thorough description of circadian properties. Realization of the full potential is dependent on efficient, high-throughput methods. We have combined several protocols to develop abundant and inexpensive production of mutants, and subsequent identification of the affected gene. We applied a novel screening protocol and, after screening several hundred mutants, identified a known clock gene, frequency. Furthermore, the methods described here can easily be adapted to various insertional constructs (e.g., those with alternative selection markers or that facilitate overexpression) or combined with strains carrying clock-regulated reporter genes.
Collapse
Affiliation(s)
- Kruno Sveric
- Institute for Medical Psychology, University of Munich, Germany
| | | | | | | |
Collapse
|
8
|
Managadze D, Würtz C, Sichting M, Niehaus G, Veenhuis M, Rottensteiner H. The peroxin PEX14 of Neurospora crassa is essential for the biogenesis of both glyoxysomes and Woronin bodies. Traffic 2007; 8:687-701. [PMID: 17461798 DOI: 10.1111/j.1600-0854.2007.00560.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the filamentous fungus Neurospora crassa, glyoxysomes and Woronin bodies coexist in the same cell. Because several glyoxysomal matrix proteins and also HEX1, the dominant protein of Woronin bodies, possess typical peroxisomal targeting signals, the question arises as to how protein targeting to these distinct yet related types of microbodies is achieved. Here we analyzed the function of the Neurospora ortholog of PEX14, an essential component of the peroxisomal import machinery. PEX14 interacted with both targeting signal receptors and was localized to glyoxysomes but was virtually absent from Woronin bodies. Nonetheless, a pex14Delta mutant not only failed to grow on fatty acids because of a defect in glyoxysomal beta-oxidation but also suffered from cytoplasmic bleeding, indicative of a defect in Woronin body-dependent septal pore plugging. Inspection of pex14Delta mutant hyphae by fluorescence and electron microscopy indeed revealed the absence of Woronin bodies. When these cells were subjected to subcellular fractionation, HEX1 was completely mislocalized to the cytosol. Expression of GFP-HEX1 in wild-type mycelia caused the staining of Woronin bodies and also of glyoxysomes in a targeting signal-dependent manner. Our data support the view that Woronin bodies emerge from glyoxysomes through import of HEX1 and subsequent fission.
Collapse
Affiliation(s)
- David Managadze
- Institut für Physiologische Chemie, Abt. Systembiochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Loros JJ, Dunlap JC, Larrondo LF, Shi M, Belden WJ, Gooch VD, Chen CH, Baker CL, Mehra A, Colot HV, Schwerdtfeger C, Lambreghts R, Collopy PD, Gamsby JJ, Hong CI. Circadian output, input, and intracellular oscillators: insights into the circadian systems of single cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:201-14. [PMID: 18419278 PMCID: PMC3671946 DOI: 10.1101/sqb.2007.72.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Circadian output comprises the business end of circadian systems in terms of adaptive significance. Work on Neurospora pioneered the molecular analysis of circadian output mechanisms, and insights from this model system continue to illuminate the pathways through which clocks control metabolism and overt rhythms. In Neurospora, virtually every strain examined in the context of rhythms bears the band allele that helps to clarify the overt rhythm in asexual development. Recent cloning of band showed it to be an allele of ras-1 and to affect a wide variety of signaling pathways yielding enhanced light responses and asexual development. These can be largely phenocopied by treatments that increase levels of intracellular reactive oxygen species. Although output is often unidirectional, analysis of the prd-4 gene provided an alternative paradigm in which output feeds back to affect input. prd-4 is an allele of checkpoint kinase-2 that bypasses the requirement for DNA damage to activate this kinase; FRQ is normally a substrate of activated Chk2, so in Chk2(PRD-4), FRQ is precociously phosphorylated and the clock cycles more quickly. Finally, recent adaptation of luciferase to fully function in Neurospora now allows the core FRQ/WCC feedback loop to be followed in real time under conditions where it no longer controls the overt rhythm in development. This ability can be used to describe the hierarchical relationships among FRQ-Less Oscillators (FLOs) and to see which are connected to the circadian system. The nitrate reductase oscillator appears to be connected, but the oscillator controlling the long-period rhythm elicited upon choline starvation appears completely disconnected from the circadian system; it can be seen to run with a very long noncompensated 60-120-hour period length under conditions where the circadian FRQ/WCC oscillator continues to cycle with a fully compensated circadian 22-hour period.
Collapse
Affiliation(s)
- J J Loros
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Abstract
Microorganisms provide important model systems for studying circadian rhythms, and they are overturning established ideas about the molecular mechanisms of rhythmicity. The transcription/translation feedback model that has been accepted as the basis of circadian clock mechanisms in eukaryotes does not account for old data from the alga Acetabularia demonstrating that transcription is not required for rhythmicity. Moreover, new results showing in vitro rhythmicity of KaiC protein phosphorylation in the cyanobacterium Synechococcus, and rhythmicity in strains of the fungus Neurospora carrying clock gene null mutations, require new ways of looking at circadian systems.
Collapse
|
12
|
Schmoll M, Franchi L, Kubicek CP. Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. EUKARYOTIC CELL 2006; 4:1998-2007. [PMID: 16339718 PMCID: PMC1317494 DOI: 10.1128/ec.4.12.1998-2007.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Envoy, a PAS/LOV domain protein with similarity to the Neurospora light regulator Vivid, which has been cloned due to its lack of expression in a cellulase-negative mutant, links cellulase induction by cellulose to light signaling in Hypocrea jecorina. Despite their similarity, env1 could not compensate for the lack of vvd function. Besides the effect of light on sporulation, we observed a reduced growth rate in constant light. An env1(PAS-) mutant of H. jecorina grows significantly slower in the presence of light but remains unaffected in darkness compared to the wild-type strain QM9414. env1 rapidly responds to a light pulse, with this response being different upon growth on glucose or glycerol, and it encodes a regulator essential for H. jecorina light tolerance. The induction of cellulase transcription in H. jecorina by cellulose is enhanced by light in the wild-type strain QM9414 compared to that in constant darkness, whereas a delayed induction in light and only a transient up-regulation in constant darkness of cbh1 was observed in the env1(PAS-) mutant. However, light does not lead to cellulase expression in the absence of an inducer. We conclude that Envoy connects the light response to carbon source signaling and thus that light must be considered an additional external factor influencing gene expression analysis in this fungus.
Collapse
Affiliation(s)
- Monika Schmoll
- Research Division for Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, Austria
| | | | | |
Collapse
|
13
|
Roenneberg T, Dragovic Z, Merrow M. Demasking biological oscillators: properties and principles of entrainment exemplified by the Neurospora circadian clock. Proc Natl Acad Sci U S A 2005; 102:7742-7. [PMID: 15899977 PMCID: PMC1140435 DOI: 10.1073/pnas.0501884102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Indexed: 11/18/2022] Open
Abstract
Oscillations are found throughout the physical and biological worlds. Their interactions can result in a systematic process of synchronization called entrainment, which is distinct from a simple stimulus-response pattern. Oscillators respond to stimuli at some times in their cycle and may not respond at others. Oscillators can also be driven if the stimulus is strong (or if the oscillator is weak); i.e., they restart their cycle every time they receive a stimulus. Stimuli can also directly affect rhythms without entraining the underlying oscillator (masking): Drivenness and masking are often difficult to distinguish. Here we use the circadian biological clock to explore properties of entrainment. We confirm previous results showing that the residual circadian system in Neurospora can be entrained in a mutant of the clock gene frequency (frq(9), a strain deficient in producing a functional FRQ protein). This finding has implications for understanding the evolution of circadian programs. By comparing data sets from independent studies, we develop a template for analyzing, modeling, and dissecting the interactions of entrained and masked components. These insights can be applied to oscillators of all periodicities.
Collapse
Affiliation(s)
- Till Roenneberg
- Centre for Chronobiology, Institute of Medical Psychology, Medical Faculty, University of Munich, Goethestrasse 31, D-80336 Munich, Germany.
| | | | | |
Collapse
|
14
|
Abstract
Recent advances in understanding circadian (daily) rhythms in the genera Neurospora, Gonyaulax, and Synechococcus are reviewed and new complexities in their circadian systems are described. The previous model, consisting of a unidirectional flow of information from input to oscillator to output, has now expanded to include multiple input pathways, multiple oscillators, multiple outputs; and feedback from oscillator to input and output to oscillator. New posttranscriptional features of the frq/white-collar oscillator (FWC) of Neurospora are described, including protein phosphorylation and degradation, dimerization, and complex formation. Experimental evidence is presented for frq-less oscillator(s) (FLO) downstream of the FWC. Mathematical models of the Neurospora system are also discussed.
Collapse
|
15
|
Abstract
Circadian clocks are ubiquitous and are found in organisms ranging from bacteria to mammals. This ubiquity of occurrence implies adaptive significance, but to date there has been no rigorous empirical evidence to support this. It is believed that an organism possessing circadian clocks gains fitness advantage in two ways: (i) by synchronizing its behavioral and physiological processes to cyclic environmental factors (extrinsic adaptive value); (ii) by coordinating its internal metabolic processes (intrinsic adaptive value). There is preliminary circumstantial evidence to support both. Several studies using organisms living in constant environments have shown that these organisms possess functional circadian clocks, suggesting that circadian clocks may have some intrinsic adaptive value. Studies to assess the adaptive value of circadian clocks in periodic environments suggest that organisms may have a fitness advantage in those periodic environments, which closely match their own intrinsic periodicity. Furthermore, evidence from organisms living in the wild, selection studies, and studies on latitudinal clines suggest that circadian clocks may have an extrinsic adaptive value as well. In this paper, I have presented several hypotheses for the emergence of circadian clocks and have reviewed some major empirical studies suggesting adaptive significance of circadian clocks.
Collapse
Affiliation(s)
- Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka, India.
| |
Collapse
|
16
|
Abstract
Vertebrate segmentation is manifested during embryonic development as serially repeated units termed somites that give rise to vertebrae, ribs, skeletal muscle and dermis. Many theoretical models including the "clock and wavefront" model have been proposed. There is compelling genetic evidence showing that Notch-Delta signaling is indispensable for somitogenesis. Notch receptor and its target genes, Hairy/E(spl) homologues, are known to be crucial for the ticking of the segmentation clock. Through the work done in mouse, chick, Xenopus and zebrafish, an oscillator operated by cyclical transcriptional activation and delayed negative feedback regulation is emerging as the fundamental mechanism underlying the segmentation clock. Ubiquitin-dependent protein degradation and probably other posttranslational regulations are also required. Fgf8 and Wnt3a gradients are important in positioning somite boundaries and, probably, in coordinating tail growth and segmentation. The circadian clock is another biochemical oscillator, which, similar to the segmentation clock, is operated with a negative transcription-regulated feedback mechanism. While the circadian clock uses a more complicated network of pathways to achieve homeostasis, it appears that the segmentation clock exploits the Notch pathway to achieve both signal generation and synchronization. We also discuss mathematical modeling and future directions in the end.
Collapse
Affiliation(s)
- Padmashree C G Rida
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, National University of Singapore, Singapore 117604, Singapore
| | | | | |
Collapse
|
17
|
Merrow M, Dragovic Z, Tan Y, Meyer G, Sveric K, Mason M, Ricken J, Roenneberg T. Combining theoretical and experimental approaches to understand the circadian clock. Chronobiol Int 2003; 20:559-75. [PMID: 12916713 DOI: 10.1081/cbi-120023678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review is intended as a summary of our work carried out as part of the German Research Association (DFG) Center Program on Circadian Rhythms. Over the last six years, our approach to understanding circadian systems combined theoretical and experimental tools, and Gonyaulax and Neurospora have proven ideal for these efforts. Both of these model organisms demonstrate that even simple circadian systems can have multiple light input pathways and more than one rhythm generator. They have both been used to elaborate basic circadian features in conjunction with formal models. The models introduce the "zeitnehmer," i.e., a clock-regulated input pathway, to the conceptual framework of circadian systems, and proposes networks of individual feedbacks as the basis for circadian rhythmicity.
Collapse
Affiliation(s)
- Martha Merrow
- Institut für Medizinische Psychologie, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nowrousian M, Duffield GE, Loros JJ, Dunlap JC. The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa. Genetics 2003; 164:923-33. [PMID: 12871904 PMCID: PMC1462620 DOI: 10.1093/genetics/164.3.923] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The circadian clock of Neurospora broadly regulates gene expression and is synchronized with the environment through molecular responses to changes in ambient light and temperature. It is generally understood that light entrainment of the clock depends on a functional circadian oscillator comprising the products of the wc-1 and wc-2 genes as well as those of the frq gene (the FRQ/WCC oscillator). However, various models have been advanced to explain temperature regulation. In nature, light and temperature cues reinforce one another such that transitions from dark to light and/or cold to warm set the clock to subjective morning. In some models, the FRQ/WCC circadian oscillator is seen as essential for temperature-entrained clock-controlled output; alternatively, this oscillator is seen exclusively as part of the light pathway mediating entrainment of a cryptic "driving oscillator" that mediates all temperature-entrained rhythmicity, in addition to providing the impetus for circadian oscillations in general. To identify novel clock-controlled genes and to examine these models, we have analyzed gene expression on a broad scale using cDNA microarrays. Between 2.7 and 5.9% of genes were rhythmically expressed with peak expression in the subjective morning. A total of 1.4-1.8% of genes responded consistently to temperature entrainment; all are clock controlled and all required the frq gene for this clock-regulated expression even under temperature-entrainment conditions. These data are consistent with a role for frq in the control of temperature-regulated gene expression in N. crassa and suggest that the circadian feedback loop may also serve as a sensor for small changes in ambient temperature.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
19
|
Abstract
A feedback loop that functions via transcription and translation is thought to be the mechanistic core of circadian rhythmicity. Numerous modeling efforts incorporate the identified components and their modifications to recreate the circadian clock in computer simulations. Several issues remain problematic, including the lack of precise quantitative kinetics and the likely existence of additional, as-yet-undiscovered components. Even without these complications, models and flow charts of the circadian system have reached high complexity. They attempt to reconcile all observations without violating current views and concepts. In this article, the authors consider the mechanisms that may have preceded the circadian system in evolution. Given that cellular metabolism and biochemistry were presumably already interconnected in cascading feedback reactions prior to the appendage of the transcription/translation feedback loop, a coordinated response to exogenous changes would be advantageous over unsystematic responses. The authors hypothesize that those mechanisms that allowed synchronization in spite of metabolic complexity form the basis for the evolution of circadian properties and are as fundamental to the circadian system as the transcriptional/translational feedback loop.
Collapse
Affiliation(s)
- Till Roenneberg
- Institute for Medical Psychology, Chronobiology Division, Ludwig-Maximilians-Universität Munchen, D-80336 Munich, Germany.
| | | |
Collapse
|
20
|
Gonze D, Halloy J, Gaspard P. Biochemical clocks and molecular noise: Theoretical study of robustness factors. J Chem Phys 2002. [DOI: 10.1063/1.1475765] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|