1
|
He Y, Zhu L, Ma J, Lin G. Metabolism-mediated cytotoxicity and genotoxicity of pyrrolizidine alkaloids. Arch Toxicol 2021; 95:1917-1942. [PMID: 34003343 DOI: 10.1007/s00204-021-03060-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are common phytotoxins produced by over 6000 plant species. Humans are frequently exposed to PAs via ingestion of PA-containing herbal products or PA-contaminated foods. PAs require metabolic activation to form pyrrole-protein adducts and pyrrole-DNA adducts which lead to cytotoxicity and genotoxicity. Individual PAs differ in their metabolic activation patterns, which may cause significant difference in toxic potency of different PAs. This review discusses the current knowledge and recent advances of metabolic pathways of different PAs, especially the metabolic activation and metabolism-mediated cytotoxicity and genotoxicity, and the risk evaluation methods of PA exposure. In addition, this review provides perspectives of precision toxicity assessment strategies and biomarker development for the risk control and translational investigations of human intoxication by PAs.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
2
|
Function of Adipose-Derived Mesenchymal Stem Cells in Monocrotaline-Induced Pulmonary Arterial Hypertension through miR-191 via Regulation of BMPR2. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2858750. [PMID: 31119161 PMCID: PMC6500697 DOI: 10.1155/2019/2858750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/25/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious condition. However, prevailing therapeutic strategies are not effective enough to treat PAH. Therefore, finding an effective therapy is clearly warranted. Adipose-derived mesenchymal stem cells (ASCs) and ASCs-derived exosomes (ASCs-Exos) exert protective effects in PAH, but the underlying mechanism remains unclear. Using a coculture of ASCs and monocrotaline pyrrole (MCTP)-treated human pulmonary artery endothelial cells (HPAECs), we demonstrated that ASCs increased cell proliferation in MCTP-treated HPAECs. Results showed that ASCs-Exos improved proliferation of both control HPAECs and MCTP-treated HPAECs. In addition, by transfecting ASCs with antagomir we observed that low exosomal miR-191 expression inhibited HPAECs proliferation whereas the agomir improved. Similar results were observed in vivo using a monocrotaline (MCT)-induced PAH rat model following ASCs transplantation. And ASCs transplantation attenuated MCT-induced PAH albeit less than the antagomir treated group. Finally, we found that miR-191 repressed the expression of bone morphogenetic protein receptor 2 (BMPR2) in HPAECs and PAH rats. Thus, we conjectured that miR-191, in ASCs and ASCs-Exos, plays an important role in PAH via regulation of BMPR2. These findings are expected to contribute to promising therapeutic strategies for treating PAH in the future.
Collapse
|
3
|
Ma J, Xia Q, Fu PP, Lin G. Pyrrole-protein adducts - A biomarker of pyrrolizidine alkaloid-induced hepatotoxicity. J Food Drug Anal 2018; 26:965-972. [PMID: 29976414 PMCID: PMC9303027 DOI: 10.1016/j.jfda.2018.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are phytotoxins identified in over 6000 plant species worldwide. Approximately 600 toxic PAs and PA N-oxides have been identified in about 3% flowering plants. PAs can cause toxicities in different organs particularly in the liver. The metabolic activation of PAs is catalyzed by hepatic cytochrome P450 and generates reactive pyrrolic metabolites that bind to cellular proteins to form pyrrole-protein adducts leading to PA-induced hepatotoxicity. The mechanisms that pyrrole-protein adducts induce toxicities have not been fully characterized. Methods for qualitative and quantitative detection of pyrrole-protein adducts have been developed and applied for the clinical diagnosis of PA exposure and PA-induced liver injury. This mini-review addresses the mechanisms of PA-induced hepatotoxicity mediated by pyrrole-protein adducts, the analytical methods for the detection of pyrrole-protein adducts, and the development of pyrrole-protein adducts as the mechanism-based biomarker of PA exposure and PA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, China Academy of Sciences, China
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, China Academy of Sciences, China.
| |
Collapse
|
4
|
Silva-Neto J, Barreto R, Pitanga B, Souza C, Silva V, Silva A, Velozo E, Cunha S, Batatinha M, Tardy M, Ribeiro C, Costa M, El-Bachá R, Costa S. Genotoxicity and morphological changes induced by the alkaloid monocrotaline, extracted from Crotalaria retusa, in a model of glial cells. Toxicon 2010; 55:105-17. [DOI: 10.1016/j.toxicon.2009.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 11/27/2022]
|
5
|
Monocrotaline pyrrol is cytotoxic and alters the patterns of GFAP expression on astrocyte primary cultures. Toxicol In Vitro 2008; 22:1191-7. [DOI: 10.1016/j.tiv.2008.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/21/2008] [Accepted: 03/23/2008] [Indexed: 11/18/2022]
|
6
|
Sawada H, Mitani Y, Maruyama J, Jiang BH, Ikeyama Y, Dida FA, Yamamoto H, Imanaka-Yoshida K, Shimpo H, Mizoguchi A, Maruyama K, Komada Y. A nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate ameliorates pulmonary hypertension in rats. Chest 2007; 132:1265-74. [PMID: 17934115 DOI: 10.1378/chest.06-2243] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a fatal disorder that is associated with structural changes and inflammatory responses in the pulmonary vasculature. Nuclear factor (NF)-kappaB is a key transcription factor that is involved in the tissue remodeling mediated by inflammatory and fibroproliferative responses. However, the contribution of NF-kappaB-mediated inflammatory pathways to the development of PH is unknown. METHODS We therefore investigated whether NF-kappaB activation and the expression of a downstream product vascular cell adhesion molecule (VCAM)-1 is associated with pulmonary vascular diseases in rats that have been injected with the toxin monocrotaline (MCT), and whether a NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC), ameliorates such diseases in rats. RESULTS VCAM-1 expression and the nuclear localization of the p65 subunit of NF-kappaB, as analyzed immunohistochemically, was significantly up-regulated in the endothelium of diseased vessels on the days 8 to 22 (p < 0.05). Next, 39 rats were divided into three groups (rats injected with MCT and treated with saline solution or PDTC, and controls similarly treated with saline solution). Compared to controls, MCT treatment increased the mean (+/- SE) pulmonary artery pressure (31.2 +/- 1.4 mm Hg [p < 0.05] vs 22.8 +/- 0.9 mm Hg, respectively), which was reduced by PDTC treatment (24.3 +/- 1.2 mm Hg; p < 0.05). Indexes of right ventricular hypertrophy and pulmonary vascular diseases induced by MCT were similarly inhibited (p < 0.05), which was associated with the suppression of VCAM-1 expression and macrophage infiltration. CONCLUSIONS We concluded that the NF-kappaB nuclear localization and VCAM-1 expression is temporally and spatially associated with the development of MCT-induced PH in rats, which was ameliorated by administering a NF-kappaB inhibitor, PDTC.
Collapse
Affiliation(s)
- Hirofumi Sawada
- Department of Pediatric and Developmental Science, Mie University Graduate School of Medicine, Tsu City, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ramos M, Lamé MW, Segall HJ, Wilson DW. Monocrotaline pyrrole induces Smad nuclear accumulation and altered signaling expression in human pulmonary arterial endothelial cells. Vascul Pharmacol 2007; 46:439-48. [PMID: 17336165 PMCID: PMC2570208 DOI: 10.1016/j.vph.2007.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 01/03/2007] [Accepted: 01/22/2007] [Indexed: 12/31/2022]
Abstract
The mechanistic relationship between the widely used monocrotaline model of primary pulmonary hypertension and altered TGFbeta family signaling due to genetic defects in the Bone Morphogenetic Protein type II receptor in affected humans has not been investigated. In this study we use fluorescent microscopy to demonstrate nuclear translocation of Smad 4 in human pulmonary arterial endothelial cell (HPAEC) cultures treated with monocrotaline pyrrole (MCTP), Bone Morphogenetic Protein (BMP) and TGFbeta. While MCTP induced transient nuclear accumulation of phosphorylated Smad 1 (P-Smad 1) and phosphorylated Smad 2 (P-Smad 2), only expression of P-Smad 1 was significantly altered in western blots. P-Smad 1 expression significantly increased 30 min following treatment with MCTP correlating with P-Smad 1 and Smad 4 nuclear translocation. Although a modest, but significant decrease in P-Smad 1 expression occurred 1 h after treatment, expression was significantly increased at 72 h. Evaluation of components of the signal and response pathway at 72 h showed decreased expression of the BMP type II receptor (BMPrII), no change in TGFbeta Activin Receptor-like Kinase 1 (Alk 1), no change in Smad 4 but increase in the inhibitory Smad 6, decrease in the alternate BMP signaling pathway p38(MAPK) but no change in the psmad1 response element ID 1. Our results suggest transient activation of Smad signaling pathways in initial MCTP endothelial cell toxicity, and a persistent dysregulation of BMP signaling. Electron microscopy of cell membrane caveoli revealed a dramatic decrease in these structures after 72 h. Loss of these structural elements, noted for their sequestration and inhibition of receptor activity, may contribute to prolonged alterations in BMP signaling.
Collapse
Affiliation(s)
- M Ramos
- Department of Veterinary Medicine, Pathology, Immunology, Microbiology, University of California, Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
8
|
Sehgal PB, Mukhopadhyay S, Xu F, Patel K, Shah M. Dysfunction of Golgi tethers, SNAREs, and SNAPs in monocrotaline-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1526-42. [PMID: 17337506 DOI: 10.1152/ajplung.00463.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Monocrotaline (MCT)-induced pulmonary hypertension (PH) in the rat is a widely used experimental model. We have previously shown that MCT pyrrole (MCTP) produces loss of caveolin-1 (cav-1) and endothelial nitric oxide synthase from plasma membrane raft microdomains in pulmonary arterial endothelial cells (PAEC) with the trapping of these proteins in the Golgi organelle (the Golgi blockade hypothesis). In the present study, we investigated the mechanisms underlying this intracellular trafficking block in experiments in cell culture and in the MCT-treated rat. In cell culture, PAEC showed trapping of cav-1 in Golgi membranes as early as 6 h after exposure to MCTP. Phenotypic megalocytosis and a reduction in anterograde trafficking (assayed in terms of the secretion of horseradish peroxidase derived from exogenously transfected expression constructs) were evident within 12 h after MCTP. Cell fractionation and immunofluorescence techniques revealed the marked accumulation of diverse Golgi tethers, soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs), and soluble NSF attachment proteins (SNAPs), which mediate membrane fusion during vesicular trafficking (GM130, p115, giantin, golgin 84, clathrin heavy chain, syntaxin-4, -6, Vti1a, Vti1b, GS15, GS27, GS28, SNAP23, and alpha-SNAP) in the enlarged/circumnuclear Golgi in MCTP-treated PAEC and A549 lung epithelial cells. Moreover, NSF, an ATPase required for the "disassembly" of SNARE complexes subsequent to membrane fusion, was increasingly sequestered in non-Golgi membranes. Immunofluorescence studies of lung tissue from MCT-treated rats confirmed enlargement of perinuclear Golgi elements in lung arterial endothelial and parenchymal cells as early as 4 days after MCT. Thus MCT-induced PH represents a disease state characterized by dysfunction of Golgi tethers, SNAREs, and SNAPs and of intracellular vesicular trafficking.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Depatment of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
9
|
Dai YP, Bongalon S, Tian H, Parks SD, Mutafova-Yambolieva VN, Yamboliev IA. Upregulation of profilin, cofilin-2 and LIMK2 in cultured pulmonary artery smooth muscle cells and in pulmonary arteries of monocrotaline-treated rats. Vascul Pharmacol 2006; 44:275-82. [PMID: 16524786 DOI: 10.1016/j.vph.2005.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 11/01/2005] [Indexed: 01/20/2023]
Abstract
Pulmonary hypertension is associated with remodeling of the smooth muscle layer of pulmonary arteries, manifested by reduced smooth muscle cell (SMC) contractility and enhanced motility and growth. These responses are underlied by increased dynamics of the peripheral actin network. Thus, we hypothesized that pulmonary hypertension is associated with upregulation of two proteins that regulate the dynamics of peripheral actin filaments, i.e., profilin and cofilin. We also analyzed the expression of LIMK2, which regulates the actin remodeling capacity of cofilin by phosphorylation. Experimental inflammation was induced by incubation of cultured pulmonary artery SMCs (PASMCs) with inflammatory mediators in vitro, and by subcutaneous administration of monocrotaline to Sprague-Dawley rats in vivo. Expression of messenger RNA (mRNA) was assessed by quantitative RT-PCR, protein levels and phosphorylation were analyzed by immunoblotting. Immune and Masson trichrome stained lung cryosections were analyzed by microscopy. PDGF, IL-1beta, ET-1 and TNFalpha upregulated the profilin, cofilin-2 and LIMK2 mRNA in cultured pulmonary artery SMCs (PASMCs). Along with the development of rat pulmonary artery and right ventricular hypertrophy, monocrotaline treatment also induced the mRNA and protein contents of profilin, cofilin-2 and LIMK2 in PASMCs. The cofilin upregulation was paralleled by a relative decrease of the phospho-cofilin content. The upregulation of profilin, cofilin and LIMK2 in experimental inflammation suggests that by intensifying the remodeling of subcortical actin filaments these proteins may contribute to the enhanced invasiveness and growth of SMCs, and to the development of increased vascular resistance and pulmonary hypertension.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cofilin 2/biosynthesis
- Cofilin 2/genetics
- Disease Models, Animal
- Dogs
- Hyperplasia
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/pathology
- Inflammation Mediators/pharmacology
- Lim Kinases
- Monocrotaline/administration & dosage
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Profilins/biosynthesis
- Profilins/genetics
- Protein Kinases/biosynthesis
- Protein Kinases/genetics
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Tumor Necrosis Factor-alpha/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Yan-Ping Dai
- Department of Pharmacology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557-0270, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Mukhopadhyay S, Shah M, Patel K, Sehgal PB. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response. Toxicol Appl Pharmacol 2006; 211:209-20. [PMID: 16000202 DOI: 10.1016/j.taap.2005.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/27/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
The pyrrolizidine alkaloid monocrotaline (MCT) initiates pulmonary hypertension by inducing a "megalocytosis" phenotype in target pulmonary arterial endothelial, smooth muscle and Type II alveolar epithelial cells. In cultured endothelial cells, a single exposure to the pyrrolic derivative of monocrotaline (MCTP) results in large cells with enlarged endoplasmic reticulum (ER) and Golgi and increased vacuoles. However, these cells fail to enter mitosis. Largely based upon data from endothelial cells, we proposed earlier that a disruption of the trafficking and mitosis-sensor functions of the Golgi (the "Golgi blockade" hypothesis) may represent the subcellular mechanism leading to MCTP-induced megalocytosis. In the present study, we investigated the applicability of the Golgi blockade hypothesis to epithelial cells. MCTP induced marked megalocytosis in cultures of lung A549 and breast MCF-7 cells. This was associated with a change in the distribution of the cis-Golgi scaffolding protein GM130 from a discrete juxtanuclear localization to a circumnuclear distribution consistent with an anterograde block of GM130 trafficking to/through the Golgi. There was also a loss of plasma membrane caveolin-1 and E-cadherin, cortical actin together with a circumnuclear accumulation of clathrin heavy chain (CHC) and alpha-tubulin. Flotation analyses revealed losses/alterations in the association of caveolin-1, E-cadherin and CHC with raft microdomains. Moreover, megalocytosis was accompanied by an enhanced unfolded protein response (UPR) as evidenced by nuclear translocation of Ire1alpha and glucose regulated protein 58 (GRP58/ER-60/ERp57) and a circumnuclear accumulation of PERK kinase and protein disulfide isomerase (PDI). These data further support the hypothesis that an MCTP-induced Golgi blockade and enhanced UPR may represent the subcellular mechanism leading to enlargement of ER and Golgi and subsequent megalocytosis.
Collapse
Affiliation(s)
- Somshuvra Mukhopadhyay
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
11
|
Shah M, Patel K, Sehgal PB. Monocrotaline pyrrole-induced endothelial cell megalocytosis involves a Golgi blockade mechanism. Am J Physiol Cell Physiol 2004; 288:C850-62. [PMID: 15561761 DOI: 10.1152/ajpcell.00327.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyrrolizidine alkaloids initiate disease in the lung (pulmonary hypertension), liver (veno-occlusive disease and cirrhosis), and kidneys (afferent arteriolar block and mesangiolysis) by inducing a megalocytotic phenotype in target endothelial and parenchymal cells. A "hit-and-run" type of exposure to the bioactive pyrrolizidine results, within 2-3 days, in enlarged cells with large nuclei and enlarged Golgi and endoplasmic reticulum, while the cells remain in G2/M block. In the present study, we recapitulated monocrotaline pyrrole (MCTP)-induced megalocytosis in cultures of bovine pulmonary arterial endothelial cells (PAEC), human Hep3B hepatocytes, human type II-like alveolar epithelial cells (A549), and human pulmonary arterial smooth muscle cells (PASMC) and investigated the subcellular mechanism involved. There was an inverse relationship between reduction in caveolin (Cav)-1 levels and stimulation of promitogenic STAT3 and ERK1/2 cell signaling. In megalocytotic PAEC, the Golgi scaffolding protein GM130 was shifted from membranes with heavy density to those with a lighter density. This lighter Golgi fraction was enriched for hypo-oligomeric Cav-1, indicating dysfunctional trafficking of cargo. Immunofluorescence imaging studies confirmed the trapping of Cav-1 in a GM130-positive Golgi compartment. There was an increase in Ser25 phosphorylation of GM130 (typically a prelude to Golgi fragmentation and mitosis) and increased association between pGM130, cdc2 kinase, and Cav-1. Nevertheless, megalocytotic MCTP-treated cells showed reduced entry into mitosis upon stimulation with 2-methoxyestradiol (2-ME), reduced 2-ME-induced Golgi fragmentation, and a slowing of Golgi reassembly after nocodazole-induced fragmentation. These data suggest that a disruption of the trafficking and mitosis sensor functions of the Golgi may represent the subcellular mechanism leading to MCTP-induced megalocytosis ("the Golgi blockade hypothesis").
Collapse
Affiliation(s)
- Mehul Shah
- Dept. of Cell Biology and Anatomy, New York Medical College, 201 Basic Sciences Bldg., Valhalla, NY 10595, USA
| | | | | |
Collapse
|
12
|
Taylor DW, Lamé MW, Nakayama LS, Segall HJ, Wilson DW. Effects of monocrotaline pyrrole and thrombin on pulmonary endothelial cell junction and matrix adhesion proteins. Toxicology 2003; 184:227-40. [PMID: 12499124 DOI: 10.1016/s0300-483x(02)00582-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous work in our laboratory has shown that monocrotaline pyrrole (MCTP) interacts with actin and potentiates thrombin-mediated endothelial barrier permeability through increasing the overall surface area of intercellular gaps. To better characterize endothelial barrier leak in this model, we examined the effects of MCTP and thrombin on the localization and structure of three adhesion associated proteins that directly or indirectly interact with actin in regulating barrier function: cell-cell occludens junction molecule (ZO-1), the cell-cell adherens junction linker, ss-catenin, and the cell-matrix intermediary signaling protein, focal adhesion kinase (FAK). Immunohistochemistry demonstrated that thrombin treatment resulted in radial reorganization of focal adhesions and broader distribution of adherens and occludins junctions at the cell border suggestive of membrane stretching in contracture. MCTP pretreatment resulted in fewer and more disorganized focal adhesions and marked thinning of occludins and adherens junctions. MCTP pretreatment also interfered with thrombin stimulated junctional reorganization. Western blot analysis showed thrombin stimulated catalysis of ZO-1 and FAK while MCTP pretreatment resulted in FAK fragmentation similar to previous reports for apoptosis. We conclude that both MCTP and thrombin alter critical endothelial cell adhesion molecules and this may be an underlying mechanism for the potentiating effect MCTP has on thrombin induced vascular permeability in vitro.
Collapse
Affiliation(s)
- Debra W Taylor
- Department of Veterinary, University of California-Davis, 95616, USA
| | | | | | | | | |
Collapse
|
13
|
Lamé MW, Jones AD, Wilson DW, Dunston SK, Segall HJ. Protein targets of monocrotaline pyrrole in pulmonary artery endothelial cells. J Biol Chem 2000; 275:29091-9. [PMID: 10875930 DOI: 10.1074/jbc.m001372200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A single administration of monocrotaline to rats results in pathologic alterations in the lung and heart similar to human pulmonary hypertension. In order to produce these lesions, monocrotaline is oxidized to monocrotaline pyrrole in the liver followed by hematogenous transport to the lung where it injures pulmonary endothelium. In this study, we determined specific endothelial targets for (14)C-monocrotaline pyrrole using two-dimensional gel electrophoresis and autoradiographic detection of protein metabolite adducts. Selective labeling of specific proteins was observed. Labeled proteins were digested with trypsin, and the resulting peptides were analyzed using matrix-assisted laser desorption ionization mass spectrometry. The results were searched against sequence data bases to identify the adducted proteins. Five abundant adducted proteins were identified as galectin-1, protein-disulfide isomerase, probable protein-disulfide isomerase (ER60), beta- or gamma-cytoplasmic actin, and cytoskeletal tropomyosin (TM30-NM). With the exception of actin, the proteins identified in this study have never been identified as potential targets for pyrroles, and the majority of these proteins have either received no or minimal attention as targets for other electrophilic compounds. The known functions of these proteins are discussed in terms of their potential for explaining the pulmonary toxicity of monocrotaline.
Collapse
Affiliation(s)
- M W Lamé
- Department of Molecular Biosciences and the Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|