1
|
Girard G, Gultyaev AP, Olsthoorn RCL. Upstream start codon in segment 4 of North American H2 avian influenza A viruses. INFECTION GENETICS AND EVOLUTION 2011; 11:489-95. [PMID: 21232632 DOI: 10.1016/j.meegid.2010.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 11/17/2022]
Abstract
H2N2 influenza A virus was the cause of the 1957 pandemic. Due to its constant presence in birds, the H2 subtype remains a topic of interest. In this work, comparison of H2 leader sequences of influenza A segment 4 revealed the presence of an upstream in-frame start codon in a majority of North American avian strains. This AUG is located seven codons upstream of the conventional start codon and is in a good Kozak context. In vivo experiments, using a luciferase reporter gene fused to leader sequences derived from North American avian H2 strains, support the efficient use of the upstream start codon. These results were corroborated by in vitro translation data using full-length segment 4 mRNA. Phylogenic analyses indicate that the upstream AUG, first detected in 1976, is stably nested in the North American avian lineage of H2 strains nowadays. The possible consequences of the upstream AUG are discussed.
Collapse
Affiliation(s)
- Geneviève Girard
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
2
|
Gultyaev AP, Fouchier RAM, Olsthoorn RCL. Influenza virus RNA structure: unique and common features. Int Rev Immunol 2010; 29:533-56. [PMID: 20923332 DOI: 10.3109/08830185.2010.507828] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The influenza A virus genome consists of eight negative-sense RNA segments. Here we review the currently available data on structure-function relationships in influenza virus RNAs. Various ideas and hypotheses about the roles of influenza virus RNA folding in the virus replication are also discussed in relation to other viruses.
Collapse
|
3
|
Maroto M, Fernandez Y, Ortin J, Pelaez F, Cabello MA. Development of an HTS Assay for the Search of Anti-influenza Agents Targeting the Interaction of Viral RNA with the NS1 Protein. ACTA ACUST UNITED AC 2008; 13:581-90. [DOI: 10.1177/1087057108318754] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The NS1 protein is a nonstructural protein encoded by the influenza A virus. It is responsible for many alterations produced in the cellular metabolism upon infection by the virus and for modulation of virus virulence. The NS1 protein is able to perform a large variety of functions due to its ability to bind various types of RNA molecules, from both viral and nonviral origin, and to interact with several cell factors. With the aim of exploring whether the binding of NS1 protein to viral RNA (vRNA) could constitute a novel target for the search of anti-influenza drugs, a filter-binding assay measuring the specific interaction between the recombinant His-NS1 protein from influenza A virus and a radiolabeled model vRNA ( 32P-vNSZ) was adapted to a format suitable for screening and easy automation. Flashplate® technology (PerkinElmer, Waltham, MA), either in 96- or 384-well plates, was used. The Flashplate® wells were precoated with the recombinant His-NS1 protein, and the binding of His-NS1 to a 35S-vNSZ probe was measured. A pilot screening of a collection of 27,520 mixtures of synthetic chemical compounds was run for inhibitors of NS1 binding to vRNA. We found 3 compounds in which the inhibition of NS1 binding to vRNA, observed at submicromolar concentrations, was correlated with a reduction of the cytopathic effect during the infection of cell cultures with influenza virus. These results support the hypothesis that the binding of NS1 to vRNA could be a novel target for the development of anti-influenza drugs. ( Journal of Biomolecular Screening 2008:581-590)
Collapse
Affiliation(s)
- Marta Maroto
- Centro de Investigación Básica, Merck, Sharp and Dohme de España, Madrid, Spain
| | - Yolanda Fernandez
- Centro Nacional de Biotecnología (CSIC), Madrid, and CIBER de Enfermedades Respiratorias, Spain
| | - Juan Ortin
- Centro Nacional de Biotecnología (CSIC), Madrid, and CIBER de Enfermedades Respiratorias, Spain
| | - Fernando Pelaez
- Centro de Investigación Básica, Merck, Sharp and Dohme de España, Madrid, Spain
| | - M. Angerles Cabello
- Centro de Investigación Básica, Merck, Sharp and Dohme de España, Madrid, Spain,
| |
Collapse
|
4
|
|
5
|
Wu Y, Zhang G, Li Y, Jin Y, Dale R, Sun LQ, Wang M. Inhibition of highly pathogenic avian H5N1 influenza virus replication by RNA oligonucleotides targeting NS1 gene. Biochem Biophys Res Commun 2007; 365:369-74. [PMID: 17996729 DOI: 10.1016/j.bbrc.2007.10.196] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
H5N1 avian influenza virus (AIV) has caused widespread infections in poultry and wild birds, and has the potential to emerge as a pandemic threat to human. In order to explore novel approaches to inhibiting highly pathogenic H5N1 influenza virus infection, we have developed short RNA oligonucleotides, specific for conserved regions of the non-structural protein gene (NS1) of AIV. In vitro the hemagglutination (HA) titers in RNA oligonucleotide-treated cells were at least 5-fold lower than that of the control. In vivo, the treatment with three doses of RNA oligonucleotides protected the infected chickens from H5N1 virus-induced death at a rate of up to 87.5%. Plaque assay and real-time PCR analysis showed a significant reduction of the PFU and viral RNA level in the lung tissues of the infected animals treated with the mixed RNA oligonucleotides targeting the NS1 gene. Together, our findings revealed that the RNA oligonucleotides targeting at the AIV NS1 gene could potently inhibit avian H5N1 influenza virus reproduction and present a rationale for the further development of the RNA oligonucleotides as prophylaxis and therapy for highly pathogenic H5N1 influenza virus infection in humans.
Collapse
Affiliation(s)
- Yanhua Wu
- College of Veterinary Medicine, China Agriculture University, Beijing 100094, PR China
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
It is over 20 years since the publication of experiments that showed that influenza A virus RNA synthesis takes place in the cell nucleus and that here, the virus subverts the cellular transcription machinery to express and replicate its own single-strand RNA genome. In the years since, our understanding of the organisation of the nucleus has increased enormously, particularly with regards to the functional integration of the RNA polymerase II transcriptosome. This review summarises recent progress in defining the intimate association between the viral and cellular transcriptional machinery.
Collapse
Affiliation(s)
- Maria Joao Amorim
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
7
|
Influenza virus replication. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0168-7069(02)07002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Affiliation(s)
- A García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| |
Collapse
|
9
|
Aragón T, de la Luna S, Novoa I, Carrasco L, Ortín J, Nieto A. Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational activator of influenza virus. Mol Cell Biol 2000; 20:6259-68. [PMID: 10938102 PMCID: PMC86100 DOI: 10.1128/mcb.20.17.6259-6268.2000] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus NS1 protein is an RNA-binding protein whose expression alters several posttranscriptional regulatory processes, like polyadenylation, splicing, and nucleocytoplasmic transport of cellular mRNAs. In addition, NS1 protein enhances the translational rate of viral, but not cellular, mRNAs. To characterize this effect, we looked for targets of NS1 influenza virus protein among cellular translation factors. We found that NS1 coimmunoprecipitates with eukaryotic initiation factor 4GI (eIF4GI), the large subunit of the cap-binding complex eIF4F, either in influenza virus-infected cells or in cells transfected with NS1 cDNA. Affinity chromatography studies using a purified His-NS1 protein-containing matrix showed that the fusion protein pulls down endogenous eIF4GI from COS-1 cells and labeled eIF4GI translated in vitro, but not the eIF4E subunit of the eIF4F factor. Similar in vitro binding experiments with eIF4GI deletion mutants indicated that the NS1-binding domain of eIF4GI is located between residues 157 and 550, in a region where no other component of the translational machinery is known to interact. Moreover, using overlay assays and pull-down experiments, we showed that NS1 and eIF4GI proteins interact directly, in an RNA-independent manner. Mapping of the eIF4GI-binding domain in the NS1 protein indicated that the first 113 N-terminal amino acids of the protein, but not the first 81, are sufficient to bind eIF4GI. The first of these mutants has been previously shown to act as a translational enhancer, while the second is defective in this activity. Collectively, these and previously published data suggest a model where NS1 recruits eIF4GI specifically to the 5' untranslated region (5' UTR) of the viral mRNA, allowing for the preferential translation of the influenza virus messengers.
Collapse
Affiliation(s)
- T Aragón
- Centro Nacional de Biotecnología (CSIC), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Patterson JB, Thomas D, Lewicki H, Billeter MA, Oldstone MB. V and C proteins of measles virus function as virulence factors in vivo. Virology 2000; 267:80-9. [PMID: 10648185 DOI: 10.1006/viro.1999.0118] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The measles virus (MV) P gene encodes three proteins: the P protein and two nonstructural proteins, C and V. Because the functions of both the C and V protein are unknown, we used MV C (C-) and V (V-) deletion recombinants generated by the MV reverse genetics system (F. Radecke, P. Spielhofer, H. Schnieder, K. Kaelin, M. Huber, C. Dotsch, G. Christiansen, and M. A. Billeter 1995. EMBO J. 14, 5773-5784). Compared to parental vaccine strain, Edmonston (Ed) MV, both had normal growth and cytopathic effects in Vero cells and showed similar growth kinetics in human neuroblastoma SK-N-MC cells and in primary mouse neurons expressing the MV receptor, CD46. However, in vivo, using YAC-CD46 transgenic mice as a model for MV induced CNS disease (M. B. A. Oldstone, H. Lewicki, D. Thomas, A. Tishon, S. Dales, J. Patterson, M. Manchester, D. Homann, D. Naniche, and A. Holz 1999. Cell 98, 629-640), C- and V- viruses differed markedly from wt Ed(V(+)C(+)) virus. Newborn mice inoculated with as little as 10(3) PFU of Ed strain became ill and died after 10-15 days. In contrast, those inoculated with 10(3) or 10(4) PFU of MV C- or MV V- showed significantly fewer and milder clinical symptoms and had a lower mortality. A total of 10(5) PFU V- virus were required to kill most YAC-CD46 mice, and less than half (44%) were killed with a corresponding dose of MV C-. Immunohistochemical staining for MV antigens showed similar extents of spread for MV C- and MV Ed but restricted spread for MV V- throughout the brain. Viral load and transcription were markedly reduced for V- but not for C-. Multiple cytokines and chemokines were equivalently upregulated for all three viruses. Therefore, MV C and V proteins encode virulence functions in vivo and likely operate via separate mechanisms.
Collapse
Affiliation(s)
- J B Patterson
- Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037, USA
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- A Portela
- Centro Nacional de Biotecnología (CSIC) Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Ludwig S, Pleschka S, Wolff T. A fatal relationship--influenza virus interactions with the host cell. Viral Immunol 1999; 12:175-96. [PMID: 10532647 DOI: 10.1089/vim.1999.12.175] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses are important worldwide pathogens for humans and different animal species. The infectious agent is the prototype of the orthomyxoviridae which are characterized by a segmented negative strand RNA genome that is replicated in the nucleus of the infected cell. The genome has a combined coding capacity of about 13 kb and contains the genetic information for ten viral proteins. Despite this relatively small coding capacity--large DNA viruses like herpes or poxviruses express about 150-200 gene products--influenza A viruses are able to successfully infect and multiply in a wide range of mammalian and avian species. It is therefore not surprising that influenza A viruses extensively use and manipulate host cell functions. This includes multiple interactions of viral proteins with cellular proteins. In recent years an increasing amount of information about the identity of the cellular factors that are involved in viral transcription and replication, intracellular trafficking of viral components and assembly of the virus particle has accumulated. This article aims to review recent developments in this field with a focus on cellular factors and processes which are activated by the virus to either support viral replication or to counteract host-cell defense mechanisms.
Collapse
Affiliation(s)
- S Ludwig
- Institut für Medizinische Strahlenkunde und Zellforschung, Julius-Maximilians Universität, Würzburg, Germany.
| | | | | |
Collapse
|
13
|
Marión RM, Fortes P, Beloso A, Dotti C, Ortín J. A human sequence homologue of Staufen is an RNA-binding protein that is associated with polysomes and localizes to the rough endoplasmic reticulum. Mol Cell Biol 1999; 19:2212-9. [PMID: 10022908 PMCID: PMC84014 DOI: 10.1128/mcb.19.3.2212] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the course of a two-hybrid screen with the NS1 protein of influenza virus, a human clone capable of coding for a protein with high homology to the Staufen protein from Drosophila melanogaster (dmStaufen) was identified. With these sequences used as a probe, cDNAs were isolated from a lambda cDNA library. The encoded protein (hStaufen-like) contained four double-stranded RNA (dsRNA)-binding domains with 55% similarity and 38% identity to those of dmStaufen, including identity at all residues involved in RNA binding. A recombinant protein containing all dsRNA-binding domains was expressed in Escherichia coli as a His-tagged polypeptide. It showed dsRNA binding activity in vitro, with an apparent Kd of 10(-9) M. Using a specific antibody, we detected in human cells a major form of the hStaufen-like protein with an apparent molecular mass of 60 to 65 kDa. The intracellular localization of hStaufen-like protein was investigated by immunofluorescence using a series of markers for the cell compartments. Colocalization was observed with the rough endoplasmic reticulum but not with endosomes, cytoskeleton, or Golgi apparatus. Furthermore, sedimentation analyses indicated that hStaufen-like protein associates with polysomes. These results are discussed in relation to the possible functions of the protein.
Collapse
Affiliation(s)
- R M Marión
- Centro Nacional de Biotecnología (CSIC), Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|