1
|
Wu CC, Chen MS, Lee TY, Cheng YJ, Tsou HH, Huang TS, Cho DY, Chen JY. Screening and identification of emodin as an EBV DNase inhibitor to prevent its biological functions. Virol J 2023; 20:148. [PMID: 37443068 PMCID: PMC10339607 DOI: 10.1186/s12985-023-02107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The Epstein-Barr virus (EBV) is a prevalent oncovirus associated with a variety of human illnesses. BGLF5, an EBV DNase with alkaline nuclease (AN) activity, plays important roles in the viral life cycle and progression of human malignancies and has been suggested as a possible diagnostic marker and target for cancer therapy. Methods used conventionally for the detection of AN activity, radioactivity-based nuclease activity assay and DNA digestion detection by gel electrophoresis, are not suitable for screening AN inhibitors; the former approach is unsafe, and the latter is complicated. In the present study, a fluorescence-based nuclease activity assay was used to screen several natural compounds and identify an EBV DNase inhibitor. RESULTS Fluorescence-based nuclease activity assays, in which the DNA substrate is labelled with PicoGreen dye, are cheaper, safer, and easier to perform. Herein, the results of the fluorescence-based nuclease activity assay were consistent with the results of the two conventional methods. In addition, the PicoGreen-labelling method was applied for the biochemical characterisation of viral nucleases. Using this approach, we explored EBV DNase inhibitors. After several rounds of screening, emodin, an anthraquinone derivative, was found to possess significant anti-EBV DNase activity. We verified the efficacy of emodin using the conventional DNA-cleavage assay. Furthermore, using comet assay and micronucleus formation detection, we confirmed that emodin can inhibit DNase-induced DNA damage and genomic instability. Additionally, emodin treatment inhibited EBV production. CONCLUSIONS Using a PicoGreen-mediated nuclease activity assay, we successfully demonstrated that emodin has the potential to inhibit EBV DNase nuclease activity. Emodin also inhibits EBV DNase-related biological functions, suggesting that it is a potential inhibitor of EBV DNase.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan.
| | - Mei-Shu Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan
| | - Ting-Ying Lee
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiao-Hui Tsou
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan
| | - Der-Yang Cho
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan.
| |
Collapse
|
2
|
Park R, El-Guindy A, Heston L, Lin SF, Yu KP, Nagy M, Borah S, Delecluse HJ, Steitz J, Miller G. Nuclear translocation and regulation of intranuclear distribution of cytoplasmic poly(A)-binding protein are distinct processes mediated by two Epstein Barr virus proteins. PLoS One 2014; 9:e92593. [PMID: 24705134 PMCID: PMC3976295 DOI: 10.1371/journal.pone.0092593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/25/2014] [Indexed: 01/22/2023] Open
Abstract
Many viruses target cytoplasmic polyA binding protein (PABPC) to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs). During lytic replication of Epstein Barr Virus (EBV) we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E), was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.
Collapse
Affiliation(s)
- Richard Park
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ayman El-Guindy
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lee Heston
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Su-Fang Lin
- Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Taiwan
| | - Kuan-Ping Yu
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mate Nagy
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Sumit Borah
- Department of Biochemistry, Howard Hughes Medical Institute, University of Colorado Biofrontiers Institute, Boulder, Colorado, United States of America
| | | | - Joan Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - George Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
3
|
Wu CC, Liu MT, Chang YT, Fang CY, Chou SP, Liao HW, Kuo KL, Hsu SL, Chen YR, Wang PW, Chen YL, Chuang HY, Lee CH, Chen M, Wayne Chang WS, Chen JY. Epstein-Barr virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Res 2009; 38:1932-49. [PMID: 20034954 PMCID: PMC2847232 DOI: 10.1093/nar/gkp1169] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epstein–Barr Virus (EBV) DNase (BGLF5) is an alkaline nuclease and has been suggested to be important in the viral life cycle. However, its effect on host cells remains unknown. Serological and histopathological studies implied that EBV DNase seems to be correlated with carcinogenesis. Therefore, we investigate the effect of EBV DNase on epithelial cells. Here, we report that expression of EBV DNase induces increased formation of micronucleus, an indicator of genomic instability, in human epithelial cells. We also demonstrate, using γH2AX formation and comet assay, that EBV DNase induces DNA damage. Furthermore, using host cell reactivation assay, we find that EBV DNase expression repressed damaged DNA repair in various epithelial cells. Western blot and quantitative PCR analyses reveal that expression of repair-related genes is reduced significantly in cells expressing EBV DNase. Host shut-off mutants eliminate shut-off expression of repair genes and repress damaged DNA repair, suggesting that shut-off function of BGLF5 contributes to repression of DNA repair. In addition, EBV DNase caused chromosomal aberrations and increased the microsatellite instability (MSI) and frequency of genetic mutation in human epithelial cells. Together, we propose that EBV DNase induces genomic instability in epithelial cells, which may be through induction of DNA damage and also repression of DNA repair, subsequently increases MSI and genetic mutations, and may contribute consequently to the carcinogenesis of human epithelial cells.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Fang CY, Lee CH, Wu CC, Chang YT, Yu SL, Chou SP, Huang PT, Chen CL, Hou JW, Chang Y, Tsai CH, Takada K, Chen JY. Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer 2009; 124:2016-25. [PMID: 19132751 DOI: 10.1002/ijc.24179] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an endemic malignancy prevalent in South East Asia. Epidemiological studies have associated this disease closely with Epstein-Barr virus (EBV) infection. Previous studies also showed that EBV reactivation is implicated in the progression of NPC. Thus, we proposed that recurrent reactivations of EBV may be important for its pathogenic role. In this study, NPC cell lines latently infected with EBV, NA and HA, and the corresponding EBV-negative NPC cell lines, NPC-TW01 (TW01) and HONE-1, were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium n-butyrate (SB) for lytic cycle induction. A single treatment with TPA/SB revealed that DNA double-strand breaks and formation of micronuclei (a marker for genome instability) were associated with EBV reactivation in NA and HA cells. Examination of EBV early genes had identified several lytic proteins, particularly EBV DNase, as potent activators that induced DNA double-strand breaks and contribute to genome instability. Recurrent reactivations of EBV in NA and HA cells resulted in a marked increase of genome instability. In addition, the degree of chromosomal aberrations, as shown by chromosome structural variants and DNA copy-number alterations, is proportional to the frequency of TPA/SB-induced EBV reactivation. Whereas these DNA abnormalities were limited in EBV-negative TW01 cells with mock or TPA/SB treatment, and were few in mock-treated NA cells. The invasiveness and tumorigenesis assays also revealed a profound increase in both characteristics of the repeatedly reactivated NA cells. These results suggest that recurrent EBV reactivations may result in accumulation of genome instability and promote the tumor progression of NPC.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu MT, Hu HP, Hsu TY, Chen JY. Site-directed mutagenesis in a conserved motif of Epstein-Barr virus DNase that is homologous to the catalytic centre of type II restriction endonucleases. J Gen Virol 2003; 84:677-686. [PMID: 12604820 DOI: 10.1099/vir.0.18739-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequence alignment of human herpesvirus DNases revealed that they share several conserved regions. One of these, the conserved motif D203...E225XK227 (D.EXK) in the sequence of Epstein-Barr virus (EBV) DNase, has a striking similarity to the catalytic sites of some other nucleases, including type II restriction endonucleases, lambda exonuclease and MutH. The predicted secondary structures of these three residues were shown to resemble the three catalytic residues of type II restriction endonucleases. Site-directed mutagenesis was carried out to replace each of the acidic residues near the motif by residues with different properties. All substitutions of D203, E225 and K227 were shown to cause significant reductions in nuclease activity. Six other acidic residues, within the conserved regions, were also replaced by Asn or Gln. Five of these six variants retained nuclease activity and mutant D195N alone lost nuclease activity. The four charged residues, D195, D203, E225 and K227, of EBV DNase were found to be important for nuclease activity. Biochemical analysis indicated that the preference for divalent cations was altered from Mg2+ to Mn2+ for mutant E225D. The DNA-binding abilities of D203E, E225D and E225Q were shown to be similar to that of wild-type. However, K227 mutants were found to have variable DNA-binding abilities: K227G and K227N mutants retained, K227E and K227D had reduced and K227R lost DNA-binding ability. Comparison of the biochemical properties of the corresponding substitutions among EBV DNase and type II restriction enzymes indicated that the D...EXK motif is most likely the putative catalytic centre of EBV DNase.
Collapse
Affiliation(s)
- Ming-Tsan Liu
- National Health Research Institutes, 3F No. 109, Section 6, Min-Chuan East Road, Taipei 114, Taiwan
| | - Hsien-Ping Hu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Tsuey-Ying Hsu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Jen-Yang Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- National Health Research Institutes, 3F No. 109, Section 6, Min-Chuan East Road, Taipei 114, Taiwan
| |
Collapse
|
6
|
Abstract
The herpes simplex virus type 1 (HSV-1) UL12 gene encodes an alkaline pH-dependent deoxyribonuclease termed alkaline nuclease. A recombinant UL12 knockout mutant, AN-1, is severely compromised for growth, and analysis of this mutant suggests that UL12 plays a role in processing complex DNA replication intermediates (R. Martinez, R. T. Sarisky, P. C. Weber, and S. K. Weller, (1996) J. Virol. 70, 2075-2085). This processing step may be required for the generation of capsids that are competent for egress from the nucleus to the cytoplasm. In this report, we address the question of whether the AN-1 growth phenotype is due to the loss of UL12 catalytic activity. We constructed two point mutations in a highly conserved region (motif II) of UL12 and purified wild-type and mutant enzymes from a baculovirus expression system. Both mutant proteins are stable, soluble, and competent for correct nuclear localization, suggesting that they have retained an intact global conformation. Neither mutant protein, however, exhibits exonuclease activity. In order to examine the in vivo effects of these mutations, we determined whether expression of mutant proteins from amplicon plasmids could complement AN-1. While the wild-type plasmid complements the growth of the null mutant, neither UL12 mutant can do so. Loss of exonuclease activity therefore correlates with loss of in vivo function.
Collapse
Affiliation(s)
- J N Goldstein
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030-3205, USA
| | | |
Collapse
|
7
|
Henderson JO, Ball-Goodrich LJ, Parris DS. Structure-function analysis of the herpes simplex virus type 1 UL12 gene: correlation of deoxyribonuclease activity in vitro with replication function. Virology 1998; 243:247-59. [PMID: 9527934 DOI: 10.1006/viro.1998.9054] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the product of the UL12 gene of herpes simplex virus type 1 (HSV-1) has been shown to possess both exonuclease and endonuclease activities in vitro, and deletion of most of the gene within the viral genome results in inefficient production and maturation of infectious virions, the function of the deoxyribonuclease (DNase) activity per se in virus replication remains unclear. In order to correlate the in vitro and in vivo activities of the protein encoded by UL12, mutant proteins were tested for nuclease activity in vitro by a novel hypersensitivity cleavage assay and for their ability to complement the replication of a DNase null mutant, AN-1. Rabbit reticulocyte lysates programmed with wild-type UL12 RNA cleaved at the same sites cleaved by purified HSV-1 DNase, but distinct from those cleaved by DNase 1 or micrococcal nuclease. All mutants which lacked DNase activity in vitro also failed to complement the replication of AN-1 in nonpermissive cells. Likewise, all mutants which contained HSV-1 DNase activity, as detected by the hypersensitivity cleavage assay, were capable of complementing the replication of the DNase null mutant, though to varying extents. Of particular note was the d1-126 mutant protein, which, despite having the same specific activity as the wild-type enzyme in vitro, complemented the replication of AN-1 significantly less than the wild-type protein. The results suggest that DNase activity per se is required for efficient replication of HSV-1 in vivo. However, residues, including the N-terminal 126 amino acids, which are dispensable for enzymatic activity in vitro may facilitate the accessibility or activity of the protein in vivo.
Collapse
Affiliation(s)
- J O Henderson
- Department of Molecular Genetics, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
8
|
Liu MT, Hsu TY, Lin SF, Seow SV, Liu MY, Chen JY, Yang CS. Distinct regions of EBV DNase are required for nuclease and DNA binding activities. Virology 1998; 242:6-13. [PMID: 9501034 DOI: 10.1006/viro.1997.8974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus (EBV) DNase possesses both endonuclease and exonuclease activities and accepts both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) as substrates. To map regions of EBV DNase responsible for nuclease and DNA binding activities, a series of mutant DNase polypeptides was expressed using a bacterial system for the nuclease assay and in an in vitro transcription/translation system to assay binding activity to dsDNA or ssDNA cellulose. The results indicated that the C-terminus of EBV DNase, residues 450-460, is essential for nuclease activity but dispensable for DNA binding. However, deletion of residues 441-470 resulted in the loss of both nuclease and DNA binding activities. Substitution of Phe452 and Val458 led to inactive enzymes. In the N-terminus, deletion of residues 23-28 and residues 7-61 resulted in the loss of nuclease activity but the DNA binding activities of the deleted enzymes were intermediate and low, respectively. Mutation of Leu23 to Gly showed drastically reduced nuclease activity but its DNA binding ability was not affected. Based on the amino acid sequence alignment of various herpesvirus DNases, we chose four highly conserved and two less well conserved regions as controls for mutagenesis studies. These six internal deletion (ID) mutants were prepared using a recombinant PCR method. Each of the polypeptides was expressed in a bacterial system for the nuclease assay and using an in vitro transcription/translation system for the DNA binding assay. DNA binding and nuclease activities of all six internal deletion mutants were abolished, except that mutant ID2, with deletion of residues 138-152, retained an intermediate ability to bind DNA. These data indicate that since mutations at distinct regions within EBV DNase resulted in the loss of nuclease and/or DNA binding activities, it is suggested that these distinct regions are required for maintenance of an intact and highly ordered structure(s) for both activities.
Collapse
Affiliation(s)
- M T Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Tsai CH, Liu MT, Chen MR, Lu J, Yang HL, Chen JY, Yang CS. Characterization of Monoclonal Antibodies to the Zta and DNase Proteins of Epstein-Barr Virus. J Biomed Sci 1997; 4:69-77. [PMID: 11725136 DOI: 10.1007/bf02255596] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Two monoclonal antibodies (mAb) were derived and designated 4F10 and 311H. 4F10 was against the Epstein-Barr virus (EBV) Zta protein and 311H specifically recognized EBV DNase enzyme. Using mAb 4F10 as a probe, the Zta protein could be detected as a 36-kD molecule in L5 cells and as a 38-kD molecule in B95-8 cells, reflecting the fact reported by other laboratories, using rabbit polyclonal antisera, that the Zta protein was variously modified in different host cells. 311H mAb was generated using antigens purified from one-step His-Bind column chromatography. The antigenic epitope recognized by this mAb was mapped within the residues 1-152 of EBV DNase by reacting the mAb with three distinct truncated mutants. Also, using 311H as a reagent to trace the kinetic expression of EBV DNase proteins in EBV-infected Akata cells, the Western blotting results indicated that DNase antigen could be detected at 12 h postactivation. The feasibility of applying these two mAb in the investigation of EBV biology is discussed. Copyright 1997 S. Karger AG, Basel
Collapse
Affiliation(s)
- C.-H. Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|