1
|
Yang J, Zhang S, Geng L, Zhao D, Xing S, Ji X, Yan L. Comparative genomics analysis of the reason for 12C 6+ heavy-ion irradiation in improving Fe 3O 4 nanoparticle yield of Acidithiobacillus ferrooxidans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117668. [PMID: 39799915 DOI: 10.1016/j.ecoenv.2025.117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
The Fe3O4 nanoparticle synthesized by Acidithiobacillus ferrooxidans have a broad practical value, while the low yield limits their commercial application. Herein, we employed a 12C6+ heavy-ion beam to induce mutagenesis of A. ferrooxidans BYM and successfully screened a mutant BYMT-200 with a 1.36 mg/L Fe3O4 nanoparticle yield, which could stably inherit over many generations based on assessing cell magnetism and Fe3O4 nanoparticle synthesis. Comparative genome analysis detected 14 mutation sites, causing six synonymous mutations, one missense mutation, and one nonsense mutation. We further annotated the genes involved in the mutation, such as hcp, hsdM, yghU, K7B00_11365, and K7B00_11355, which are responsible for the substantial changes in the Fe3O4 nanoparticle yield of A. ferrooxidans. Additionally, we performed a pan-genome analysis to understand how these genes regulate Fe3O4 nanoparticle synthesis. The core genome of 2376 orthologous clusters was identified and visualized by progressive Mauve alignment and OrthoVenn. A total of 109 regulatory genes related to iron metabolism were identified, mainly involved in electron transport, iron acquisition, iron storage, and oxidative stress. The mutant genes are closely related to iron-sulfur clusters and oxidative stress. Accordingly, we proposed a hypothetical mechanism for increasing Fe3O4 nanoparticle production in A. ferrooxidans BYMT-200 to withstand high oxidative stress caused by heavy ion radiation. Our study offers significant theoretical guidance for further acquiring the high-yield Fe3O4 nanoparticle-producing bacteria and studying the mechanism of its synthesis.
Collapse
Affiliation(s)
- Jiani Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Lirong Geng
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Siyu Xing
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xinyue Ji
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
2
|
Byrne A, Bissonnette N, Ollier S, Tahlan K. Investigating in vivo Mycobacterium avium subsp. paratuberculosis microevolution and mixed strain infections. Microbiol Spectr 2023; 11:e0171623. [PMID: 37584606 PMCID: PMC10581078 DOI: 10.1128/spectrum.01716-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's Disease (JD) in ruminants, which is responsible for significant economic loss to the global dairy industry. Mixed strain infection (MSI) refers to the concurrent infection of a susceptible host with genetically distinct strains of a pathogen, whereas within-host changes in an infecting strain leading to genetically distinguishable progeny is called microevolution. The two processes can influence host-pathogen dynamics, disease progression and outcomes, but not much is known about their prevalence and impact on JD. Therefore, we obtained up to 10 MAP isolates each from 14 high-shedding animals and subjected them to whole-genome sequencing. Twelve of the 14 animals examined showed evidence for the presence of MSIs and microevolution, while the genotypes of MAP isolates from the remaining two animals could be attributed solely to microevolution. All MAP isolates that were otherwise isogenic had differences in short sequence repeats (SSRs), of which SSR1 and SSR2 were the most diverse and homoplastic. Variations in SSR1 and SSR2, which are located in ORF1 and ORF2, respectively, affect the genetic reading frame, leading to protein products with altered sequences and computed structures. The ORF1 gene product is predicted to be a MAP surface protein with possible roles in host immune modulation, but nothing could be inferred regarding the function of ORF2. Both genes are conserved in Mycobacterium avium complex members, but SSR1-based modulation of ORF1 reading frames seems to only occur in MAP, which could have potential implications on the infectivity of this pathogen. IMPORTANCE Johne's disease (JD) is a major problem in dairy animals, and concerns have been raised regarding the association of Mycobacterium avium subsp. paratuberculosis (MAP) with Crohn's disease in humans. MAP is an extremely slow-growing bacterium with low genome evolutionary rates. Certain short sequence repeats (SSR1 and SSR2) in the MAP chromosome are highly variable and evolve at a faster rate than the rest of the chromosome. In the current study, multiple MAP isolates with genetic variations such as single-nucleotide polymorphisms, and more noticeably, diverse SSRs, could simultaneously infect animals. Variations in SSR1 and SSR2 affect the products of the respective genes containing them. Since multiple MAP isolates can infect the same animal and the possibility that the pathogen undergoes further changes within the host due to unstable SSRs, this could provide a compensative mechanism for an otherwise slow-evolving pathogen to increase phenotypic diversity for overcoming host responses.
Collapse
Affiliation(s)
- Alexander Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Séverine Ollier
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
3
|
Rubio A, Jimenez J, Pérez-Pulido AJ. Assessment of selection pressure exerted on genes from complete pangenomes helps to improve the accuracy in the prediction of new genes. Brief Bioinform 2022; 23:6519794. [PMID: 35108356 DOI: 10.1093/bib/bbac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Bacterial genomes are massively sequenced, and they provide valuable data to better know the complete set of genes of a species. The analysis of thousands of bacterial strains can identify both shared genes and those appearing only in the pathogenic ones. Current computational gene finders facilitate this task but often miss some existing genes. However, the present availability of different genomes from the same species is useful to estimate the selective pressure applied on genes of complete pangenomes. It may assist in evaluating gene predictions either by checking the certainty of a new gene or annotating it as a gene under positive selection. Here, we estimated the selective pressure of 19 271 genes that are part of the pangenome of the human opportunistic pathogen Acinetobacter baumannii and found that most genes in this bacterium are subject to negative selection. However, 23% of them showed values compatible with positive selection. These latter were mainly uncharacterized proteins or genes required to evade the host defence system including genes related to resistance and virulence whose changes may be favoured to acquire new functions. Finally, we evaluated the utility of measuring selection pressure in the detection of sequencing errors and the validation of gene prediction.
Collapse
Affiliation(s)
- Alejandro Rubio
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Juan Jimenez
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Antonio J Pérez-Pulido
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, Sevilla 41013, Spain
| |
Collapse
|
4
|
Rubio A, Pérez-Pulido AJ. Protein-Coding Genes of Helicobacter pylori Predominantly Present Purifying Selection though Many Membrane Proteins Suffer from Selection Pressure: A Proposal to Analyze Bacterial Pangenomes. Genes (Basel) 2021; 12:genes12030377. [PMID: 33800844 PMCID: PMC7998743 DOI: 10.3390/genes12030377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
The current availability of complete genome sequences has allowed knowing that bacterial genomes can bear genes not present in the genome of all the strains from a specific species. So, the genes shared by all the strains comprise the core of the species, but the pangenome can be much greater and usually includes genes appearing in one only strain. Once the pangenome of a species is estimated, other studies can be undertaken to generate new knowledge, such as the study of the evolutionary selection for protein-coding genes. Most of the genes of a pangenome are expected to be subject to purifying selection that assures the conservation of function, especially those in the core group. However, some genes can be subject to selection pressure, such as genes involved in virulence that need to escape to the host immune system, which is more common in the accessory group of the pangenome. We analyzed 180 strains of Helicobacter pylori, a bacterium that colonizes the gastric mucosa of half the world population and presents a low number of genes (around 1500 in a strain and 3000 in the pangenome). After the estimation of the pangenome, the evolutionary selection for each gene has been calculated, and we found that 85% of them are subject to purifying selection and the remaining genes present some grade of selection pressure. As expected, the latter group is enriched with genes encoding for membrane proteins putatively involved in interaction to host tissues. In addition, this group also presents a high number of uncharacterized genes and genes encoding for putative spurious proteins. It suggests that they could be false positives from the gene finders used for identifying them. All these results propose that this kind of analyses can be useful to validate gene predictions and functionally characterize proteins in complete genomes.
Collapse
|
5
|
Byrne AS, Goudreau A, Bissonnette N, Shamputa IC, Tahlan K. Methods for Detecting Mycobacterial Mixed Strain Infections-A Systematic Review. Front Genet 2020; 11:600692. [PMID: 33408740 PMCID: PMC7779811 DOI: 10.3389/fgene.2020.600692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Mixed strain infection (MSI) refers to the concurrent infection of a susceptible host with multiple strains of a single pathogenic species. Known to occur in humans and animals, MSIs deserve special consideration when studying transmission dynamics, evolution, and treatment of mycobacterial diseases, notably tuberculosis in humans and paratuberculosis (or Johne's disease) in ruminants. Therefore, a systematic review was conducted to examine how MSIs are defined in the literature, how widespread the phenomenon is across the host species spectrum, and to document common methods used to detect such infections. Our search strategy identified 121 articles reporting MSIs in both humans and animals, the majority (78.5%) of which involved members of the Mycobacterium tuberculosis complex, while only a few (21.5%) examined non-tuberculous mycobacteria (NTM). In addition, MSIs exist across various host species, but most reports focused on humans due to the extensive amount of work done on tuberculosis. We reviewed the strain typing methods that allowed for MSI detection and found a few that were commonly employed but were associated with specific challenges. Our review notes the need for standardization, as some highly discriminatory methods are not adapted to distinguish between microevolution of one strain and concurrent infection with multiple strains. Further research is also warranted to examine the prevalence of NTM MSIs in both humans and animals. In addition, it is envisioned that the accurate identification and a better understanding of the distribution of MSIs in the future will lead to important information on the epidemiology and pathophysiology of mycobacterial diseases.
Collapse
Affiliation(s)
| | - Alex Goudreau
- Science & Health Sciences Librarian, University of New Brunswick, Saint John, NB, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Isdore Chola Shamputa
- Department of Nursing & Health Sciences, University of New Brunswick, Saint John, NB, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
6
|
Chen B, Shi Z, Chen Q, Shen X, Shibata D, Wen H, Wu CI. Tumorigenesis as the Paradigm of Quasi-neutral Molecular Evolution. Mol Biol Evol 2020; 36:1430-1441. [PMID: 30912799 DOI: 10.1093/molbev/msz075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the absence of both positive and negative selections, coding sequences evolve at a neutral rate (R = 1). Such a high genomic rate is generally not achievable due to the prevalence of negative selection against codon substitutions. Remarkably, somatic evolution exhibits the seemingly neutral rate R ∼ 1 across normal and cancerous tissues. Nevertheless, R ∼ 1 may also mean that positive and negative selections are both strong, but equal in intensity. We refer to this regime as quasi-neutral. Indeed, individual genes in cancer cells often evolve at a much higher, or lower, rate than R ∼ 1. Here, we show that 1) quasi-neutrality is much more likely when populations are small (N < 50); 2) stem-cell populations in single normal tissue niches, from which tumors likely emerge, have a small N (usually <50) but selection at this stage is measurable and strong; 3) when N dips below 50, selection efficacy decreases precipitously; and 4) notably, N is smaller in the stem-cell niche of the small intestine than in the colon. Hence, the ∼70-fold higher rate of phenotypic evolution (observed as cancer risk) in the latter can be explained by the greater efficacy of selection, which then leads to the fixation of more advantageous and fewer deleterious mutations in colon cancers. In conclusion, quasi-neutral evolution sheds a new light on a general evolutionary principle that helps to explain aspects of cancer evolution.
Collapse
Affiliation(s)
- Bingjie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zongkun Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qingjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xu Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Ecology and Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
7
|
Chen Q, He Z, Lan A, Shen X, Wen H, Wu CI. Molecular Evolution in Large Steps-Codon Substitutions under Positive Selection. Mol Biol Evol 2020; 36:1862-1873. [PMID: 31077325 DOI: 10.1093/molbev/msz108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Molecular evolution is believed to proceed in small steps. The step size can be defined by a distance reflecting physico-chemical disparities between amino acid (AA) pairs that can be exchanged by single 1-bp mutations. We show that AA substitution rates are strongly and negatively correlated with this distance but only when positive selection is relatively weak. We use the McDonald and Kreitman test to separate the influences of positive and negative selection. While negative selection is indeed stronger on AA substitutions generating larger changes in chemical properties of AAs, positive selection operates by different rules. For 65 of the 75 possible pairs, positive selection is comparable in strength regardless of AA distance. However, the ten pairs under the strongest positive selection all exhibit large leaps in chemical properties. Five of the ten pairs are shared between Drosophila and Hominoids, thus hinting at a common but modest biochemical basis of adaptation across taxa. The hypothesis that adaptive changes often take large functional steps will need to be extensively tested. If validated, molecular models will need to better integrate positive and negative selection in the search for adaptive signal.
Collapse
Affiliation(s)
- Qingjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ao Lan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xu Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Ecology and Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
8
|
Quesada-Ganuza A, Antelo-Varela M, Mouritzen JC, Bartel J, Becher D, Gjermansen M, Hallin PF, Appel KF, Kilstrup M, Rasmussen MD, Nielsen AK. Identification and optimization of PrsA in Bacillus subtilis for improved yield of amylase. Microb Cell Fact 2019; 18:158. [PMID: 31530286 PMCID: PMC6749698 DOI: 10.1186/s12934-019-1203-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background PrsA is an extracytoplasmic folding catalyst essential in Bacillus subtilis. Overexpression of the native PrsA from B. subtilis has repeatedly lead to increased amylase yields. Nevertheless, little is known about how the overexpression of heterologous PrsAs can affect amylase secretion. Results In this study, the final yield of five extracellular alpha-amylases was increased by heterologous PrsA co-expression up to 2.5 fold. The effect of the overexpression of heterologous PrsAs on alpha-amylase secretion is specific to the co-expressed alpha-amylase. Co-expression of a heterologous PrsA can significantly reduce the secretion stress response. Engineering of the B. licheniformis PrsA lead to a further increase in amylase secretion and reduced secretion stress. Conclusions In this work we show how heterologous PrsA overexpression can give a better result on heterologous amylase secretion than the native PrsA, and that PrsA homologs show a variety of specificity towards different alpha-amylases. We also demonstrate that on top of increasing amylase yield, a good PrsA–amylase pairing can lower the secretion stress response of B. subtilis. Finally, we present a new recombinant PrsA variant with increased performance in both supporting amylase secretion and lowering secretion stress.
Collapse
Affiliation(s)
- Ane Quesada-Ganuza
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Minia Antelo-Varela
- Institute for Microbiology, Department of Microbial Proteomics, Ernst-Moritz-Arndt-University Greifswald, F.- Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Jeppe C Mouritzen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Jürgen Bartel
- Institute for Microbiology, Department of Microbial Proteomics, Ernst-Moritz-Arndt-University Greifswald, F.- Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Department of Microbial Proteomics, Ernst-Moritz-Arndt-University Greifswald, F.- Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Morten Gjermansen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Peter F Hallin
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Karen F Appel
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Mogens Kilstrup
- Technical University of Denmark, Søltofts Plads, Building 221, Room 204, 2800, Lyngby, Denmark
| | - Michael D Rasmussen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Allan K Nielsen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark.
| |
Collapse
|
9
|
Abstract
Microbial populations exchange genetic material through a process called homologous recombination. Although this process has been studied in particular organisms, we lack an understanding of its differential impact over the genome and across microbes with different life-styles. We used a common analytical framework to assess this process in a representative set of microorganisms. Our results uncovered important trends. First, microbes with different lifestyles are differentially impacted, with endosymbionts and obligate pathogens being those less prone to undergo this process. Second, certain genetic elements such as restriction-modification systems seem to be associated with higher rates of recombination. Most importantly, recombined genomes show the footprints of natural selection in which recombined regions preferentially contain genes that can be related to specific ecological adaptations. Taken together, our results clarify the relative contributions of factors modulating homologous recombination and show evidence for a clear a role of this process in shaping microbial genomes and driving ecological adaptations. Homologous recombination (HR) enables the exchange of genetic material between and within species. Recent studies suggest that this process plays a major role in the microevolution of microbial genomes, contributing to core genome homogenization and to the maintenance of cohesive population structures. However, we still have a very poor understanding of the possible adaptive roles of intraspecific HR and of the factors that determine its differential impact across clades and lifestyles. Here we used a unified methodological framework to assess HR in 338 complete genomes from 54 phylogenetically diverse and representative prokaryotic species, encompassing different lifestyles and a broad phylogenetic distribution. Our results indicate that lifestyle and presence of restriction-modification (RM) machineries are among the main factors shaping HR patterns, with symbionts and intracellular pathogens having the lowest HR levels. Similarly, the size of exchanged genomic fragments correlated with the presence of RM and competence machineries. Finally, genes exchanged by HR showed functional enrichments which could be related to adaptations to different environments and ecological strategies. Taken together, our results clarify the factors underlying HR impact and suggest important adaptive roles of genes exchanged through this mechanism. Our results also revealed that the extent of genetic exchange correlated with lifestyle and some genomic features. Moreover, the genes in exchanged regions were enriched for functions that reflected specific adaptations, supporting identification of HR as one of the main evolutionary mechanisms shaping prokaryotic core genomes.
Collapse
|
10
|
Santos LA, Adhikarla H, Yan X, Wang Z, Fouts DE, Vinetz JM, Alcantara LCJ, Hartskeerl RA, Goris MGA, Picardeau M, Reis MG, Townsend JP, Zhao H, Ko AI, Wunder EA. Genomic Comparison Among Global Isolates of L. interrogans Serovars Copenhageni and Icterohaemorrhagiae Identified Natural Genetic Variation Caused by an Indel. Front Cell Infect Microbiol 2018; 8:193. [PMID: 29971217 PMCID: PMC6018220 DOI: 10.3389/fcimb.2018.00193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/22/2018] [Indexed: 12/30/2022] Open
Abstract
Leptospirosis is a worldwide zoonosis, responsible for more than 1 million cases and 60,000 deaths every year. Among the 13 pathogenic species of the genus Leptospira, serovars belonging to L. interrogans serogroup Icterohaemorrhagiae are considered to be the most virulent strains, and responsible for majority of the reported severe cases. Serovars Copenhageni and Icterohaemorrhagiae are major representatives of this serogroup and despite their public health relevance, little is known regarding the genetic differences between these two serovars. In this study, we analyzed the genome sequences of 67 isolates belonging to L. interrogans serovars Copenhageni and Icterohaemorrhagiae to investigate the influence of spatial and temporal variations on DNA sequence diversity. Out of the 1072 SNPs identified, 276 were in non-coding regions and 796 in coding regions. Indel analyses identified 258 indels, out of which 191 were found in coding regions and 67 in non-coding regions. Our phylogenetic analyses based on SNP dataset revealed that both serovars are closely related but showed distinct spatial clustering. However, likelihood ratio test of the indel data statistically confirmed the presence of a frameshift mutation within a homopolymeric tract of lic12008 gene (related to LPS biosynthesis) in all the L. interrogans serovar Icterohaemorrhagiae strains but not in the Copenhageni strains. Therefore, this internal indel identified can genetically distinguish L. interrogans serovar Copenhageni from serovar Icterohaemorrhagiae with high discriminatory power. To our knowledge, this is the first study to identify global sequence variations (SNPs and Indels) in L. interrogans serovars Copenhageni and Icterohaemorrhagiae.
Collapse
Affiliation(s)
- Luciane A Santos
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| | - Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Xiting Yan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | | | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States
| | | | - Rudy A Hartskeerl
- Royal Tropical Institute, KIT Biomedical Research, Amsterdam, Netherlands
| | - Marga G A Goris
- Royal Tropical Institute, KIT Biomedical Research, Amsterdam, Netherlands
| | | | | | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| |
Collapse
|
11
|
Dong HJ, Cho S, Boxrud D, Rankin S, Downe F, Lovchik J, Gibson J, Erdman M, Saeed AM. Single-nucleotide polymorphism typing analysis for molecular subtyping of Salmonella Tennessee isolates associated with the 2007 nationwide peanut butter outbreak in the United States. Gut Pathog 2017; 9:25. [PMID: 28469710 PMCID: PMC5412032 DOI: 10.1186/s13099-017-0176-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/21/2017] [Indexed: 11/18/2022] Open
Abstract
Background In 2007, a nationwide Salmonella Tennessee outbreak occurred via contaminated peanut butter. Here, we developed a single-nucleotide polymorphism (SNP)-typing method for S. Tennessee to determine the clonal subtypes of S. Tennessee that were associated with the peanut butter outbreak. Methods and results One seventy-six S. Tennessee isolates from various sources, including humans, animals, food, and the environment, were analyzed by using the SNP technique. Eighty-four representative SNP markers were selected by comparing the sequences of three representative S. Tennessee strains with different multi-locus sequence typing and variable number tandem repeats from our collection. The set of eighty-four SNP markers showed 100% typeability for the 176 strains, with the nucleotide diversity ranging from 0.011 to 0.107 (mean = 0.049 ± 0.018, median = 0.044) for each marker. Among the four clades and nine subtypes generated by the SNP typing, subtype 1, which comprised 142 S. Tennessee strains, was the most predominant. The dominance of single-strain clones in subtype 1 revealed that S. Tennessee is highly clonal regardless of outbreak-association, source, or period of isolation, suggesting the presence of an S. Tennessee strain prototype. Notably, a minimum 18 SNP set was able to determine clonal S. Tennessee strains with similar discrimination power, potentially allowing more rapid and economic strain genotyping for both outbreaks and sporadic cases. Conclusions The SNP-typing method described here might aid the investigation of the epidemiology and microevolution of pathogenic bacteria by discriminating between outbreak-related and sporadic clinical cases. In addition, this approach enables us to understand the population structure of the bacterial subtypes involved in the outbreak. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0176-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hee-Jin Dong
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826 South Korea
| | - Seongbeom Cho
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826 South Korea
| | - David Boxrud
- Minnesota Department of Health, St Paul, MN 55164 USA
| | - Shelly Rankin
- Department of Microbiology, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348 USA
| | - Francis Downe
- Michigan Department of Health, Lansing, MI 48909 USA
| | - Judith Lovchik
- Indiana State Department of Health, Indianapolis, IN 46204 USA
| | - Jim Gibson
- Tennessee Department of Health, Nashville, TN 37247 USA
| | - Matt Erdman
- NVSL USDA, National Veterinary, Services Laboratories, a unit within the U.S. Department of Agriculture, Riverdale, MD 20737 USA
| | - A Mahdi Saeed
- Departments of Large Animal Clinical Sciences and Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
12
|
Whole Genome Comparison of Thermus sp. NMX2.A1 Reveals Principle Carbon Metabolism Differences with Closest Relation Thermus scotoductus SA-01. G3-GENES GENOMES GENETICS 2016; 6:2791-7. [PMID: 27412985 PMCID: PMC5015936 DOI: 10.1534/g3.116.032953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genome sequencing of the yellow-pigmented, thermophilic bacterium Thermus sp. NMX2.A1 resulted in a 2.29 Mb draft genome that encodes for 2312 proteins. The genetic relationship between various strains from the genus Thermus was assessed based on phylogenomic analyses using a concatenated set of conserved proteins. The resulting phylogenetic tree illustrated that Thermus sp. NMX2 A.1 clusters together with Thermus scotoductus SA-01, despite being isolated from vastly different geographical locations. The close evolutionary relationship and metabolic parallels between the two strains has previously been recognized; however, neither strain’s genome data were available at that point in time. Genomic comparison of the Thermus sp. NMX2.A1 and T. scotoductus SA-01, as well as other closely related Thermus strains, revealed a high degree of synteny at both the genomic and proteomic level, with processes such as denitrification and natural cell competence appearing to be conserved. However, despite this high level of similarity, analysis revealed a complete, putative Calvin–Benson–Bassham (CBB) cycle in NMX2.A1 that is absent in SA-01. Analysis of horizontally transferred gene islands provide evidence that NMX2 selected these genes due to pressure from its HCO3- rich environment, which is in stark contrast to that of the deep subsurface isolated SA-01.
Collapse
|
13
|
Differential Functional Constraints Cause Strain-Level Endemism in Polynucleobacter Populations. mSystems 2016; 1:mSystems00003-16. [PMID: 27822527 PMCID: PMC5069759 DOI: 10.1128/msystems.00003-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
Understanding the biological factors influencing habitat-wide genetic endemism is important for explaining observed biogeographic patterns. Polynucleobacter is a genus of bacteria that seems to have found a way to colonize myriad freshwater ecosystems and by doing so has become one of the most abundant bacteria in these environments. We sequenced metagenomes from locations across the Chicago River system and assembled Polynucleobacter genomes from different sites and compared how the nucleotide composition, gene codon usage, and the ratio of synonymous (codes for the same amino acid) to nonsynonymous (codes for a different amino acid) mutations varied across these population genomes at each site. The environmental pressures at each site drove purifying selection for functional traits that maintained a streamlined core genome across the Chicago River Polynucleobacter population while allowing for site-specific genomic adaptation. These adaptations enable Polynucleobacter to become dominant across different riverine environmental gradients. The adaptation of bacterial lineages to local environmental conditions creates the potential for broader genotypic diversity within a species, which can enable a species to dominate across ecological gradients because of niche flexibility. The genus Polynucleobacter maintains both free-living and symbiotic ecotypes and maintains an apparently ubiquitous distribution in freshwater ecosystems. Subspecies-level resolution supplemented with metagenome-derived genotype analysis revealed that differential functional constraints, not geographic distance, produce and maintain strain-level genetic conservation in Polynucleobacter populations across three geographically proximal riverine environments. Genes associated with cofactor biosynthesis and one-carbon metabolism showed habitat specificity, and protein-coding genes of unknown function and membrane transport proteins were under positive selection across each habitat. Characterized by different median ratios of nonsynonymous to synonymous evolutionary changes (dN/dS ratios) and a limited but statistically significant negative correlation between the dN/dS ratio and codon usage bias between habitats, the free-living and core genotypes were observed to be evolving under strong purifying selection pressure. Highlighting the potential role of genetic adaptation to the local environment, the two-component system protein-coding genes were highly stable (dN/dS ratio, < 0.03). These results suggest that despite the impact of the habitat on genetic diversity, and hence niche partition, strong environmental selection pressure maintains a conserved core genome for Polynucleobacter populations. IMPORTANCE Understanding the biological factors influencing habitat-wide genetic endemism is important for explaining observed biogeographic patterns. Polynucleobacter is a genus of bacteria that seems to have found a way to colonize myriad freshwater ecosystems and by doing so has become one of the most abundant bacteria in these environments. We sequenced metagenomes from locations across the Chicago River system and assembled Polynucleobacter genomes from different sites and compared how the nucleotide composition, gene codon usage, and the ratio of synonymous (codes for the same amino acid) to nonsynonymous (codes for a different amino acid) mutations varied across these population genomes at each site. The environmental pressures at each site drove purifying selection for functional traits that maintained a streamlined core genome across the Chicago River Polynucleobacter population while allowing for site-specific genomic adaptation. These adaptations enable Polynucleobacter to become dominant across different riverine environmental gradients.
Collapse
|
14
|
Toll-Riera M, San Millan A, Wagner A, MacLean RC. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa. PLoS Genet 2016; 12:e1006005. [PMID: 27149698 PMCID: PMC4858143 DOI: 10.1371/journal.pgen.1006005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/04/2016] [Indexed: 11/29/2022] Open
Abstract
Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs.
Collapse
Affiliation(s)
- Macarena Toll-Riera
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - R. Craig MacLean
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Song Y, Sun Z, Guo C, Wu Y, Liu W, Yu J, Menghe B, Yang R, Zhang H. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods. Sci Rep 2016; 6:22704. [PMID: 26940047 PMCID: PMC4778129 DOI: 10.1038/srep22704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/18/2016] [Indexed: 11/30/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2–CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1–L6, with various homologous recombination rates. Although L2–L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation.
Collapse
Affiliation(s)
- Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Chenyi Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| |
Collapse
|
16
|
Simón M, Montiel R, Smerling A, Solórzano E, Díaz N, Álvarez-Sandoval BA, Jiménez-Marín AR, Malgosa A. Molecular analysis of ancient caries. Proc Biol Sci 2015; 281:rspb.2014.0586. [PMID: 25056622 DOI: 10.1098/rspb.2014.0586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An 84 base pair sequence of the Streptococcus mutans virulence factor, known as dextranase, has been obtained from 10 individuals from the Bronze Age to the Modern Era in Europe and from before and after the colonization in America. Modern samples show four polymorphic sites that have not been found in the ancient samples studied so far. The nucleotide and haplotype diversity of this region have increased over time, which could be reflecting the footprint of a population expansion. While this segment has apparently evolved according to neutral evolution, we have been able to detect one site that is under positive selection pressure both in present and past populations. This study is a first step to study the evolution of this microorganism, analysed using direct evidence obtained from ancient remains.
Collapse
Affiliation(s)
- Marc Simón
- Unitat d'Antropologia Biològica, Department of Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, CINVESTAV-IPN. Km. 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Andrea Smerling
- Unitat d'Antropologia Biològica, Department of Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| | - Eduvigis Solórzano
- Unitat d'Antropologia Biològica, Department of Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| | - Nancy Díaz
- Unitat d'Antropologia Biològica, Department of Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| | - Brenda A Álvarez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, CINVESTAV-IPN. Km. 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Andrea R Jiménez-Marín
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, CINVESTAV-IPN. Km. 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Assumpció Malgosa
- Unitat d'Antropologia Biològica, Department of Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
17
|
Lo Y, Zhang L, Foxman B, Zöllner S. Whole-genome sequencing of uropathogenic Escherichia coli reveals long evolutionary history of diversity and virulence. INFECTION GENETICS AND EVOLUTION 2015; 34:244-50. [PMID: 26112070 DOI: 10.1016/j.meegid.2015.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/17/2015] [Accepted: 06/20/2015] [Indexed: 01/07/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are phenotypically and genotypically very diverse. This diversity makes it challenging to understand the evolution of UPEC adaptations responsible for causing urinary tract infections (UTI). To gain insight into the relationship between evolutionary divergence and adaptive paths to uropathogenicity, we sequenced at deep coverage (190×) the genomes of 19 E. coli strains from urinary tract infection patients from the same geographic area. Our sample consisted of 14 UPEC isolates and 5 non-UTI-causing (commensal) rectal E. coli isolates. After identifying strain variants using de novo assembly-based methods, we clustered the strains based on pairwise sequence differences using a neighbor-joining algorithm. We examined evolutionary signals on the whole-genome phylogeny and contrasted these signals with those found on gene trees constructed based on specific uropathogenic virulence factors. The whole-genome phylogeny showed that the divergence between UPEC and commensal E. coli strains without known UPEC virulence factors happened over 32 million generations ago. Pairwise diversity between any two strains was also high, suggesting multiple genetic origins of uropathogenic strains in a small geographic region. Contrasting the whole-genome phylogeny with three gene trees constructed from common uropathogenic virulence factors, we detected no selective advantage of these virulence genes over other genomic regions. These results suggest that UPEC acquired uropathogenicity long time ago and used it opportunistically to cause extraintestinal infections.
Collapse
Affiliation(s)
- Yancy Lo
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Betsy Foxman
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sebastian Zöllner
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Murolo S, Romanazzi G. In-vineyard population structure of 'Candidatus Phytoplasma solani' using multilocus sequence typing analysis. INFECTION GENETICS AND EVOLUTION 2015; 31:221-30. [PMID: 25660034 DOI: 10.1016/j.meegid.2015.01.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/28/2022]
Abstract
'Candidatus Phytoplasma solani' is a phytoplasma of the stolbur group (16SrXII subgroup A) that is associated with 'Bois noir' and causes heavy damage to the quality and quantity of grapevine yields in several European countries, and particularly in the Mediterranean area. Analysis of 'Ca. P. solani' genetic diversity was carried out for strains infecting a cv. 'Chardonnay' vineyard, through multilocus sequence typing analysis for the vmp1, stamp and secY genes. Several types per gene were detected: seven out of 20 types for vmp1, six out of 17 for stamp, and four out of 16 for secY. High correlations were seen among the vmp1, stamp and secY typing with the tuf typing. However, no correlations were seen among the tuf and vmp1 types and the Bois noir severity in the surveyed grapevines. Grouping the 'Ca. P. solani' sequences on the basis of their origins (i.e., study vineyard, Italian regions, Euro-Mediterranean countries), dN/dS ratio analysis revealed overall positive selection for stamp (3.99, P=0.019) and vmp1 (2.28, P=0.001). For secY, the dN/dS ratio was 1.02 (P=0.841), showing neutral selection across this gene. Using analysis of the nucleotide sequencing by a Bayesian approach, we determined the population structure of 'Ca. P. solani', which appears to be structured in 3, 5 and 6 subpopulations, according to the secY, stamp and vmp1 genes, respectively. The high genetic diversity of 'Ca. P. solani' from a single vineyard reflects the population structure across wider geographical scales. This information is useful to trace inoculum source and movement of pathogen strains at the local level and over long distances.
Collapse
Affiliation(s)
- Sergio Murolo
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy.
| |
Collapse
|
19
|
Puigbò P, Lobkovsky AE, Kristensen DM, Wolf YI, Koonin EV. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biol 2014; 12:66. [PMID: 25141959 PMCID: PMC4166000 DOI: 10.1186/s12915-014-0066-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/31/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Genomes of bacteria and archaea (collectively, prokaryotes) appear to exist in incessant flux, expanding via horizontal gene transfer and gene duplication, and contracting via gene loss. However, the actual rates of genome dynamics and relative contributions of different types of event across the diversity of prokaryotes are largely unknown, as are the sizes of microbial supergenomes, i.e. pools of genes that are accessible to the given microbial species. RESULTS We performed a comprehensive analysis of the genome dynamics in 35 groups (34 bacterial and one archaeal) of closely related microbial genomes using a phylogenetic birth-and-death maximum likelihood model to quantify the rates of gene family gain and loss, as well as expansion and reduction. The results show that loss of gene families dominates the evolution of prokaryotes, occurring at approximately three times the rate of gain. The rates of gene family expansion and reduction are typically seven and twenty times less than the gain and loss rates, respectively. Thus, the prevailing mode of evolution in bacteria and archaea is genome contraction, which is partially compensated by the gain of new gene families via horizontal gene transfer. However, the rates of gene family gain, loss, expansion and reduction vary within wide ranges, with the most stable genomes showing rates about 25 times lower than the most dynamic genomes. For many groups, the supergenome estimated from the fraction of repetitive gene family gains includes about tenfold more gene families than the typical genome in the group although some groups appear to have vast, 'open' supergenomes. CONCLUSIONS Reconstruction of evolution for groups of closely related bacteria and archaea reveals an extremely rapid and highly variable flux of genes in evolving microbial genomes, demonstrates that extensive gene loss and horizontal gene transfer leading to innovation are the two dominant evolutionary processes, and yields robust estimates of the supergenome size.
Collapse
|
20
|
López-Pérez M, Martin-Cuadrado AB, Rodriguez-Valera F. Homologous recombination is involved in the diversity of replacement flexible genomic islands in aquatic prokaryotes. Front Genet 2014; 5:147. [PMID: 24904647 PMCID: PMC4033161 DOI: 10.3389/fgene.2014.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/06/2014] [Indexed: 01/22/2023] Open
Abstract
Different strains of the same prokaryotic species, even very similar ones, vary in large regions of their genomes. This flexible genome represents a huge reservoir of diversity that allows prokaryotes to exploit their environment efficiently. Most of the flexible genome is concentrated in genomic islands, some of which are present in all the strains and coding for similar functions but containing different genes. These replacement genomic islands are typically involved in exposed cellular structures, and their diversity has been connected to their recognition as targets by prokaryotic viruses (phages). We have compared genomes of closely related aquatic microbes from different origins and found examples of recent replacement of some of these flexible genomic islands. In all cases, that include Gram positive and negative bacteria and one archaeon, the replaced regions boundaries contain tell-tale peaks of increased, mostly synonymous, nucleotide substitutions. They tended to be sharper at the boundary closest to the origin of replication of the island. We will present the hypothesis that replacement flexible genomic islands are often exchanged by homologous recombination between different clonal frames. These recombination events are possibly selected due to the immediate reward provided by a change in the phage sensitivity spectrum.
Collapse
Affiliation(s)
- Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández Alicante, Spain
| | | |
Collapse
|
21
|
Coupling between protein level selection and codon usage optimization in the evolution of bacteria and archaea. mBio 2014; 5:e00956-14. [PMID: 24667707 PMCID: PMC3977353 DOI: 10.1128/mbio.00956-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The relationship between the selection affecting codon usage and selection on protein sequences of orthologous genes in diverse groups of bacteria and archaea was examined by using the Alignable Tight Genome Clusters database of prokaryote genomes. The codon usage bias is generally low, with 57.5% of the gene-specific optimal codon frequencies (Fopt) being below 0.55. This apparent weak selection on codon usage contrasts with the strong purifying selection on amino acid sequences, with 65.8% of the gene-specific dN/dS ratios being below 0.1. For most of the genomes compared, a limited but statistically significant negative correlation between Fopt and dN/dS was observed, which is indicative of a link between selection on protein sequence and selection on codon usage. The strength of the coupling between the protein level selection and codon usage bias showed a strong positive correlation with the genomic GC content. Combined with previous observations on the selection for GC-rich codons in bacteria and archaea with GC-rich genomes, these findings suggest that selection for translational fine-tuning could be an important factor in microbial evolution that drives the evolution of genome GC content away from mutational equilibrium. This type of selection is particularly pronounced in slowly evolving, “high-status” genes. A significantly stronger link between the two aspects of selection is observed in free-living bacteria than in parasitic bacteria and in genes encoding metabolic enzymes and transporters than in informational genes. These differences might reflect the special importance of translational fine-tuning for the adaptability of gene expression to environmental changes. The results of this work establish the coupling between protein level selection and selection for translational optimization as a distinct and potentially important factor in microbial evolution. Selection affects the evolution of microbial genomes at many levels, including both the structure of proteins and the regulation of their production. Here we demonstrate the coupling between the selection on protein sequences and the optimization of codon usage in a broad range of bacteria and archaea. The strength of this coupling varies over a wide range and strongly and positively correlates with the genomic GC content. The cause(s) of the evolution of high GC content is a long-standing open question, given the universal mutational bias toward AT. We propose that optimization of codon usage could be one of the key factors that determine the evolution of GC-rich genomes. This work establishes the coupling between selection at the level of protein sequence and at the level of codon choice optimization as a distinct aspect of genome evolution.
Collapse
|
22
|
Cancer evolution is associated with pervasive positive selection on globally expressed genes. PLoS Genet 2014; 10:e1004239. [PMID: 24603726 PMCID: PMC3945297 DOI: 10.1371/journal.pgen.1004239] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/29/2014] [Indexed: 12/22/2022] Open
Abstract
Cancer is an evolutionary process in which cells acquire new transformative, proliferative and metastatic capabilities. A full understanding of cancer requires learning the dynamics of the cancer evolutionary process. We present here a large-scale analysis of the dynamics of this evolutionary process within tumors, with a focus on breast cancer. We show that the cancer evolutionary process differs greatly from organismal (germline) evolution. Organismal evolution is dominated by purifying selection (that removes mutations that are harmful to fitness). In contrast, in the cancer evolutionary process the dominance of purifying selection is much reduced, allowing for a much easier detection of the signals of positive selection (adaptation). We further show that, as a group, genes that are globally expressed across human tissues show a very strong signal of positive selection within tumors. Indeed, known cancer genes are enriched for global expression patterns. Yet, positive selection is prevalent even on globally expressed genes that have not yet been associated with cancer, suggesting that globally expressed genes are enriched for yet undiscovered cancer related functions. We find that the increased positive selection on globally expressed genes within tumors is not due to their expression in the tissue relevant to the cancer. Rather, such increased adaptation is likely due to globally expressed genes being enriched in important housekeeping and essential functions. Thus, our results suggest that tumor adaptation is most often mediated through somatic changes to those genes that are important for the most basic cellular functions. Together, our analysis reveals the uniqueness of the cancer evolutionary process and the particular importance of globally expressed genes in driving cancer initiation and progression.
Collapse
|
23
|
Molecular typing of Coxiella burnetii (Q fever). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 984:381-96. [PMID: 22711642 DOI: 10.1007/978-94-007-4315-1_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Although we live in the age of genomics and the availability of complete genome sequences of Coxiella burnetii has increased our understanding of the genomic diversity of the agent, it is still somewhat a "query" microorganism. The epidemiology of Q fever is complex due to the worldwide distribution, reservoir and vector diversity, and a lack of studies defining the dynamic interaction between these factors. In addition Coxiella is an agent that could be used as a bioterror weapon. Therefore, typing methods that can discriminate strains and be used to trace back infections to their source are of paramount importance. In this chapter we provide an overview of historical and current typing methods and describe their advantages and limitations. Recently developed techniques such as MLVA and SNP typing have shown promise and improved the discrimination capacity and utility of genotyping methods for molecular epidemiologic studies of this challenging pathogen.
Collapse
|
24
|
Joseph SJ, Didelot X, Rothschild J, de Vries HJC, Morré SA, Read TD, Dean D. Population genomics of Chlamydia trachomatis: insights on drift, selection, recombination, and population structure. Mol Biol Evol 2012; 29:3933-46. [PMID: 22891032 DOI: 10.1093/molbev/mss198] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The large number of sexually transmitted diseases and ocular trachoma cases that are caused globally each year by Chlamydia trachomatis has made this organism a World Health Organization priority for vaccine development. However, there is no gene transfer system for Chlamydia to help identify potential vaccine targets. To accelerate discoveries toward this goal, here we analyzed the broadest diversity of C. trachomatis genomes to date, including 25 geographically dispersed clinical and seven reference strains representing 14 of the 19 known serotypes. Strikingly, all 32 genomes were found to have evidence of DNA acquisition by homologous recombination in their history. Four distinct clades were identified, which correspond to all C. trachomatis disease phenotypes: lymphogranuloma venereum (LGV; Clade 1); noninvasive urogenital infections (Clade 2); ocular trachoma (Clade 3); and protocolitis (Clade 4; also includes some noninvasive urogenital infections). Although the ancestral relationship between clades varied, most strains acted as donor and recipient of recombination with no evidence for barriers to genetic exchange. The niche-specific LGV and trachoma clades have undergone less recombination, although the opportunity for mixing with strains from other clades that infect the rectal and ocular mucosa, respectively, is evident. Furthermore, there are numerous occasions for gene conversion events through sequential infections at the same anatomic sites. The size of recombinant segments is relatively small (~357 bp) compared with in vitro experiments of various C. trachomatis strains but is consistent with in vitro estimates for other bacterial species including Escherichia coli and Helicobacter pylori. Selection has also played a crucial role during the diversification of the organism. Clade 2 had the lowest nonsynonymous to synonymous ratio (dN/dS) but the highest effect of recombination, which is consistent with the widespread occurrence of synonymous substitutions in recombined genomic segments. The trachoma Clade 3 had the highest dN/dS estimates, which may be caused by an increased effect of genetic drift from niche specialization and a reduced effective population size. The degree of drift, selection, and recombination in C. trachomatis suggests that the challenge will remain to identify genomic regions that are stable and cross protective for the development of an efficacious vaccine.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Peters AE, Bavishi A, Cho H, Choudhary M. Evolutionary constraints and expression analysis of gene duplications in Rhodobacter sphaeroides 2.4.1. BMC Res Notes 2012; 5:192. [PMID: 22533893 PMCID: PMC3494609 DOI: 10.1186/1756-0500-5-192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 04/05/2012] [Indexed: 01/07/2023] Open
Abstract
Background Gene duplication is a major force that contributes to the evolution of new metabolic functions in all organisms. Rhodobacter sphaeroides 2.4.1 is a bacterium that displays a wide degree of metabolic versatility and genome complexity and therefore is a fitting model for the study of gene duplications in bacteria. A comprehensive analysis of 234 duplicate gene-pairs in R. sphaeroides was performed using structural constraint and expression analysis. Results The results revealed that most gene-pairs in in-paralogs are maintained under negative selection (ω ≤ 0.3), but the strength of selection differed among in-paralog gene-pairs. Although in-paralogs located on different replicons are maintained under purifying selection, the duplicated genes distributed between the primary chromosome (CI) and the second chromosome (CII) are relatively less selectively constrained than the gene-pairs located within each chromosome. The mRNA expression patterns of duplicate gene-pairs were examined through microarray analysis of this organism grown under seven different growth conditions. Results revealed that ~62% of paralogs have similar expression patterns (cosine ≥ 0.90) over all of these growth conditions, while only ~7% of paralogs are very different in their expression patterns (cosine < 0.50). Conclusions The overall findings of the study suggest that only a small proportion of paralogs contribute to the metabolic diversity and the evolution of novel metabolic functions in R. sphaeroides. In addition, the lack of relationships between structural constraints and gene-pair expression suggests that patterns of gene-pair expression are likely associated with conservation or divergence of gene-pair promoter regions and other coregulation mechanisms.
Collapse
Affiliation(s)
- Anne E Peters
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | | | | | | |
Collapse
|
26
|
Thurlow LR, Joshi GS, Richardson AR. Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). ACTA ACUST UNITED AC 2012; 65:5-22. [PMID: 22309135 DOI: 10.1111/j.1574-695x.2012.00937.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 11/28/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious threat to worldwide health. Historically, MRSA clones have strictly been associated with hospital settings, and most hospital-associated MRSA (HA-MRSA) disease resulted from a limited number of virulent clones. Recently, MRSA has spread into the community causing disease in otherwise healthy people with no discernible contact with healthcare environments. These community-associated MRSA clones (CA-MRSA) are phylogenetically distinct from traditional HA-MRSA clones, and CA-MRSA strains seem to exhibit hypervirulence and more efficient host : host transmission. Consequently, CA-MRSA clones belonging to the USA300 lineage have become dominant sources of MRSA infections in North America. The rise of this successful USA300 lineage represents an important step in the evolution of emerging pathogens and a great deal of effort has been exerted to understand how these clones evolved. Here, we review much of the recent literature aimed at illuminating the source of USA300 success and broadly categorize these findings into three main categories: newly acquired virulence genes, altered expression of common virulence determinants and alterations in protein sequence that increase fitness. We argue that none of these evolutionary events alone account for the success of USA300, but rather their combination may be responsible for the rise and spread of CA-MRSA.
Collapse
Affiliation(s)
- Lance R Thurlow
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
27
|
Gonzaga A, Martin-Cuadrado AB, López-Pérez M, Megumi Mizuno C, García-Heredia I, Kimes NE, Lopez-García P, Moreira D, Ussery D, Zaballos M, Ghai R, Rodriguez-Valera F. Polyclonality of concurrent natural populations of Alteromonas macleodii. Genome Biol Evol 2012; 4:1360-74. [PMID: 23212172 PMCID: PMC3542563 DOI: 10.1093/gbe/evs112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 01/28/2023] Open
Abstract
We have analyzed a natural population of the marine bacterium, Alteromonas macleodii, from a single sample of seawater to evaluate the genomic diversity present. We performed full genome sequencing of four isolates and 161 metagenomic fosmid clones, all of which were assigned to A. macleodii by sequence similarity. Out of the four strain genomes, A. macleodii deep ecotype (AltDE1) represented a different genome, whereas AltDE2 and AltDE3 were identical to the previously described AltDE. Although the core genome (~80%) had an average nucleotide identity of 98.51%, both AltDE and AltDE1 contained flexible genomic islands (fGIs), that is, genomic islands present in both genomes in the same genomic context but having different gene content. Some of the fGIs encode cell surface receptors known to be phage recognition targets, such as the O-chain of the lipopolysaccharide, whereas others have genes involved in physiological traits (e.g., nutrient transport, degradation, and metal resistance) denoting microniche specialization. The presence in metagenomic fosmids of genomic fragments differing from the sequenced strain genomes, together with the presence of new fGIs, indicates that there are at least two more A. macleodii clones present. The availability of three or more sequences overlapping the same genomic region also allowed us to estimate the frequency and distribution of recombination events among these different clones, indicating that these clustered near the genomic islands. The results indicate that this natural A. macleodii population has multiple clones with a potential for different phage susceptibility and exploitation of resources, within a seemingly unstructured habitat.
Collapse
Affiliation(s)
- Aitor Gonzaga
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Carolina Megumi Mizuno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Inmaculada García-Heredia
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Nikole E. Kimes
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | | | - David Moreira
- Unité d’Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Orsay, France
| | - David Ussery
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
- Present address: Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Mila Zaballos
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Rohit Ghai
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | | |
Collapse
|
28
|
Genetic diversity of the human pathogen Vibrio vulnificus: a new phylogroup. Int J Food Microbiol 2011; 153:436-43. [PMID: 22227412 DOI: 10.1016/j.ijfoodmicro.2011.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/01/2011] [Accepted: 12/07/2011] [Indexed: 11/21/2022]
Abstract
The biotype 3 group of the human pathogen Vibrio vulnificus emerged in Israel probably as a result of genome hybridization of two bacterial populations. We performed a genomic and phylogenetic study of V. vulnificus strains isolated from the environmental niche from which this group emerged - fish aquaculture in Israel. The genetic relationships and evolutionary aspects of 188 environmental and clinical isolates of the bacterium were studied by genomic typing. Genetic relations were determined based on variation at 12 variable number tandem repeat (VNTR, also termed SSR) loci. Analysis revealed a new cluster, in addition to the main groups of biotype 1& 2 and biotype 3. Similar grouping results were obtained with three different statistical approaches. Isolates forming this new cluster presented unclear biochemical profile nevertheless were not identified as biotype 1 or biotype 3. Further examination of representative strains by multilocus sequence typing (MLST) of 10 housekeeping genes and 5 conserved hypothetical genes supported the identification of this as yet undiscovered phylogroup (phenotypically diverse), termed clade A herein. This new clonal subgroup includes environmental as well as clinical isolates. The results highlight the fish aquaculture environment, and possibly man-made ecological niches as a whole, as a source for the emergence of new pathogenic strains.
Collapse
|
29
|
Peralta H, Guerrero G, Aguilar A, Mora J. Sequence variability of Rhizobiales orthologs and relationship with physico-chemical characteristics of proteins. Biol Direct 2011; 6:48. [PMID: 21970442 PMCID: PMC3198989 DOI: 10.1186/1745-6150-6-48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 10/04/2011] [Indexed: 12/03/2022] Open
Abstract
Background Chromosomal orthologs can reveal the shared ancestral gene set and their evolutionary trends. Additionally, physico-chemical properties of encoded proteins could provide information about functional adaptation and ecological niche requirements. Results We analyzed 7080 genes (five groups of 1416 orthologs each) from Rhizobiales species (S. meliloti, R. etli, and M. loti, plant symbionts; A. tumefaciens, a plant pathogen; and B. melitensis, an animal pathogen). We evaluated their phylogenetic relationships and observed three main topologies. The first, with closer association of R. etli to A. tumefaciens; the second with R. etli closer to S. meliloti; and the third with A. tumefaciens and S. meliloti as the closest pair. This was not unusual, given the close relatedness of these three species. We calculated the synonymous (dS) and nonsynonymous (dN) substitution rates of these orthologs, and found that informational and metabolic functions showed relatively low dN rates; in contrast, genes from hypothetical functions and cellular processes showed high dN rates. An alternative measure of sequence variability, percentage of changes by species, was used to evaluate the most specific proportion of amino acid residues from alignments. When dN was compared with that measure a high correlation was obtained, revealing that much of evolutive information was extracted with the percentage of changes by species at the amino acid level. By analyzing the sequence variability of orthologs with a set of five properties (polarity, electrostatic charge, formation of secondary structures, molecular volume, and amino acid composition), we found that physico-chemical characteristics of proteins correlated with specific functional roles, and association of species did not follow their typical phylogeny, probably reflecting more adaptation to their life styles and niche preferences. In addition, orthologs with low dN rates had residues with more positive values of polarity, volume and electrostatic charge. Conclusions These findings revealed that even when orthologs perform the same function in each genomic background, their sequences reveal important evolutionary tendencies and differences related to adaptation. This article was reviewed by: Dr. Purificación López-García, Prof. Jeffrey Townsend (nominated by Dr. J. Peter Gogarten), and Ms. Olga Kamneva.
Collapse
Affiliation(s)
- Humberto Peralta
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo, postal 565-A, Cuernavaca, Morelos, México
| | | | | | | |
Collapse
|
30
|
Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery. J Ind Microbiol Biotechnol 2011; 38:1747-60. [PMID: 21826462 DOI: 10.1007/s10295-011-1022-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
Abstract
Mycobacterium tuberculosis encodes mycobactin, a peptide siderophore that is biosynthesized by a nonribosomal peptide synthetase (NRPS) mechanism. Within the mycobactin biosynthetic gene cluster is a gene that encodes a 71-amino-acid protein MbtH. Many other NRPS gene clusters harbor mbtH homologs, and recent genetic, biochemical, and structural studies have begun to shed light on the function(s) of these proteins. In some cases, MbtH-like proteins are required for biosynthesis of their cognate peptides, and non-cognate MbtH-like proteins have been shown to be partially complementary. Biochemical studies revealed that certain MbtH-like proteins participate in tight binding to NRPS proteins containing adenylation (A) domains where they stimulate adenylation reactions. Expression of MbtH-like proteins is important for a number of applications, including optimal production of native and genetically engineered secondary metabolites produced by mechanisms that employ NRPS enzymes. They also may serve as beacons to identify gifted actinomycetes and possibly other bacteria that encode multiple functional NRPS pathways for discovery of novel secondary metabolites by genome mining.
Collapse
|
31
|
Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, Lucas S, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Land M, Hauser L, Woyke T, Mikhailova N, Ivanova N, Daligault H, Bruce D, Detter C, Tapia R, Han C, Teshima H, Mocali S, Bazzicalupo M, Biondi EG. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti. BMC Genomics 2011; 12:235. [PMID: 21569405 PMCID: PMC3164228 DOI: 10.1186/1471-2164-12-235] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/12/2011] [Indexed: 11/26/2022] Open
Abstract
Background Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains. Results With sizes of 7.14 Mbp and 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains. Conclusions In conclusions, the extended comparative genomics approach revealed a variable subset of genes and regulons that may contribute to the symbiotic diversity.
Collapse
Affiliation(s)
- Marco Galardini
- Department of Evolutionary Biology, University of Firenze, via Romana 17, I-50125 Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stewart FJ, Sharma AK, Bryant JA, Eppley JM, DeLong EF. Community transcriptomics reveals universal patterns of protein sequence conservation in natural microbial communities. Genome Biol 2011; 12:R26. [PMID: 21426537 PMCID: PMC3129676 DOI: 10.1186/gb-2011-12-3-r26] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/28/2011] [Accepted: 03/22/2011] [Indexed: 12/02/2022] Open
Abstract
Background Combined metagenomic and metatranscriptomic datasets make it possible to study the molecular evolution of diverse microbial species recovered from their native habitats. The link between gene expression level and sequence conservation was examined using shotgun pyrosequencing of microbial community DNA and RNA from diverse marine environments, and from forest soil. Results Across all samples, expressed genes with transcripts in the RNA sample were significantly more conserved than non-expressed gene sets relative to best matches in reference databases. This discrepancy, observed for many diverse individual genomes and across entire communities, coincided with a shift in amino acid usage between these gene fractions. Expressed genes trended toward GC-enriched amino acids, consistent with a hypothesis of higher levels of functional constraint in this gene pool. Highly expressed genes were significantly more likely to fall within an orthologous gene set shared between closely related taxa (core genes). However, non-core genes, when expressed above the level of detection, were, on average, significantly more highly expressed than core genes based on transcript abundance normalized to gene abundance. Finally, expressed genes showed broad similarities in function across samples, being relatively enriched in genes of energy metabolism and underrepresented by genes of cell growth. Conclusions These patterns support the hypothesis, predicated on studies of model organisms, that gene expression level is a primary correlate of evolutionary rate across diverse microbial taxa from natural environments. Despite their complexity, meta-omic datasets can reveal broad evolutionary patterns across taxonomically, functionally, and environmentally diverse communities.
Collapse
Affiliation(s)
- Frank J Stewart
- School of Biology, Georgia Institute of Technology, Ford ES&T Building, Rm 1242, 311 Ferst Drive, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Siew N, Fischer D. Unravelling the ORFan Puzzle. Comp Funct Genomics 2010; 4:432-41. [PMID: 18629076 PMCID: PMC2447361 DOI: 10.1002/cfg.311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 06/05/2003] [Accepted: 06/05/2003] [Indexed: 12/27/2022] Open
Abstract
ORFans are open reading frames (ORFs) with no detectable sequence similarity
to any other sequence in the databases. Each newly sequenced genome contains a
significant number of ORFans. Therefore, ORFans entail interesting evolutionary
puzzles. However, little can be learned about them using bioinformatics tools, and
their study seems to have been underemphasized. Here we present some of the
questions that the existence of so many ORFans have raised and review some of
the studies aimed at understanding ORFans, their functions and their origins. These
works have demonstrated that ORFans are an untapped source of research, requiring
further computational and experimental studies.
Collapse
Affiliation(s)
- Naomi Siew
- Department of Chemistry, Ben Gurion University, Beer-Sheva 84105, Israel
| | | |
Collapse
|
35
|
Peña A, Teeling H, Huerta-Cepas J, Santos F, Yarza P, Brito-Echeverría J, Lucio M, Schmitt-Kopplin P, Meseguer I, Schenowitz C, Dossat C, Barbe V, Dopazo J, Rosselló-Mora R, Schüler M, Glöckner FO, Amann R, Gabaldón T, Antón J. Fine-scale evolution: genomic, phenotypic and ecological differentiation in two coexisting Salinibacter ruber strains. ISME JOURNAL 2010; 4:882-95. [PMID: 20164864 DOI: 10.1038/ismej.2010.6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomic and metagenomic data indicate a high degree of genomic variation within microbial populations, although the ecological and evolutive meaning of this microdiversity remains unknown. Microevolution analyses, including genomic and experimental approaches, are so far very scarce for non-pathogenic bacteria. In this study, we compare the genomes, metabolomes and selected ecological traits of the strains M8 and M31 of the hyperhalophilic bacterium Salinibacter ruber that contain ribosomal RNA (rRNA) gene and intergenic regions that are identical in sequence and were simultaneously isolated from a Mediterranean solar saltern. Comparative analyses indicate that S. ruber genomes present a mosaic structure with conserved and hypervariable regions (HVRs). The HVRs or genomic islands, are enriched in transposases, genes related to surface properties, strain-specific genes and highly divergent orthologous. However, the many indels outside the HVRs indicate that genome plasticity extends beyond them. Overall, 10% of the genes encoded in the M8 genome are absent from M31 and could stem from recent acquisitions. S. ruber genomes also harbor 34 genes located outside HVRs that are transcribed during standard growth and probably derive from lateral gene transfers with Archaea preceding the M8/M31 divergence. Metabolomic analyses, phage susceptibility and competition experiments indicate that these genomic differences cannot be considered neutral from an ecological perspective. The results point to the avoidance of competition by micro-niche adaptation and response to viral predation as putative major forces that drive microevolution within these Salinibacter strains. In addition, this work highlights the extent of bacterial functional diversity and environmental adaptation, beyond the resolution of the 16S rRNA and internal transcribed spacers regions.
Collapse
Affiliation(s)
- Arantxa Peña
- Departamento de Fisiología, Genética y Microbiología, and IMEM, Universidad de Alicante, Apartado 99, Alicante, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vermette CJ, Russell AH, Desai AR, Hill JE. Resolution of phenotypically distinct strains of Enterococcus spp. in a complex microbial community using cpn60 universal target sequencing. MICROBIAL ECOLOGY 2010; 59:14-24. [PMID: 19844647 DOI: 10.1007/s00248-009-9601-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
Characterization of complex microbial communities is frequently based on the examination of polymerase chain reaction amplified sequences from a single phylogenetic marker, usually the 16S rRNA gene. However, this commonly used target often does not offer robust resolution of species or sub-species and is thus not a sufficiently informative target for understanding microbial population dynamics occurring at the strain level. We have used the cpn60 universal target sequence to characterize Enterococcus isolates from feces of growing pigs and have shown that sub-species groups, not detected using 16S rRNA sequences, can be resolved. Furthermore, groups resolved by cpn60-based phylogenetic analysis have distinct phenotypes. We report changes in the structure and function of Enterococcus communities in pig feces sampled from individual animals at three times, from suckling through to maturity. Enterococcus faecalis was largely replaced by Enterococcus hirae between suckling and 9 weeks of age, and a shift from one sub-species group of E. hirae to another was observed in all animals between 9 and 15 weeks. Conversely, E. faecalis strains remained consistent throughout the study period. Our results demonstrate that cpn60 sequences can be used to detect strain level changes in Enterococcus populations during succession in the fecal microbiota of growing pigs.
Collapse
Affiliation(s)
- Catherine J Vermette
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
37
|
Dunn KA, Bielawski JP, Ward TJ, Urquhart C, Gu H. Reconciling ecological and genomic divergence among lineages of listeria under an "extended mosaic genome concept". Mol Biol Evol 2009; 26:2605-15. [PMID: 19666992 DOI: 10.1093/molbev/msp176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There is growing evidence for a discontinuity between genomic and ecological divergence in several groups of bacteria. This evidence is difficult to reconcile with the traditional concept that ecologically divergent species maintain a cohesive gene pool isolated from other gene pools by barriers to homologous recombination (HR). There have been several innovative models of bacterial divergence that permit such discontinuity; we refer to these, collectively, as "mosaic genome concepts" (MGCs). These concepts remain a point of contention. Here, we undertake an investigation among ecologically divergent lineages of genus Listeria, and report our assessment of both niche-specific selection pressure and HR in their core genome. We find evidence of a mosaic Listeria core genome. Some core genes appear to have been free to recombine across ecologically divergent lineages or across named species. In contrast, other core genes have histories consistent with the expected organism relationships and have evolved under niche-specific selective pressures. The products of some of those genes can even be linked to metabolic phenotypes with ecological significance. This finding indicates a potentially strong connection between ecological divergence and core-genome evolution, even among lineages that also experience frequent recombination. Based on these findings, we propose an expanded role for natural selection in core-genome evolution under the MGC.
Collapse
Affiliation(s)
- Katherine A Dunn
- Department of Biology, Dalhousie University, Halifax Nova Scotia, Canada.
| | | | | | | | | |
Collapse
|
38
|
Farfán M, Miñana-Galbis D, Fusté MC, Lorén JG. Divergent evolution and purifying selection of the flaA gene sequences in Aeromonas. Biol Direct 2009; 4:23. [PMID: 19622168 PMCID: PMC2724415 DOI: 10.1186/1745-6150-4-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/21/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bacterial flagellum is the most important organelle of motility in bacteria and plays a key role in many bacterial lifestyles, including virulence. The flagellum also provides a paradigm of how hierarchical gene regulation, intricate protein-protein interactions and controlled protein secretion can result in the assembly of a complex multi-protein structure tightly orchestrated in time and space. As if to stress its importance, plants and animals produce receptors specifically dedicated to the recognition of flagella. Aside from motility, the flagellum also moonlights as an adhesion and has been adapted by humans as a tool for peptide display. Flagellar sequence variation constitutes a marker with widespread potential uses for studies of population genetics and phylogeny of bacterial species. RESULTS We sequenced the complete flagellin gene (flaA) in 18 different species and subspecies of Aeromonas. Sequences ranged in size from 870 (A. allosaccharophila) to 921 nucleotides (A. popoffii). The multiple alignment displayed 924 sites, 66 of which presented alignment gaps. The phylogenetic tree revealed the existence of two groups of species exhibiting different FlaA flagellins (FlaA1 and FlaA2). Maximum likelihood models of codon substitution were used to analyze flaA sequences. Likelihood ratio tests suggested a low variation in selective pressure among lineages, with an omega ratio of less than 1 indicating the presence of purifying selection in almost all cases. Only one site under potential diversifying selection was identified (isoleucine in position 179). However, 17 amino acid positions were inferred as sites that are likely to be under positive selection using the branch-site model. Ancestral reconstruction revealed that these 17 amino acids were among the amino acid changes detected in the ancestral sequence. CONCLUSION The models applied to our set of sequences allowed us to determine the possible evolutionary pathway followed by the flaA gene in Aeromonas, suggesting that this gene have probably been evolving independently in the two groups of Aeromonas species since the divergence of a distant common ancestor after one or several episodes of positive selection. REVIEWERS This article was reviewed by Alexey Kondrashov, John Logsdon and Olivier Tenaillon (nominated by Laurence D Hurst).
Collapse
Affiliation(s)
- Maribel Farfán
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
39
|
Abstract
Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Abstract
Evolutionary pressures on proteins are often quantified by the ratio of substitution rates at non-synonymous and synonymous sites. The dN/dS ratio was originally developed for application to distantly diverged sequences, the differences among which represent substitutions that have fixed along independent lineages. Nevertheless, the dN/dS measure is often applied to sequences sampled from a single population, the differences among which represent segregating polymorphisms. Here, we study the expected dN/dS ratio for samples drawn from a single population under selection, and we find that in this context, dN/dS is relatively insensitive to the selection coefficient. Moreover, the hallmark signature of positive selection over divergent lineages, dN/dS>1, is violated within a population. For population samples, the relationship between selection and dN/dS does not follow a monotonic function, and so it may be impossible to infer selection pressures from dN/dS. These results have significant implications for the interpretation of dN/dS measurements among population-genetic samples.
Collapse
Affiliation(s)
- Sergey Kryazhimskiy
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joshua B. Plotkin
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Program in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J Bacteriol 2008; 191:65-73. [PMID: 18978059 DOI: 10.1128/jb.01237-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to explore microevolutionary trends in bacteria and archaea, we constructed a data set of 41 alignable tight genome clusters (ATGCs). We show that the ratio of the medians of nonsynonymous to synonymous substitution rates (dN/dS) that is used as a measure of the purifying selection pressure on protein sequences is a stable characteristic of the ATGCs. In agreement with previous findings, parasitic bacteria, notwithstanding the sometimes dramatic genome shrinkage caused by gene loss, are typically subjected to relatively weak purifying selection, presumably owing to relatively small effective population sizes and frequent bottlenecks. However, no evidence of genome streamlining caused by strong selective pressure was found in any of the ATGCs. On the contrary, a significant positive correlation between the genome size, as well as gene size, and selective pressure was observed, although a variety of free-living prokaryotes with very close selective pressures span nearly the entire range of genome sizes. In addition, we examined the connections between the sequence evolution rate and other genomic features. Although gene order changes much faster than protein sequences during the evolution of prokaryotes, a strong positive correlation was observed between the "rearrangement distance" and the amino acid distance, suggesting that at least some of the events leading to genome rearrangement are subjected to the same type of selective constraints as the evolution of amino acid sequences.
Collapse
|
42
|
Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 2008; 36:6688-719. [PMID: 18948295 PMCID: PMC2588523 DOI: 10.1093/nar/gkn668] [Citation(s) in RCA: 474] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
43
|
Application of physical and genetic map of Rhizobium leguminosarum bv. trifolii TA1 to comparison of three closely related rhizobial genomes. Mol Genet Genomics 2007; 279:107-21. [DOI: 10.1007/s00438-007-0299-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
|
44
|
Balbi KJ, Feil EJ. The rise and fall of deleterious mutation. Res Microbiol 2007; 158:779-86. [PMID: 17988836 DOI: 10.1016/j.resmic.2007.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/20/2007] [Accepted: 09/20/2007] [Indexed: 11/30/2022]
Abstract
It is well established that selection is less efficient in small populations than in large ones. Here we review the impact of this effect by considering the gradual selective purging of deleterious mutation over time. We outline an approach to explore the dynamics of this process, and highlight its profound implications.
Collapse
Affiliation(s)
- Kevin J Balbi
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | |
Collapse
|
45
|
Renier A, Vivien E, Cociancich S, Letourmy P, Perrier X, Rott PC, Royer M. Substrate specificity-conferring regions of the nonribosomal peptide synthetase adenylation domains involved in albicidin pathotoxin biosynthesis are highly conserved within the species Xanthomonas albilineans. Appl Environ Microbiol 2007; 73:5523-30. [PMID: 17630307 PMCID: PMC2042071 DOI: 10.1128/aem.00577-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Albicidin is a pathotoxin produced by Xanthomonas albilineans, a xylem-invading pathogen that causes leaf scald disease of sugarcane. Albicidin is synthesized by a nonribosomal pathway via modular polyketide synthase and nonribosomal peptide synthetase (NRPS) megasynthases, and NRPS adenylation (A) domains are responsible for the recognition and activation of specific amino acid substrates. DNA fragments (0.5 kb) encoding the regions responsible for the substrate specificities of six albicidin NRPS A domains from 16 strains of X. albilineans representing the known diversity of this pathogen were amplified and sequenced. Polymorphism analysis of these DNA fragments at different levels (DNA, protein, and NRPS signature) showed that these pathogenicity loci were highly conserved. The conservation of these loci most likely reflects purifying selective pressure, as revealed by a comparison with the variability of nucleotide and amino acid sequences of two housekeeping genes (atpD and efp) of X. albilineans. Nevertheless, the 16 strains of X. albilineans were differentiated into several groups by a phylogenetic analysis of the nucleotide sequences corresponding to the NRPS A domains. One of these groups was representative of the genetic diversity previously found within the pathogen by random fragment length polymorphism and amplified fragment length polymorphism analyses. This group, which differed by three single synonymous nucleotide mutations, contained only four strains of X. albilineans that were all involved in outbreaks of sugarcane leaf scald. The amount of albicidin produced in vitro in agar and liquid media varied among the 16 strains of X. albilineans. However, no relationship among the amount of albicidin produced in vitro and the pathotypes and genetic diversity of the pathogen was found. The NRPS loci contributing to the synthesis of the primary structure of albicidin apparently are not involved in the observed pathogenicity differences among strains of X. albilineans.
Collapse
Affiliation(s)
- Adeline Renier
- UMR CIRAD-INRA-Montpellier SupAgro Biologie et Génétique des Interactions Plante-Parasite, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Blanc G, Ogata H, Robert C, Audic S, Suhre K, Vestris G, Claverie JM, Raoult D. Reductive genome evolution from the mother of Rickettsia. PLoS Genet 2007; 3:e14. [PMID: 17238289 PMCID: PMC1779305 DOI: 10.1371/journal.pgen.0030014] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 12/08/2006] [Indexed: 11/30/2022] Open
Abstract
The Rickettsia genus is a group of obligate intracellular α-proteobacteria representing a paradigm of reductive evolution. Here, we investigate the evolutionary processes that shaped the genomes of the genus. The reconstruction of ancestral genomes indicates that their last common ancestor contained more genes, but already possessed most traits associated with cellular parasitism. The differences in gene repertoires across modern Rickettsia are mainly the result of differential gene losses from the ancestor. We demonstrate using computer simulation that the propensity of loss was variable across genes during this process. We also analyzed the ratio of nonsynonymous to synonymous changes (Ka/Ks) calculated as an average over large sets of genes to assay the strength of selection acting on the genomes of Rickettsia, Anaplasmataceae, and free-living γ-proteobacteria. As a general trend, Ka/Ks were found to decrease with increasing divergence between genomes. The high Ka/Ks for closely related genomes are probably due to a lag in the removal of slightly deleterious nonsynonymous mutations by natural selection. Interestingly, we also observed a decrease of the rate of gene loss with increasing divergence, suggesting a similar lag in the removal of slightly deleterious pseudogene alleles. For larger divergence (Ks > 0.2), Ka/Ks converge toward similar values indicating that the levels of selection are roughly equivalent between intracellular α-proteobacteria and their free-living relatives. This contrasts with the view that obligate endocellular microorganisms tend to evolve faster as a consequence of reduced effectiveness of selection, and suggests a major role of enhanced background mutation rates on the fast protein divergence in the obligate intracellular α-proteobacteria. Genome downsizing and fast sequence divergence are frequently observed in bacteria living exclusively within the cells of higher eukaryotes. However, the driving forces and contributions of these processes to the genome diversity of the microorganisms remain poorly understood. The genus Rickettsia, a group of small obligate intracellular pathogens of humans, provides a fascinating model to study the genome downsizing process. In this article, we used seven Rickettsia genomes to reconstruct the genome of their ancestor and inferred the origin and fate of the genes found in today's species. We identify the process of gene loss as the main cause of genome diversification within the genus and show that the rate of gene loss, sequence divergence, and genome rearrangements are highly variable across the various Rickettsia lineages. This heterogeneity likely reflects the intricate effects of specialization to distinct arthropod hosts and critical alterations of the gene repertoire, such as the losses of DNA repair genes and the amplification of mobile genes. In contrast, we did not find evidence for the role of reduced population sizes on the long-term acceleration of sequence evolution. Overall, the data presented in this article shed new light on the fundamental evolutionary processes that drive the evolution of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Guillaume Blanc
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
- * To whom correspondence should be addressed. E-mail: (GB), (DR)
| | - Hiroyuki Ogata
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | | | - Stéphane Audic
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Karsten Suhre
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Guy Vestris
- Unité des Rickettsies, Faculté de Médecine, Marseille, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Didier Raoult
- Unité des Rickettsies, Faculté de Médecine, Marseille, France
- * To whom correspondence should be addressed. E-mail: (GB), (DR)
| |
Collapse
|
47
|
Comas I, Moya A, González-Candelas F. Phylogenetic signal and functional categories in Proteobacteria genomes. BMC Evol Biol 2007; 7 Suppl 1:S7. [PMID: 17288580 PMCID: PMC1796616 DOI: 10.1186/1471-2148-7-s1-s7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A comprehensive evolutionary analysis of bacterial genomes implies to identify the hallmark of vertical and non-vertical signals and to discriminate them from the presence of mere phylogenetic noise. In this report we have addressed the impact of factors like the universal distribution of the genes, their essentiality or their functional role in the cell on the inference of vertical signal through phylogenomic methods. RESULTS We have established that supermatrices derived from data sets composed mainly by genes suspected to be essential for bacterial cellular life perform better on the recovery of vertical signal than those composed by widely distributed genes. In addition, we show that the "Transcription" category of genes seems to harbor a better vertical signal than other functional categories. Moreover, the "Poorly characterized" category performs better than other categories related with metabolism or cellular processes. CONCLUSION From these results we conclude that different data sets allow addressing different questions in phylogenomic analyses. The vertical signal seems to be more present in essential genes although these also include a significant degree of incongruence. From a functional perspective, as expected, informational genes perform better than operational ones but we have also shown the surprising behavior of poorly annotated genes, which points to their importance in the genome evolution of bacteria.
Collapse
Affiliation(s)
- Iñaki Comas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva. Universidad de Valencia. Apartado Oficial 22085, Valencia E-46071, Spain
| | - Andrés Moya
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva. Universidad de Valencia. Apartado Oficial 22085, Valencia E-46071, Spain
| | - Fernando González-Candelas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva. Universidad de Valencia. Apartado Oficial 22085, Valencia E-46071, Spain
| |
Collapse
|
48
|
Bragonzi A, Wiehlmann L, Klockgether J, Cramer N, Worlitzsch D, Döring G, Tümmler B. Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. MICROBIOLOGY-SGM 2007; 152:3261-3269. [PMID: 17074897 DOI: 10.1099/mic.0.29175-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mucA gene of the muc operon, which is instrumental in the control of the biosynthesis of the exopolysaccharide alginate, is a hotspot of mutation in Pseudomonas aeruginosa, a micro-organism that chronically colonizes the airways of individuals with cystic fibrosis (CF). The mucA, mucB and mucD genes were sequenced in nine environmental isolates from aquatic habitats, and in 37 P. aeruginosa strains isolated from 10 patients with CF, at onset or at a late stage of chronic airway colonization, in order to elucidate whether there was any association between mutation and background genotype. The 61 identified single nucleotide polymorphisms (SNPs) segregated into 18 mucABD genotypes. Acquired and de novo stop mucA mutations were present in 14 isolates (38 %) of five mucABD genotypes. DeltaG430 was the most frequent and recurrent mucA mutation detected in four genotypes. The classification of strains by mucABD genotype was generally concordant with that by genome-wide SpeI fragment pattern or multilocus SNP genotypes. The exceptions point to intragenic mosaicism and interclonal recombination as major forces for intraclonal evolution at the mucABD locus.
Collapse
Affiliation(s)
- Alessandra Bragonzi
- Institute for Experimental Treatment of Cystic Fibrosis, DIBIT - HS Raffaele, Milano, Italy
- Institute of Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Lutz Wiehlmann
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Jens Klockgether
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Nina Cramer
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Dieter Worlitzsch
- Institute of Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Gerd Döring
- Institute of Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Burkhard Tümmler
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
49
|
Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 2006; 103:15611-6. [PMID: 17030793 PMCID: PMC1622870 DOI: 10.1073/pnas.0607117103] [Citation(s) in RCA: 965] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.
Collapse
Affiliation(s)
- K. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - A. Slesarev
- Fidelity Systems Inc., 7961 Cessna Avenue, Gaithersburg, MD 20879
| | - Y. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - A. Sorokin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - B. Mirkin
- School of Information Systems and Computer Science, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - E. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
- To whom correspondence may be addressed. E-mail:
, , , or
| | - A. Pavlov
- Fidelity Systems Inc., 7961 Cessna Avenue, Gaithersburg, MD 20879
| | - N. Pavlova
- Fidelity Systems Inc., 7961 Cessna Avenue, Gaithersburg, MD 20879
| | - V. Karamychev
- Fidelity Systems Inc., 7961 Cessna Avenue, Gaithersburg, MD 20879
| | - N. Polouchine
- Fidelity Systems Inc., 7961 Cessna Avenue, Gaithersburg, MD 20879
| | - V. Shakhova
- Fidelity Systems Inc., 7961 Cessna Avenue, Gaithersburg, MD 20879
| | - I. Grigoriev
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598
| | - Y. Lou
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598
| | - D. Rohksar
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598
| | - S. Lucas
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598
| | - K. Huang
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598
| | - D. M. Goodstein
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598
| | - T. Hawkins
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598
| | - V. Plengvidhya
- Department of Food Science, North Carolina State University, Raleigh, NC 27695
- North Carolina Agricultural Research Service, U.S. Department of Agriculture, Raleigh, NC 27695; Departments of
| | | | | | - Y. Goh
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68583
| | - A. Benson
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68583
| | - K. Baldwin
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108
| | - J.-H. Lee
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108
| | - I. Díaz-Muñiz
- Department of Food Science, University of Wisconsin, Madison, WI 53706
| | - B. Dosti
- Department of Food Science, University of Wisconsin, Madison, WI 53706
| | - V. Smeianov
- Department of Food Science, University of Wisconsin, Madison, WI 53706
| | - W. Wechter
- Department of Food Science, University of Wisconsin, Madison, WI 53706
| | - R. Barabote
- Department of Biology, University of California at San Diego, La Jolla, CA 92093
| | - G. Lorca
- Department of Biology, University of California at San Diego, La Jolla, CA 92093
| | - E. Altermann
- Department of Food Science, North Carolina State University, Raleigh, NC 27695
| | - R. Barrangou
- Department of Food Science, North Carolina State University, Raleigh, NC 27695
| | - B. Ganesan
- Center for Integrated BioSystems, Utah State University, Logan, UT 84322
| | - Y. Xie
- Nutrition and Food Science and
- Center for Integrated BioSystems, Utah State University, Logan, UT 84322
| | - H. Rawsthorne
- Department of Viticulture and Enology, University of California, Davis, CA 95616; and
| | | | | | - F. Breidt
- Department of Food Science, North Carolina State University, Raleigh, NC 27695
- North Carolina Agricultural Research Service, U.S. Department of Agriculture, Raleigh, NC 27695; Departments of
| | | | - R. Hutkins
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68583
| | - D. O'Sullivan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108
| | - J. Steele
- Department of Food Science, University of Wisconsin, Madison, WI 53706
| | - G. Unlu
- Department of Food Science and Toxicology, University of Idaho, Moscow, ID 83844
| | - M. Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093
| | - T. Klaenhammer
- Department of Food Science, North Carolina State University, Raleigh, NC 27695
- To whom correspondence may be addressed. E-mail:
, , , or
| | - P. Richardson
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598
| | - S. Kozyavkin
- Fidelity Systems Inc., 7961 Cessna Avenue, Gaithersburg, MD 20879
| | - B. Weimer
- Nutrition and Food Science and
- Center for Integrated BioSystems, Utah State University, Logan, UT 84322
- To whom correspondence may be addressed. E-mail:
, , , or
| | - D. Mills
- Department of Viticulture and Enology, University of California, Davis, CA 95616; and
- To whom correspondence may be addressed. E-mail:
, , , or
| |
Collapse
|
50
|
Kilian M, Frandsen EVG, Haubek D, Poulsen K. The etiology of periodontal disease revisited by population genetic analysis. Periodontol 2000 2006; 42:158-79. [PMID: 16930310 DOI: 10.1111/j.1600-0757.2006.00159.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mogens Kilian
- Department of Bacteriology, Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|