1
|
Investigation of the Fuzzy Complex between RSV Nucleoprotein and Phosphoprotein to Optimize an Inhibition Assay by Fluorescence Polarization. Int J Mol Sci 2022; 24:ijms24010569. [PMID: 36614009 PMCID: PMC9820559 DOI: 10.3390/ijms24010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
The interaction between Respiratory Syncytial Virus phosphoprotein P and nucleoprotein N is essential for the formation of the holo RSV polymerase that carries out replication. In vitro screening of antivirals targeting the N-P protein interaction requires a molecular interaction model, ideally consisting of a complex between N protein and a short peptide corresponding to the C-terminal tail of the P protein. However, the flexibility of C-terminal P peptides as well as their phosphorylation status play a role in binding and may bias the outcome of an inhibition assay. We therefore investigated binding affinities and dynamics of this interaction by testing two N protein constructs and P peptides of different lengths and composition, using nuclear magnetic resonance and fluorescence polarization (FP). We show that, although the last C-terminal Phe241 residue is the main determinant for anchoring P to N, only longer peptides afford sub-micromolar affinity, despite increasing mobility towards the N-terminus. We investigated competitive binding by peptides and small compounds, including molecules used as fluorescent labels in FP. Based on these results, we draw optimized parameters for a robust RSV N-P inhibition assay and validated this assay with the M76 molecule, which displays antiviral properties, for further screening of chemical libraries.
Collapse
|
2
|
Ramaswamy K, Rashid M, Ramasamy S, Jayavelu T, Venkataraman S. Revisiting Viral RNA-Dependent RNA Polymerases: Insights from Recent Structural Studies. Viruses 2022; 14:2200. [PMID: 36298755 PMCID: PMC9612308 DOI: 10.3390/v14102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
RNA-dependent RNA polymerases (RdRPs) represent a distinctive yet versatile class of nucleic acid polymerases encoded by RNA viruses for the replication and transcription of their genome. The structure of the RdRP is comparable to that of a cupped right hand consisting of fingers, palm, and thumb subdomains. Despite the presence of a common structural core, the RdRPs differ significantly in the mechanistic details of RNA binding and polymerization. The present review aims at exploring these incongruities in light of recent structural studies of RdRP complexes with diverse cofactors, RNA moieties, analogs, and inhibitors.
Collapse
Affiliation(s)
- Kavitha Ramaswamy
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Mariya Rashid
- Taiwan International Graduate Program, Molecular Cell Biology (National Defense Medical Center and Academia Sinica), Taipei 115, Taiwan;
| | - Selvarajan Ramasamy
- National Research Center for Banana, Somarasempettai−Thogaimalai Rd, Podavur, Tamil Nadu 639103, India;
| | - Tamilselvan Jayavelu
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Sangita Venkataraman
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| |
Collapse
|
3
|
Conley MJ, Short JM, Burns AM, Streetley J, Hutchings J, Bakker SE, Power BJ, Jaffery H, Haney J, Zanetti G, Murcia PR, Stewart M, Fearns R, Vijayakrishnan S, Bhella D. Helical ordering of envelope-associated proteins and glycoproteins in respiratory syncytial virus. EMBO J 2022; 41:e109728. [PMID: 34935163 PMCID: PMC8804925 DOI: 10.15252/embj.2021109728] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Human respiratory syncytial virus (RSV) causes severe respiratory illness in children and the elderly. Here, using cryogenic electron microscopy and tomography combined with computational image analysis and three-dimensional reconstruction, we show that there is extensive helical ordering of the envelope-associated proteins and glycoproteins of RSV filamentous virions. We calculated a 16 Å resolution sub-tomogram average of the matrix protein (M) layer that forms an endoskeleton below the viral envelope. These data define a helical lattice of M-dimers, showing how M is oriented relative to the viral envelope. Glycoproteins that stud the viral envelope were also found to be helically ordered, a property that was coordinated by the M-layer. Furthermore, envelope glycoproteins clustered in pairs, a feature that may have implications for the conformation of fusion (F) glycoprotein epitopes that are the principal target for vaccine and monoclonal antibody development. We also report the presence, in authentic virus infections, of N-RNA rings packaged within RSV virions. These data provide molecular insight into the organisation of the virion and the mechanism of its assembly.
Collapse
Affiliation(s)
- Michaela J Conley
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Judith M Short
- Medical Research Council Laboratory of Molecular BiologyCambridgeUK
| | - Andrew M Burns
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUK
| | - James Streetley
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Joshua Hutchings
- Department of Biological SciencesBirkbeck CollegeLondonUK
- Present address:
Division of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Saskia E Bakker
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUK
- Present address:
School of Life SciencesUniversity of WarwickCoventryUK
| | - B Joanne Power
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUK
- Present address:
Department of Biochemistry and Molecular BiologyThe Huck Center for Malaria ResearchPennsylvania State UniversityUniversity ParkPAUSA
| | - Hussain Jaffery
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Joanne Haney
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Giulia Zanetti
- Department of Biological SciencesBirkbeck CollegeLondonUK
| | - Pablo R Murcia
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Murray Stewart
- Medical Research Council Laboratory of Molecular BiologyCambridgeUK
| | - Rachel Fearns
- Department of MicrobiologyBoston University School of MedicineBostonMAUSA
- National Emerging Infectious Diseases LaboratoriesBoston UniversityBostonMAUSA
| | | | - David Bhella
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUK
| |
Collapse
|
4
|
Interactions between the Nucleoprotein and the Phosphoprotein of Pneumoviruses: Structural Insight for Rational Design of Antivirals. Viruses 2021; 13:v13122449. [PMID: 34960719 PMCID: PMC8706346 DOI: 10.3390/v13122449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Pneumoviruses include pathogenic human and animal viruses, the most known and studied being the human respiratory syncytial virus (hRSV) and the metapneumovirus (hMPV), which are the major cause of severe acute respiratory tract illness in young children worldwide, and main pathogens infecting elderly and immune-compromised people. The transcription and replication of these viruses take place in specific cytoplasmic inclusions called inclusion bodies (IBs). These activities depend on viral polymerase L, associated with its cofactor phosphoprotein P, for the recognition of the viral RNA genome encapsidated by the nucleoprotein N, forming the nucleocapsid (NC). The polymerase activities rely on diverse transient protein-protein interactions orchestrated by P playing the hub role. Among these interactions, P interacts with the NC to recruit L to the genome. The P protein also plays the role of chaperone to maintain the neosynthesized N monomeric and RNA-free (called N0) before specific encapsidation of the viral genome and antigenome. This review aims at giving an overview of recent structural information obtained for hRSV and hMPV P, N, and more specifically for P-NC and N0-P complexes that pave the way for the rational design of new antivirals against those viruses.
Collapse
|
5
|
Respiratory Syncytial Virus Phosphoprotein Residue S156 Plays a Role in Regulating Genome Transcription and Replication. J Virol 2021; 95:e0120621. [PMID: 34613802 DOI: 10.1128/jvi.01206-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a single-stranded, negative-sense RNA virus in the family Pneumoviridae and genus Orthopneumovirus that can cause severe disease in infants, immunocompromised adults, and the elderly. The RSV viral RNA-dependent RNA polymerase (vRdRp) complex is composed of the phosphoprotein (P) and the large polymerase protein (L). The P protein is constitutively phosphorylated by host kinases and has 41 serine (S) and threonine (T) residues as potential phosphorylation sites. To identify important phosphorylation residues in the P protein, we systematically and individually mutated all S and T residues to alanine (A) and analyzed their effects on genome transcription and replication by using a minigenome system. We found that the mutation of eight residues resulted in minigenome activity significantly lower than that of wild-type (WT) P. We then incorporated these mutations (T210A, S203A, T151A, S156A, T160A, S23A, T188A, and T105A) into full-length genome cDNA to rescue recombinant RSV. We were able to recover four recombinant viruses (with T151A, S156A, T160A, or S23A), suggesting that RSV-P residues T210, S203, T188, and T105 are essential for viral RNA replication. Among the four recombinant viruses rescued, rRSV-T160A caused a minor growth defect relative to its parental virus while rRSV-S156A had severely restricted replication due to decreased levels of genomic RNA. During infection, P-S156A phosphorylation was decreased, and when passaged, the S156A virus acquired a known compensatory mutation in L (L795I) that enhanced both WT-P and P-S156A minigenome activity and was able to partially rescue the S156A viral growth defect. This work demonstrates that residues T210, S203, T188, and T105 are critical for RSV replication and that S156 plays a critical role in viral RNA synthesis. IMPORTANCE RSV-P is a heavily phosphorylated protein that is required for RSV replication. In this study, we identified several residues, including P-S156, as phosphorylation sites that play critical roles in efficient viral growth and genome replication. Future studies to identify the specific kinase(s) that phosphorylates these residues can lead to kinase inhibitors and antiviral drugs for this important human pathogen.
Collapse
|
6
|
Braun MR, Noton SL, Blanchard EL, Shareef A, Santangelo PJ, Johnson WE, Fearns R. Respiratory syncytial virus M2-1 protein associates non-specifically with viral messenger RNA and with specific cellular messenger RNA transcripts. PLoS Pathog 2021; 17:e1009589. [PMID: 34003848 PMCID: PMC8162694 DOI: 10.1371/journal.ppat.1009589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/28/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory disease in infants and the elderly. RSV is a non-segmented negative strand RNA virus. The viral M2-1 protein plays a key role in viral transcription, serving as an elongation factor to enable synthesis of full-length mRNAs. M2-1 contains an unusual CCCH zinc-finger motif that is conserved in the related human metapneumovirus M2-1 protein and filovirus VP30 proteins. Previous biochemical studies have suggested that RSV M2-1 might bind to specific virus RNA sequences, such as the transcription gene end signals or poly A tails, but there was no clear consensus on what RSV sequences it binds. To determine if M2-1 binds to specific RSV RNA sequences during infection, we mapped points of M2-1:RNA interactions in RSV-infected cells at 8 and 18 hours post infection using crosslinking immunoprecipitation with RNA sequencing (CLIP-Seq). This analysis revealed that M2-1 interacts specifically with positive sense RSV RNA, but not negative sense genome RNA. It also showed that M2-1 makes contacts along the length of each viral mRNA, indicating that M2-1 functions as a component of the transcriptase complex, transiently associating with nascent mRNA being extruded from the polymerase. In addition, we found that M2-1 binds specific cellular mRNAs. In contrast to the situation with RSV mRNA, M2-1 binds discrete sites within cellular mRNAs, with a preference for A/U rich sequences. These results suggest that in addition to its previously described role in transcription elongation, M2-1 might have an additional role involving cellular RNA interactions.
Collapse
Affiliation(s)
- Molly R. Braun
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Emmeline L. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Afzaal Shareef
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - W. Evan Johnson
- Division of Computational Biomedicine and Bioinformatics Program and Department of Biostatistics, Boston University, Boston, Massachusetts, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Cardone C, Caseau CM, Pereira N, Sizun C. Pneumoviral Phosphoprotein, a Multidomain Adaptor-Like Protein of Apparent Low Structural Complexity and High Conformational Versatility. Int J Mol Sci 2021; 22:ijms22041537. [PMID: 33546457 PMCID: PMC7913705 DOI: 10.3390/ijms22041537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
Mononegavirales phosphoproteins (P) are essential co-factors of the viral polymerase by serving as a linchpin between the catalytic subunit and the ribonucleoprotein template. They have highly diverged, but their overall architecture is conserved. They are multidomain proteins, which all possess an oligomerization domain that separates N- and C-terminal domains. Large intrinsically disordered regions constitute their hallmark. Here, we exemplify their structural features and interaction potential, based on the Pneumoviridae P proteins. These P proteins are rather small, and their oligomerization domain is the only part with a defined 3D structure, owing to a quaternary arrangement. All other parts are either flexible or form short-lived secondary structure elements that transiently associate with the rest of the protein. Pneumoviridae P proteins interact with several viral and cellular proteins that are essential for viral transcription and replication. The combination of intrinsic disorder and tetrameric organization enables them to structurally adapt to different partners and to act as adaptor-like platforms to bring the latter close in space. Transient structures are stabilized in complex with protein partners. This class of proteins gives an insight into the structural versatility of non-globular intrinsically disordered protein domains.
Collapse
|
8
|
In Vitro Primer-Based RNA Elongation and Promoter Fine Mapping of the Respiratory Syncytial Virus. J Virol 2020; 95:JVI.01897-20. [PMID: 33028717 PMCID: PMC7737744 DOI: 10.1128/jvi.01897-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a nonsegmented negative-sense (NNS) RNA virus and shares a similar RNA synthesis strategy with other members of NNS RNA viruses, such as measles, rabies virus, and Ebola virus. RSV RNA synthesis is catalyzed by a multifunctional RNA-dependent RNA polymerase (RdRP), which is composed of a large (L) protein that catalyzes three distinct enzymatic functions and an essential coenzyme phosphoprotein (P). Here, we successfully prepared highly pure, full-length, wild-type and mutant RSV polymerase (L-P) complexes. We demonstrated that the RSV polymerase could carry out both de novo and primer-based RNA synthesis. We defined the minimal length of the RNA template for in vitro de novo RNA synthesis using the purified RSV polymerase as 8 nucleotides (nt), shorter than previously reported. We showed that the RSV polymerase catalyzed primer-dependent RNA elongation with different lengths of primers on both short (10-nt) and long (25-nt) RNA templates. We compared the sequence specificity of different viral promoters and identified positions 3, 5, and 8 of the promoter sequence as essential to the in vitro RSV polymerase activity, consistent with the results previously mapped with the in vivo minigenome assay. Overall, these findings agree well with those of previous biochemical studies and extend our understanding of the promoter sequence and the mechanism of RSV RNA synthesis.IMPORTANCE As a major human pathogen, RSV affects 3.4 million children worldwide annually. However, no effective antivirals or vaccines are available. An in-depth mechanistic understanding of the RSV RNA synthesis machinery remains a high priority among the NNS RNA viruses. There is a strong public health need for research on this virus, due to major fundamental gaps in our understanding of NNS RNA virus replication. As the key enzyme executing transcription and replication of the virus, the RSV RdRP is a logical target for novel antiviral drugs. Therefore, exploring the primer-dependent RNA elongation extends our mechanistic understanding of the RSV RNA synthesis. Further fine mapping of the promoter sequence paves the way to better understand the function and structure of the RSV polymerase.
Collapse
|
9
|
Abstract
Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales mimic RNA synthesis of their eukaryotic counterparts by utilizing multifunctional RNA polymerases to replicate entire viral genomes and transcribe viral mRNAs from individual viral genes as well as synthesize 5′ methylated cap and 3′ poly(A) tail of the transcribed viral mRNAs. The catalytic subunit large protein (L) and cofactor phosphoprotein (P) constitute the Mononegavirales polymerases. In this review, we discuss the shared and unique features of RNA synthesis, the monomeric multifunctional enzyme L, and the oligomeric multimodular adapter P of Mononegavirales. We outline the structural analyses of the Mononegavirales polymerases since the first structure of the vesicular stomatitis virus (VSV) L protein determined in 2015 and highlight multiple high-resolution cryo-electron microscopy (cryo-EM) structures of the polymerases of Mononegavirales, namely, VSV, RABV, HRSV, human metapneumovirus (HMPV), and human parainfluenza virus (HPIV), that have been reported in recent months (2019 to 2020). We compare the structures of those polymerases grouped by virus family, illustrate the similarities and differences among those polymerases, and reveal the potential RNA synthesis mechanisms and models of highly conserved Mononegavirales. We conclude by the discussion of remaining questions, evolutionary perspectives, and future directions.
Collapse
|
10
|
Balakrishnan A, Price E, Luu C, Shaul J, Wartchow C, Cantwell J, Vo T, DiDonato M, Spraggon G, Hekmat-Nejad M. Biochemical Characterization of Respiratory Syncytial Virus RNA-Dependent RNA Polymerase Complex. ACS Infect Dis 2020; 6:2800-2811. [PMID: 32886480 DOI: 10.1021/acsinfecdis.0c00554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA-dependent RNA polymerases (RdRPs) from nonsegmented negative strand (NNS) RNA viruses perform both mRNA transcription and genome replication, and these activities are regulated by their interactions with RNA and other accessory proteins within the ribonucleoprotein (RNP) complex. Detailed biochemical characterization of these enzymatic activities and their regulation is essential for understanding the life cycles of many pathogenic RNA viruses and for antiviral drug discovery. We developed biochemical and biophysical kinetic methods to study the RNA synthesis and RNA binding activities of respiratory syncytial virus (RSV) L/P RdRP. We determined that the intact L protein is essential for RdRP activity, and in truncated L protein constructs, RdRP activity is abrogated due to their deficiency in RNA template binding. These results are in agreement with the observation of an RNA template-binding tunnel at the interface of RdRP and capping domains in RSV and vesicular stomatitis virus (VSV) L protein cryo-EM structures. We also describe nonradiometric assays for measuring RNA binding and RNA polymerization activity of RSV RdRP, which are amenable to compound screening and profiling.
Collapse
Affiliation(s)
- Anand Balakrishnan
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Edmund Price
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Catherine Luu
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Jacob Shaul
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Charles Wartchow
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - John Cantwell
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Todd Vo
- Structural Biology and Protein Sciences, Genomics Institute of the Novartis Research Foundation, La Jolla, California 92121, United States
| | - Michael DiDonato
- Structural Biology and Protein Sciences, Genomics Institute of the Novartis Research Foundation, La Jolla, California 92121, United States
| | - Glen Spraggon
- Structural Biology and Protein Sciences, Genomics Institute of the Novartis Research Foundation, La Jolla, California 92121, United States
| | - Mohammad Hekmat-Nejad
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| |
Collapse
|
11
|
Gao Y, Cao D, Pawnikar S, John KP, Ahn HM, Hill S, Ha JM, Parikh P, Ogilvie C, Swain A, Yang A, Bell A, Salazar A, Miao Y, Liang B. Structure of the Human Respiratory Syncytial Virus M2-1 Protein in Complex with a Short Positive-Sense Gene-End RNA. Structure 2020; 28:979-990.e4. [PMID: 32697936 DOI: 10.1016/j.str.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
Abstract
The M2-1 protein of human respiratory syncytial virus (HRSV) is a transcription anti-terminator that regulates the processivity of the HRSV RNA-dependent RNA polymerase (RdRP). Here, we report a crystal structure of HRSV M2-1 bound to a short positive-sense gene-end RNA (SH7) at 2.7 Å resolution. We identified multiple critical residues of M2-1 involved in RNA interaction and examined their roles using mutagenesis and MicroScale Thermophoresis (MST) assay. We found that hydrophobic residue Phe23 is indispensable for M2-1 to recognize the base of RNA. We also captured spontaneous binding of RNA (SH7) to M2-1 in all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method. Both experiments and simulations revealed that the interactions of RNA with two separate domains of M2-1, the zinc-binding domain (ZBD) and the core domain (CD), are independent of each other. Collectively, our results provided a structural basis for RNA recognition by HRSV M2-1.
Collapse
Affiliation(s)
- Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Karen P John
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Hyunjun Max Ahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shaylan Hill
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ju Mi Ha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Priyal Parikh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Claire Ogilvie
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Anshuman Swain
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amy Yang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amber Bell
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Angela Salazar
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA.
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA.
| |
Collapse
|
12
|
Ludeke B, Fearns R. The respiratory syncytial virus polymerase can perform RNA synthesis with modified primers and nucleotide analogs. Virology 2019; 540:66-74. [PMID: 31739186 DOI: 10.1016/j.virol.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 12/29/2022]
Abstract
Respiratory syncytial virus (RSV) is significant for public health, capable of causing respiratory tract disease in infants, the elderly and the immunocompromised. The RSV polymerase is an attractive target for antiviral drug development, but as yet, there is no high throughput assay for analyzing RSV polymerase activity, specifically. In this study, using a primer elongation assay as a basis, we analyzed the tolerance of the RSV polymerase for modifications at the 5' end of the primer, and nucleotide analogs. The RSV polymerase was found to accept primers containing 5' biotin or digoxygenin modifications, and nucleotide analogs that are reactive or fluorescent, including 5-ethynyl UTP, 8-azido ATP, 2-amino PTP, and thieno-GTP. These findings provide a menu of options for developing non-isotopic high throughput assays for RSV polymerase RNA synthesis activity, and yield insight regarding the molecular biology of the polymerase complex.
Collapse
Affiliation(s)
- Barbara Ludeke
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA.
| |
Collapse
|
13
|
Cressey TN, Noton SL, Nagendra K, Braun MR, Fearns R. Mechanism for de novo initiation at two sites in the respiratory syncytial virus promoter. Nucleic Acids Res 2019; 46:6785-6796. [PMID: 29873775 PMCID: PMC6061868 DOI: 10.1093/nar/gky480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022] Open
Abstract
The respiratory syncytial virus (RSV) RNA dependent RNA polymerase (RdRp) initiates two RNA synthesis processes from the viral promoter: genome replication from position 1U and mRNA transcription from position 3C. Here, we examined the mechanism by which a single promoter can direct initiation from two sites. We show that initiation at 1U and 3C occurred independently of each other, and that the same RdRp was capable of precisely selecting the two sites. The RdRp preferred to initiate at 3C, but initiation site selection could be modulated by the relative concentrations of ATP versus GTP. Analysis of template mutations indicated that the RdRp could bind ATP and CTP, or GTP, independently of template nucleotides. The data suggest a model in which innate affinity of the RdRp for particular NTPs, coupled with a repeating element within the promoter, allows precise initiation of replication at 1U or transcription at 3C.
Collapse
Affiliation(s)
- Tessa N Cressey
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sarah L Noton
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kartikeya Nagendra
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Molly R Braun
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
14
|
Noton SL, Tremaglio CZ, Fearns R. Killing two birds with one stone: How the respiratory syncytial virus polymerase initiates transcription and replication. PLoS Pathog 2019; 15:e1007548. [PMID: 30817806 PMCID: PMC6394897 DOI: 10.1371/journal.ppat.1007548] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Chadene Z. Tremaglio
- Department of Biology, University of Saint Joseph, West Hartford, Connecticut, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Richard CA, Rincheval V, Lassoued S, Fix J, Cardone C, Esneau C, Nekhai S, Galloux M, Rameix-Welti MA, Sizun C, Eléouët JF. RSV hijacks cellular protein phosphatase 1 to regulate M2-1 phosphorylation and viral transcription. PLoS Pathog 2018; 14:e1006920. [PMID: 29489893 PMCID: PMC5847313 DOI: 10.1371/journal.ppat.1006920] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/12/2018] [Accepted: 02/04/2018] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) RNA synthesis occurs in cytoplasmic inclusion bodies (IBs) in which all the components of the viral RNA polymerase are concentrated. In this work, we show that RSV P protein recruits the essential RSV transcription factor M2-1 to IBs independently of the phosphorylation state of M2-1. We also show that M2-1 dephosphorylation is achieved by a complex formed between P and the cellular phosphatase PP1. We identified the PP1 binding site of P, which is an RVxF-like motif located nearby and upstream of the M2-1 binding region. NMR confirmed both P-M2-1 and P-PP1 interaction regions in P. When the P-PP1 interaction was disrupted, M2-1 remained phosphorylated and viral transcription was impaired, showing that M2-1 dephosphorylation is required, in a cyclic manner, for efficient viral transcription. IBs contain substructures called inclusion bodies associated granules (IBAGs), where M2-1 and neo-synthesized viral mRNAs concentrate. Disruption of the P-PP1 interaction was correlated with M2-1 exclusion from IBAGs, indicating that only dephosphorylated M2-1 is competent for viral mRNA binding and hence for a previously proposed post-transcriptional function.
Collapse
Affiliation(s)
- Charles-Adrien Richard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Rincheval
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, France
| | - Safa Lassoued
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jenna Fix
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christophe Cardone
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Camille Esneau
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, Howard University, Washington, D. C., United States of America
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Anne Rameix-Welti
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, France
- AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
16
|
Braun MR, Deflubé LR, Noton SL, Mawhorter ME, Tremaglio CZ, Fearns R. RNA elongation by respiratory syncytial virus polymerase is calibrated by conserved region V. PLoS Pathog 2017; 13:e1006803. [PMID: 29281742 PMCID: PMC5760109 DOI: 10.1371/journal.ppat.1006803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 01/09/2018] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
The large polymerase subunit (L) of non-segmented negative strand RNA viruses transcribes viral mRNAs and replicates the viral genome. Studies with VSV have shown that conserved region V (CRV) of the L protein is part of the capping domain. However, CRV folds over and protrudes into the polymerization domain, suggesting that it might also have a role in RNA synthesis. In this study, the role of respiratory syncytial virus (RSV) CRV was evaluated using single amino acid substitutions and a small molecule inhibitor called BI-D. Effects were analyzed using cell-based minigenome and in vitro biochemical assays. Several amino acid substitutions inhibited production of capped, full-length mRNA and instead resulted in accumulation of short transcripts of approximately 40 nucleotides in length, confirming that RSV CRV has a role in capping. In addition, all six variants tested were either partially or completely defective in RNA replication. This was due to an inability of the polymerase to efficiently elongate the RNA within the promoter region. BI-D also inhibited transcription and replication. In this case, polymerase elongation activity within the promoter region was enhanced, such that the small RNA transcribed from the promoter was not released and instead was elongated past the first gene start signal. This was accompanied by a decrease in mRNA initiation at the first gene start signal and accumulation of aberrant RNAs of varying length. Thus, in addition to its function in mRNA capping, conserved region V modulates the elongation properties of the polymerase to enable productive transcription and replication to occur.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Antiviral Agents/pharmacology
- Cell Line
- Conserved Sequence
- Drug Discovery
- Genes, Viral
- Humans
- Models, Molecular
- Promoter Regions, Genetic
- RNA Caps/genetics
- RNA Caps/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Dependent RNA Polymerase/chemistry
- RNA-Dependent RNA Polymerase/genetics
- RNA-Dependent RNA Polymerase/metabolism
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/metabolism
- Respiratory Syncytial Virus, Human/pathogenicity
- Transcription Elongation, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Molly R. Braun
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Laure R. Deflubé
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Michael E. Mawhorter
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Chadene Z. Tremaglio
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Whelan JN, Reddy KD, Uversky VN, Teng MN. Functional correlations of respiratory syncytial virus proteins to intrinsic disorder. MOLECULAR BIOSYSTEMS 2017; 12:1507-26. [PMID: 27062995 DOI: 10.1039/c6mb00122j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein intrinsic disorder is an important characteristic demonstrated by the absence of higher order structure, and is commonly detected in multifunctional proteins encoded by RNA viruses. Intrinsically disordered regions (IDRs) of proteins exhibit high flexibility and solvent accessibility, which permit several distinct protein functions, including but not limited to binding of multiple partners and accessibility for post-translational modifications. IDR-containing viral proteins can therefore execute various functional roles to enable productive viral replication. Respiratory syncytial virus (RSV) is a globally circulating, non-segmented, negative sense (NNS) RNA virus that causes severe lower respiratory infections. In this study, we performed a comprehensive evaluation of predicted intrinsic disorder of the RSV proteome to better understand the functional role of RSV protein IDRs. We included 27 RSV strains to sample major RSV subtypes and genotypes, as well as geographic and temporal isolate differences. Several types of disorder predictions were applied to the RSV proteome, including per-residue (PONDR®-FIT and PONDR® VL-XT), binary (CH, CDF, CH-CDF), and disorder-based interactions (ANCHOR and MoRFpred). We classified RSV IDRs by size, frequency and function. Finally, we determined the functional implications of RSV IDRs by mapping predicted IDRs to known functional domains of each protein. Identification of RSV IDRs within functional domains improves our understanding of RSV pathogenesis in addition to providing potential therapeutic targets. Furthermore, this approach can be applied to other NNS viruses that encode essential multifunctional proteins for the elucidation of viral protein regions that can be manipulated for attenuation of viral replication.
Collapse
Affiliation(s)
- Jillian N Whelan
- Division of Allergy and Immunology, Department of Internal Medicine, and the Joy McCann Culverhouse Airway Diseases Research Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | - Krishna D Reddy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| | - Michael N Teng
- Division of Allergy and Immunology, Department of Internal Medicine, and the Joy McCann Culverhouse Airway Diseases Research Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
18
|
Fearns R, Deval J. New antiviral approaches for respiratory syncytial virus and other mononegaviruses: Inhibiting the RNA polymerase. Antiviral Res 2016; 134:63-76. [PMID: 27575793 DOI: 10.1016/j.antiviral.2016.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/27/2016] [Accepted: 08/07/2016] [Indexed: 11/16/2022]
Abstract
Worldwide, respiratory syncytial virus (RSV) causes severe disease in infants, the elderly, and immunocompromised people. No vaccine or effective antiviral treatment is available. RSV is a member of the non-segmented, negative-strand (NNS) group of RNA viruses and relies on its RNA-dependent RNA polymerase to transcribe and replicate its genome. Because of its essential nature and unique properties, the RSV polymerase has proven to be a good target for antiviral drugs, with one compound, ALS-8176, having already achieved clinical proof-of-concept efficacy in a human challenge study. In this article, we first provide an overview of the role of the RSV polymerase in viral mRNA transcription and genome replication. We then review past and current approaches to inhibiting the RSV polymerase, including use of nucleoside analogs and non-nucleoside inhibitors. Finally, we consider polymerase inhibitors that hold promise for treating infections with other NNS RNA viruses, including measles and Ebola.
Collapse
Affiliation(s)
- Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA.
| | - Jerome Deval
- Alios BioPharma, Inc., Part of the Janssen Pharmaceutical Companies, South San Francisco, CA, USA.
| |
Collapse
|
19
|
Investigating the Influence of Ribavirin on Human Respiratory Syncytial Virus RNA Synthesis by Using a High-Resolution Transcriptome Sequencing Approach. J Virol 2016; 90:4876-4888. [PMID: 26656699 PMCID: PMC4859727 DOI: 10.1128/jvi.02349-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/18/2015] [Indexed: 11/20/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a major cause of serious respiratory tract infection. Treatment options include administration of ribavirin, a purine analog, although the mechanism of its anti-HRSV activity is unknown. We used transcriptome sequencing (RNA-seq) to investigate the genome mutation frequency and viral mRNA accumulation in HRSV-infected cells that were left untreated or treated with ribavirin. In the absence of ribavirin, HRSV-specific transcripts accounted for up to one-third of total RNA reads from the infected-cell RNA population. Ribavirin treatment resulted in a >90% reduction in abundance of viral mRNA reads, while at the same time no such reduction was detected for the abundance of cellular transcripts. The presented data reveal that ribavirin significantly increases the frequency of HRSV-specific RNA mutations, suggesting a direct influence on the fidelity of the HRSV polymerase. The presented data show that transitions and transversions occur during HRSV replication and that these changes occur in hot spots along the HRSV genome. Examination of nucleotide substitution rates in the viral genome indicated an increase in the frequency of transition but not transversion mutations in the presence of ribavirin. In addition, our data indicate that in the continuous cell types used and at the time points analyzed, the abundances of some HRSV mRNAs do not reflect the order in which the mRNAs are transcribed. IMPORTANCE Human respiratory syncytial virus (HRSV) is a major pediatric pathogen. Ribavirin can be used in children who are extremely ill to reduce the amount of virus and to lower the burden of disease. Ribavirin is used as an experimental therapy with other viruses. The mechanism of action of ribavirin against HRSV is not well understood, although it is thought to increase the mutation rate of the viral polymerase during replication. To investigate this hypothesis, we used a high-resolution approach that allowed us to determine the genetic sequence of the virus to a great depth of coverage. We found that ribavirin did not cause a detectable change in the relative amounts of viral mRNA transcripts. However, we found that ribavirin treatment did indeed cause an increase in the number of mutations, which was associated with a decrease in virus production.
Collapse
|
20
|
Initiation and regulation of paramyxovirus transcription and replication. Virology 2015; 479-480:545-54. [PMID: 25683441 DOI: 10.1016/j.virol.2015.01.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/04/2015] [Indexed: 12/18/2022]
Abstract
The paramyxovirus family has a genome consisting of a single strand of negative sense RNA. This genome acts as a template for two distinct processes: transcription to generate subgenomic, capped and polyadenylated mRNAs, and genome replication. These viruses only encode one polymerase. Thus, an intriguing question is, how does the viral polymerase initiate and become committed to either transcription or replication? By answering this we can begin to understand how these two processes are regulated. In this review article, we present recent findings from studies on the paramyxovirus, respiratory syncytial virus, which show how its polymerase is able to initiate transcription and replication from a single promoter. We discuss how these findings apply to other paramyxoviruses. Then, we examine how trans-acting proteins and promoter secondary structure might serve to regulate transcription and replication during different phases of the paramyxovirus replication cycle.
Collapse
|
21
|
Fine mapping and characterization of the L-polymerase-binding domain of the respiratory syncytial virus phosphoprotein. J Virol 2015; 89:4421-33. [PMID: 25653447 DOI: 10.1128/jvi.03619-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The minimum requirement for an active RNA-dependent RNA polymerase of respiratory syncytial virus (RSV) is a complex made of two viral proteins, the polymerase large protein (L) and the phosphoprotein (P). Here we have investigated the domain on P that is responsible for this critical P-L interaction. By use of recombinant proteins and serial deletions, an L binding site was mapped in the C-terminal region of P, just upstream of the N-RNA binding site. The role of this molecular recognition element of about 30 amino acid residues in the L-P interaction and RNA polymerase activity was evaluated in cellula using an RSV minigenome system and site-directed mutagenesis. The results highlighted the critical role of hydrophobic residues located in this region. IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants. Since no vaccine and no good antivirals against RSV are available, it is essential to better understand how the viral machinery functions in order to develop new antiviral strategies. Like all negative-strand RNA viruses, RSV codes for its own machinery to replicate and transcribe its genome. The core of this machinery is composed of two proteins, the phosphoprotein (P) and the large protein (L). Here, using recombinant proteins, we have mapped and characterized the P domain responsible for this L-P interaction and the formation of an active L-P complex. These findings extend our understanding of the mechanism of action of RSV RNA polymerase and allow us to define a new target for the development of drugs against RSV.
Collapse
|
22
|
Shapiro AB, Gao N, O'Connell N, Hu J, Thresher J, Gu RF, Overman R, Hardern IM, Sproat GG. Quantitative investigation of the affinity of human respiratory syncytial virus phosphoprotein C-terminus binding to nucleocapsid protein. Virol J 2014; 11:191. [PMID: 25407889 PMCID: PMC4239318 DOI: 10.1186/s12985-014-0191-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are no approved small molecule drug therapies for human respiratory syncytial virus (hRSV), a cause of morbidity and mortality in at-risk newborns, the immunocompromised, and the elderly. We have investigated as a potential novel hRSV drug target the protein-protein interaction between the C-terminus of the viral phosphoprotein (P) and the viral nucleocapsid protein (N), components of the ribonucleoprotein complex that contains, replicates, and transcribes the viral RNA genome. Earlier work by others established that the 9 C-terminal residues of P are necessary and sufficient for binding to N. METHODS We used a fluorescence anisotropy assay, surface plasmon resonance and 2-D NMR to quantify the affinities of peptides based on the C terminus of P for RNA-free, monomeric N-terminal-truncated N(13-391). We calculated the contributions to the free energies of binding of P to N(13-391) attributable to the C-terminal 11 residues, phosphorylation of the C-terminal 2 serine residues, the C-terminal Asp-Phe, and the phenyl ring of the C-terminal Phe. RESULTS Binding studies confirmed the crucial role of the phosphorylated C-terminal peptide D(pS)DNDL(pS)LEDF for binding of P to RNA-free, monomeric N(13-391), contributing over 90% of the binding free energy at low ionic strength. The phenyl ring of the C-terminal Phe residue contributed an estimated -2.7 kcal/mole of the free energy of binding, the C-terminal Asp-Phe residues contributed -3.8 kcal/mole, the sequence DSDNDLSLE contributed -3.1 kcal/mole, and phosphorylation of the 2 Ser residues contributed -1.8 kcal/mole. Due to the high negative charge of the C-terminal peptide, the affinity of the P C-terminus for N(13-391) decreased as the ionic strength increased. CONCLUSIONS The results support the idea that the interaction of the C-terminal residues of P with N constitutes a protein-protein interaction hotspot that may be a suitable target for small-molecule drugs that inhibit viral genome replication and transcription.
Collapse
Affiliation(s)
- Adam B Shapiro
- Biology Department, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Esperante SA, Paris G, de Prat-Gay G. Modular unfolding and dissociation of the human respiratory syncytial virus phosphoprotein p and its interaction with the m(2-1) antiterminator: a singular tetramer-tetramer interface arrangement. Biochemistry 2012; 51:8100-10. [PMID: 22978633 DOI: 10.1021/bi300765c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paramyxoviruses share the essential RNA polymerase complex components, namely, the polymerase (L), phosphoprotein (P), and nucleoprotein (N). Human respiratory syncytial virus (RSV) P is the smallest polypeptide among the family, sharing a coiled coil tetramerization domain, which disruption renders the virus inactive. We show that unfolding of P displays a first transition with low cooperativity but substantial loss of α-helix content and accessibility to hydrophobic sites, indicative of loose chain packing and fluctuating tertiary structure, typical of molten globules. The lack of unfolding baseline indicates a native state in conformational exchange and metastable at 20 °C. The second transition starts from a true intermediate state, with only the tetramerization domain remaining folded. The tetramerization domain undergoes a two-state dissociation/unfolding reaction (37.3 kcal mol(-1)). The M(2-1) transcription antiterminator, unique to RSV and Metapneumovirus, forms a nonglobular P:M(2-1) complex with a 1:1 stoichiometry and a K(D) of 8.1 nM determined by fluorescence anisotropy, far from the strikingly coincident dissociation range of P and M(2-1) tetramers (10(-28) M(3)). The M(2-1) binding region has been previously mapped to the N-terminal module of P, strongly suggesting the latter as the metastable molten globule domain. Folding, oligomerization, and assembly events between proteins and with RNA are coupled in the RNA polymerase complex. Quantitative assessment of the hierarchy of these interactions and their mechanisms contribute to the general understanding of RNA replication and transcription in Paramyxoviruses. In particular, the unique P-M(2-1) interface present in RSV provides a valuable antiviral target for this worldwide spread human pathogen.
Collapse
Affiliation(s)
- Sebastián A Esperante
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Patricias Argentinas 435, (1405) Buenos Aires, Argentina
| | | | | |
Collapse
|
24
|
Hofmann WA. Cell and molecular biology of nuclear actin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:219-63. [PMID: 19215906 DOI: 10.1016/s1937-6448(08)01806-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Actin is a highly conserved protein and one of the major components of the cytoplasm and the nucleus in eukaryotic cells. In the nucleus, actin is involved in a variety of nuclear processes that include transcription and transcription regulation, RNA processing and export, intranuclear movement, and structure maintenance. Recent advances in the field of nuclear actin have established that functions of actin in the nucleus are versatile, complex, and interconnected. It also has become increasingly evident that the cytoplasmic and nuclear pools of actin are functionally linked. However, while the biological significance of nuclear actin has become clear, we are only beginning to understand the mechanisms that lie behind the regulation of nuclear actin. This review provides an overview of our current understanding of the functions of actin in the nucleus.
Collapse
Affiliation(s)
- Wilma A Hofmann
- Department of Physiology and Biophysics, State University of New York, Buffalo, NY, USA
| |
Collapse
|
25
|
de Graaf M, Herfst S, Schrauwen EJA, Choi Y, van den Hoogen BG, Osterhaus ADME, Fouchier RAM. Specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses. J Gen Virol 2008; 89:975-983. [PMID: 18343839 DOI: 10.1099/vir.0.83537-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human metapneumovirus (HMPV) and avian metapneumovirus (AMPV) have a similar genome organization and protein composition, but a different host range. AMPV subgroup C (AMPV-C) is more closely related to HMPV than other AMPVs. To investigate the specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses, a minireplicon system was generated for AMPV-C and used in combination with minireplicon systems for HMPV lineages A1 and B1. Viral RNA-like molecules representing HMPV-A1 and -B1, AMPV-A and -C and human respiratory syncytial virus were replicated efficiently by polymerase complexes of HMPV-A1 and -B1 and AMPV-C, but not by polymerase complexes of bovine parainfluenza virus 3. Upon exchange of HMPV and AMPV-C polymerase complex components, all chimeric polymerase complexes were functional; exchange between HMPVs did not result in altered polymerase activity, whereas exchange between HMPVs and AMPV-C did. Recombinant HMPV-B1 viruses in which polymerase genes were exchanged with those of HMPV-A1 replicated with normal kinetics in vitro, whilst replacement with AMPV-C genes resulted in moderate differences in virus replication. In hamsters, recombinant HMPV-B1 viruses in which individual polymerase genes were exchanged with those of AMPV-C were attenuated, irrespective of the results obtained with minireplicon systems or in vitro replication assays. This study provides insight into the specificity and functional interaction of polymerase complex proteins of human and avian metapneumoviruses, but neither minireplicon systems nor in vitro replication kinetics were found to be predictive for attenuation in permissive animals.
Collapse
Affiliation(s)
- Miranda de Graaf
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Sander Herfst
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Eefje J A Schrauwen
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ying Choi
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | - Ron A M Fouchier
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
26
|
Saikia P, Gopinath M, Shaila MS. Phosphorylation status of the phosphoprotein P of rinderpest virus modulates transcription and replication of the genome. Arch Virol 2008; 153:615-26. [DOI: 10.1007/s00705-008-0034-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 12/06/2007] [Indexed: 11/24/2022]
|
27
|
Cowton VM, McGivern DR, Fearns R. Unravelling the complexities of respiratory syncytial virus RNA synthesis. J Gen Virol 2006; 87:1805-1821. [PMID: 16760383 DOI: 10.1099/vir.0.81786-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of paediatric respiratory disease and is the focus of antiviral- and vaccine-development programmes. These goals have been aided by an understanding of the virus genome architecture and the mechanisms by which it is expressed and replicated. RSV is a member of the order Mononegavirales and, as such, has a genome consisting of a single strand of negative-sense RNA. At first glance, transcription and genome replication appear straightforward, requiring self-contained promoter regions at the 3' ends of the genome and antigenome RNAs, short cis-acting elements flanking each of the genes and one polymerase. However, from these minimal elements, the virus is able to generate an array of capped, methylated and polyadenylated mRNAs and encapsidated antigenome and genome RNAs, all in the appropriate ratios to facilitate virus replication. The apparent simplicity of genome expression and replication is a consequence of considerable complexity in the polymerase structure and its cognate cis-acting sequences; here, our understanding of mechanisms by which the RSV polymerase proteins interact with signals in the RNA template to produce different RNA products is reviewed.
Collapse
MESH Headings
- Base Sequence
- DNA-Directed RNA Polymerases/metabolism
- Genome, Viral
- Humans
- Models, Biological
- Molecular Sequence Data
- Mononegavirales/genetics
- Mononegavirales/physiology
- Nucleocapsid/biosynthesis
- Nucleocapsid/genetics
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/pathogenicity
- Respiratory Syncytial Virus, Human/physiology
- Transcription, Genetic
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Vanessa M Cowton
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - David R McGivern
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - Rachel Fearns
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
28
|
Asenjo A, Rodríguez L, Villanueva N. Determination of phosphorylated residues from human respiratory syncytial virus P protein that are dynamically dephosphorylated by cellular phosphatases: a possible role for serine 54. J Gen Virol 2005; 86:1109-1120. [PMID: 15784905 DOI: 10.1099/vir.0.80692-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 241 aa human respiratory synctyial virus (HRSV) Long strain P protein is phosphorylated at serines 116, 117 and/or 119, and 232. Phosphates added to these residues have slow turnover and can be detected in the absence of protein phosphatase inhibition. Inhibition of phosphatases PP1 and PP2A increases the level of phosphorylation at serines 116, 117 and/or 119, suggesting a more rapid turnover for phosphates added to these residues compared to that of S232. High-turnover phosphorylation is detected in the P-protein NH2-terminal region, mainly at S54 and, to a lesser extent, at S39, in the Long strain. When the P protein bears the T46I substitution (in the remaining HRSV strains), phosphates are added to S30, S39, S45 and S54. Phosphatase PP1 removes phosphate at residues in the central part of the P-protein molecule, whereas those in the NH2-terminal region are removed by phosphatase PP2A. The significance of the phosphorylation of the NH2-terminal region residues for some P-protein functions was studied. The results indicated that this modification is not essential for P-protein oligomerization or for its role in viral RNA synthesis. Nonetheless, dephosphorylation at S54 could facilitate P-M protein interactions that probably occur during the egress of viral particles.
Collapse
Affiliation(s)
- Ana Asenjo
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2, Majadahonda, E-28220 Madrid, Spain
| | - Lorena Rodríguez
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2, Majadahonda, E-28220 Madrid, Spain
| | - Nieves Villanueva
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2, Majadahonda, E-28220 Madrid, Spain
| |
Collapse
|
29
|
Mason SW, Lawetz C, Gaudette Y, Dô F, Scouten E, Lagacé L, Simoneau B, Liuzzi M. Polyadenylation-dependent screening assay for respiratory syncytial virus RNA transcriptase activity and identification of an inhibitor. Nucleic Acids Res 2004; 32:4758-67. [PMID: 15356293 PMCID: PMC519107 DOI: 10.1093/nar/gkh809] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA-dependent RNA polymerase from respiratory syncytial virus (RSV) is a multi-subunit ribonucleoprotein (RNP) complex that, in addition to synthesizing the full 15 222 nt viral genomic RNA, is able to synthesize all 10 viral mRNAs. We have prepared crude RNP from RSV-infected HEp-2 cells, based on a method previously used for Newcastle disease virus, and established a novel polyadenylation-dependent capture [poly(A) capture] assay to screen for potential inhibitors of RSV transcriptase activity. In this homogeneous assay, radiolabeled full-length polyadenylated mRNAs produced by the viral RNP are detected through capture on immobilized biotinylated oligo(dT) in a 96-well streptavidin-coated FlashPlate. Possible inhibitors identified with this assay could interfere at any step required for the production of complete RSV mRNAs, including transcription, polyadenylation and, potentially, co-transcriptional guanylylation. A specific inhibitor of RSV transcriptase with antiviral activity was identified through screening of this assay.
Collapse
Affiliation(s)
- Stephen W Mason
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd, Laval, Québec H7S 2G5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Castagné N, Barbier A, Bernard J, Rezaei H, Huet JC, Henry C, Costa BD, Eléouët JF. Biochemical characterization of the respiratory syncytial virus P–P and P–N protein complexes and localization of the P protein oligomerization domain. J Gen Virol 2004; 85:1643-1653. [PMID: 15166449 DOI: 10.1099/vir.0.79830-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA-dependent RNA polymerase complex of respiratory syncytial virus (RSV) is composed of the large polymerase (L), the phosphoprotein (P), the nucleocapsid protein (N) and the co-factors M2-1 and M2-2. The P protein plays a central role within the replicase–transcriptase machinery, forming homo-oligomers and complexes with N and L. In order to study P–P and N–P complexes, and the role of P phosphorylation in these interactions, the human RSV P and N proteins were expressed in E. coli as His-tagged or GST-fusion proteins. The non-phosphorylated status of recombinant P protein was established by mass spectrometry. GST-P and GST-N fusion proteins were able to interact with RSV proteins extracted from infected cells in a GST pull-down assay. When co-expressed in bacteria, GST-P and His-P were co-purified by glutathione-Sepharose affinity, showing that the RSV P protein can form oligomers within bacteria. This result was confirmed by chemical cross-linking experiments and gel filtration studies. The P oligomerization domain was investigated by a GST pull-down assay using a series of P deletion constructs. This domain was mapped to a small region situated in the central part of P (aa 120–150), which localized in a computer-predicted coiled-coil domain. When co-expressed in bacteria, RSV N and P proteins formed a soluble complex that prevented non-specific binding of N to bacterial RNA. Therefore, RSV P protein phosphorylation is not required for the formation of P–P and N–P complexes, and P controls the RNA binding activity of N.
Collapse
Affiliation(s)
- Nathalie Castagné
- Unité de Virologie et Immunologie Moléculaires, INRA, 78350 Jouy-en-Josas, France
| | - Alexandra Barbier
- Unité de Virologie et Immunologie Moléculaires, INRA, 78350 Jouy-en-Josas, France
| | - Julie Bernard
- Unité de Virologie et Immunologie Moléculaires, INRA, 78350 Jouy-en-Josas, France
| | - Human Rezaei
- Unité de Virologie et Immunologie Moléculaires, INRA, 78350 Jouy-en-Josas, France
| | - Jean-Claude Huet
- Unité de Biochimie et Structure des Protéines, INRA, 78350 Jouy-en-Josas, France
| | - Céline Henry
- Unité de Biochimie et Structure des Protéines, INRA, 78350 Jouy-en-Josas, France
| | - Bruno Da Costa
- Unité de Virologie et Immunologie Moléculaires, INRA, 78350 Jouy-en-Josas, France
| | | |
Collapse
|
31
|
Kaushik R, Shaila MS. Cellular casein kinase II-mediated phosphorylation of rinderpest virus P protein is a prerequisite for its role in replication/transcription of the genome. J Gen Virol 2004; 85:687-691. [PMID: 14993654 DOI: 10.1099/vir.0.19702-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphoprotein P of rinderpest virus (RPV), when expressed in E. coli, is present in the unphosphorylated form. Bacterially expressed P protein was phosphorylated by a eukaryotic cellular extract, and casein kinase II (CK II) was identified as the cellular kinase involved in phosphorylation. In vitro phosphorylation of P-deletion mutants identified the N terminus as a phosphorylation domain. In vivo phosphorylation of single or multiple serine mutants of P protein identified serine residues at 49, 88 and 151 as phospho-acceptor residues. The role of P protein phosphorylation in virus replication/transcription was evaluated using the RPV minigenome system and replication/transcription of a reporter gene in vivo. P protein phosphorylation was shown to be essential for in vivo replication/transcription since phosphorylation-null mutants do not support expression of a reporter gene. Transfection of increased amounts of phosphorylation-null mutant did not support minigenome replication/transcription in vivo.
Collapse
Affiliation(s)
- Rajnish Kaushik
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - M S Shaila
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
32
|
Basak S, Raha T, Chattopadhyay D, Majumder A, Shaila MS, Chattopadhyay DJ. Leader RNA binding ability of Chandipura virus P protein is regulated by its phosphorylation status: a possible role in genome transcription-replication switch. Virology 2003; 307:372-85. [PMID: 12667805 DOI: 10.1016/s0042-6822(02)00093-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular events associated with the transcriptive and replicative cycle of negative-stranded RNA viruses are still an enigma. We took Chandipura virus, a member of the Rhabdoviridae family, as our model system to demonstrate that Phosphoprotein P, besides Nucleocapsid protein N, also acts as a leader RNA-binding protein in its unphosphorylated form, whereas CKII-mediated phosphorylation totally abrogates its RNA-binding ability. However, interaction between P protein and leader RNA can be distinguished from N-mediated encapsidation of viral sequences. Furthermore, P protein bound to leader chain can successively recruit N protein on RNA while itself being replaced. We also observed that the accumulation of phosphorylation null mutant of P protein in cells results in enhanced genome RNA replication with concurrent increase in the viral yield. All these results led us to propose a model explaining viral transcription-replication switch where Phosphoprotein P acts as a modulator of genome transcription and replication by its ability to bind to the nascent leader RNA in its unphosphorylated form, promoting read-through of the transcription termination signals and initiating nucleocapsid assembly on the nascent RNA chain.
Collapse
Affiliation(s)
- Soumen Basak
- Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, Department of Biochemistry, Calcutta University, Kolkata, India
| | | | | | | | | | | |
Collapse
|
33
|
Lu B, Ma CH, Brazas R, Jin H. The major phosphorylation sites of the respiratory syncytial virus phosphoprotein are dispensable for virus replication in vitro. J Virol 2002; 76:10776-84. [PMID: 12368320 PMCID: PMC136636 DOI: 10.1128/jvi.76.21.10776-10784.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoprotein (P protein) of respiratory syncytial virus (RSV) is a key component of the viral RNA-dependent RNA polymerase complex. The protein is constitutively phosphorylated at the two clusters of serine residues (116, 117, and 119 [116/117/119] and 232 and 237 [232/237]). To examine the role of phosphorylation of the RSV P protein in virus replication, these five serine residues were altered to eliminate their phosphorylation potential, and the mutant proteins were analyzed for their functions with a minigenome assay. The reporter gene expression was reduced by 20% when all five phosphorylation sites were eliminated. Mutants with knockout mutations at two phosphorylation sites (S232A/S237A [PP2]) and at five phosphorylation sites (S116L/S117R/S119L/S232A/S237A [PP5]) were introduced into the infectious RSV A2 strain. Immunoprecipitation of (33)P(i)-labeled infected cells showed that P protein phosphorylation was reduced by 80% for rA2-PP2 and 95% for rA2-PP5. The interaction between the nucleocapsid (N) protein and P protein was reduced in rA2-PP2- and rA2-PP5-infected cells by 30 and 60%, respectively. Although the two recombinant viruses replicated well in Vero cells, rA2-PP2 and, to a greater extent, rA2-PP5, replicated poorly in HEp-2 cells. Virus budding from the infected HEp-2 cells was affected by dephosphorylation of P protein, because the majority of rA2-PP5 remained cell associated. In addition, rA2-PP5 was also more attenuated than rA2-PP2 in replication in the respiratory tracts of mice and cotton rats. Thus, our data suggest that although the major phosphorylation sites of RSV P protein are dispensable for virus replication in vitro, phosphorylation of P protein is required for efficient virus replication in vitro and in vivo.
Collapse
Affiliation(s)
- Bin Lu
- Medimmune Vaccines, Inc., Mountain View, California 94043, USA
| | | | | | | |
Collapse
|
34
|
Bitko V, Barik S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol 2001; 1:34. [PMID: 11801185 PMCID: PMC64570 DOI: 10.1186/1471-2180-1-34] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2001] [Accepted: 12/20/2001] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Post-transcriptional gene silencing (PTGS) by short interfering RNA has opened up new directions in the phenotypic mutation of cellular genes. However, its efficacy on non-nuclear genes and its effect on the interferon pathway remain unexplored. Since directed mutation of RNA genomes is not possible through conventional mutagenesis, we have tested sequence-specific 21-nucleotide long double-stranded RNAs (dsRNAs) for their ability to silence cytoplasmic RNA genomes. RESULTS Short dsRNAs were generated against specific mRNAs of respiratory syncytial virus, a nonsegmented negative-stranded RNA virus with a cytoplasmic life cycle. At nanomolar concentrations, the dsRNAs specifically abrogated expression of the corresponding viral proteins, and produced the expected mutant phenotype ex vivo. The dsRNAs did not induce an interferon response, and did not inhibit cellular gene expression. The ablation of the viral proteins correlated with the loss of the specific mRNAs. In contrast, viral genomic and antigenomic RNA, which are encapsidated, were not directly affected. CONCLUSIONS Synthetic inhibitory dsRNAs are effective in specific silencing of RNA genomes that are exclusively cytoplasmic and transcribed by RNA-dependent RNA polymerases. RNA-directed RNA gene silencing does not require cloning, expression, and mutagenesis of viral cDNA, and thus, will allow the generation of phenotypic null mutants of specific RNA viral genes under normal infection conditions and at any point in the infection cycle. This will, for the first time, permit functional genomic studies, attenuated infections, reverse genetic analysis, and studies of host-virus signaling pathways using a wild type RNA virus, unencumbered by any superinfecting virus.
Collapse
Affiliation(s)
- Vira Bitko
- Department of Biochemistry and Molecular Biology (MSB 2370), University of South Alabama, College of Medicine, 307 University Blvd., Mobile, AL 36688-0002, USA
| | - Sailen Barik
- Department of Biochemistry and Molecular Biology (MSB 2370), University of South Alabama, College of Medicine, 307 University Blvd., Mobile, AL 36688-0002, USA
| |
Collapse
|
35
|
Cartee TL, Wertz GW. Respiratory syncytial virus M2-1 protein requires phosphorylation for efficient function and binds viral RNA during infection. J Virol 2001; 75:12188-97. [PMID: 11711610 PMCID: PMC116116 DOI: 10.1128/jvi.75.24.12188-12197.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The M2-1 protein of respiratory syncytial (RS) virus is a transcriptional processivity and antitermination factor. The M2-1 protein has a Cys3His1 zinc binding motif which is essential for function, is phosphorylated, and has been shown to interact with the RS virus nucleocapsid (N) protein. In the work reported here, we determined the sites at which the M2-1 protein was phosphorylated and investigated the importance of these phosphorylated residues for M2-1 function in transcription. By combining protease digestion, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and site-directed mutagenesis, we identified the phosphorylated residues as serines 58 and 61, not threonine 56 and serine 58 as previously reported. Serines 58 and 61 and the surrounding amino acids are in a consensus sequence for phosphorylation by casein kinase I. Consistent with this, we showed that the unphosphorylated M2-1 protein synthesized in Escherichia coli could be phosphorylated in vitro by casein kinase I. The effect of eliminating phosphorylation by site-specific mutagenesis of serines 58 and 61 on the function of the M2-1 protein in transcription of RS virus subgenomic replicons was assayed. The activities of the M2-1 protein phosphorylation mutants in transcriptional antitermination were tested over a range of concentrations and were found to be substantially inhibited at all concentrations. The data show that phosphorylation is important for the M2-1 protein function in transcription. However, mutation of the M2-1 phosphorylation sites did not interfere with the ability of the M2-1 protein to interact with the N protein in transfected cells. The interaction of the M2-1 and N proteins in cotransfected cells was found to be sensitive to RNase A, indicating that the M2-1-N protein interaction was mediated via RNA. Furthermore, the M2-1 protein was shown to bind monocistronic and polycistronic RS virus mRNAs during infection.
Collapse
Affiliation(s)
- T L Cartee
- Department of Microbiology, University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
36
|
Pietschmann T, Lohmann V, Rutter G, Kurpanek K, Bartenschlager R. Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J Virol 2001; 75:1252-64. [PMID: 11152498 PMCID: PMC114031 DOI: 10.1128/jvi.75.3.1252-1264.2001] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Subgenomic selectable RNAs of the hepatitis C virus (HCV) have recently been shown to self-replicate to high levels in the human hepatoma cell line Huh-7 (V. Lohmann, F. Körner, J. O. Koch, U. Herian, L. Theilmann, and R. Bartenschlager, Science 285:110-113, 1999). Taking advantage of this cell culture system that allows analyses of the interplay between HCV replication and the host cell, in this study we characterized two replicon-harboring cell lines that have been cultivated for more than 1 year. During this time, we observed no signs of cytopathogenicity such as reduction of growth rates or ultrastructural changes. High levels of HCV RNAs were preserved in cells passaged under continuous selection. When selective pressure was omitted replicon levels dropped, but depending on culture conditions the RNAs persisted for more than 10 months. A tight coupling of the amounts of HCV RNA and proteins to host cell growth was observed. Highest levels were found in exponentially growing cells, followed by a sharp decline in resting cells, suggesting that cellular factors required for RNA replication and/or translation vary in abundance and become limiting in resting cells. Studies of polyprotein processing revealed rapid cleavages at the NS3/4A and NS5A/B sites resulting in a rather stable NS4AB5A precursor that was processed slowly into individual products. Half-lives (t(1/2)s) of mature proteins ranged from 10 to 16 h, with the exception of the hyperphosphorylated form of NS5A, which was less stable (t(1/2), approximately 7 h). Results of immunoelectron microscopy revealed an association of the majority of viral proteins with membranes of the endoplasmic reticulum, suggesting that this is the site of RNA replication. In summary, replicon-bearing cells are a good model for viral persistence, and they allow the study of various aspects of the HCV life cycle.
Collapse
Affiliation(s)
- T Pietschmann
- Institute for Virology, Johannes-Gutenberg University Mainz, 55131 Mainz, Germany
| | | | | | | | | |
Collapse
|
37
|
Abstract
Phosphorylation of the negative-sense RNA virus phosphoproteins is highly conserved, implying functional significance. Sendai virus (SV) phosphoprotein (P) is constitutively phosphorylated at S249. Abrogation of the SV P primary phosphorylation causes phosphorylation of P at alternate sites, creating a problem in determining the function of phosphorylation. We have now identified the alternate phosphorylation sites using two-dimensional phosphopeptide analysis of several deletion and point mutants of the P protein. The alternate phosphorylation sites were mutagenized to create P with (S249combo) or without (combo) primary phosphorylation. The combo protein has less than 10% phosphorylation compared with the wild-type P or S249combo. Functional analysis of the mutant proteins using a Sendai virus minigenome replication system showed that the combo P protein was as proficient in supporting minigenome replication as the wild-type P in cell cultures. These studies suggest that like the primary, the alternate phosphorylation of the P protein is also dispensable for virus replication in cell cultures. Interestingly, the ability of the multiple site mutant of P (combo mutant has eight serine residues changed to alanine residues) to support efficient virus RNA synthesis suggests that the P protein has a high flexibility at least in its sequence and perhaps also in structure.
Collapse
Affiliation(s)
- C j Hu
- Department of Immunology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois, 60612, USA
| | | |
Collapse
|
38
|
Burke E, Mahoney NM, Almo SC, Barik S. Profilin is required for optimal actin-dependent transcription of respiratory syncytial virus genome RNA. J Virol 2000; 74:669-75. [PMID: 10623728 PMCID: PMC111586 DOI: 10.1128/jvi.74.2.669-675.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1999] [Accepted: 10/14/1999] [Indexed: 11/20/2022] Open
Abstract
Transcription of human respiratory syncytial virus (RSV) genome RNA exhibited an obligatory need for the host cytoskeletal protein actin. Optimal transcription, however, required the participation of another cellular protein that was characterized as profilin by a number of criteria. The amino acid sequence of the protein, purified on the basis of its transcription-optimizing activity in vitro, exactly matched that of profilin. RSV transcription was inhibited 60 to 80% by antiprofilin antibody or poly-L-proline, molecules that specifically bind profilin. Native profilin, purified from extracts of lung epithelial cells by affinity binding to a poly-L-proline matrix, stimulated the actin-saturated RSV transcription by 2.5- to 3-fold. Recombinant profilin, expressed in bacteria, stimulated viral transcription as effectively as the native protein and was also inhibited by poly-L-proline. Profilin alone, in the absence of actin, did not activate viral transcription. It is estimated that at optimal levels of transcription, every molecule of viral genomic RNA associates with approximately the following number of protein molecules: 30 molecules of L, 120 molecules of phosphoprotein P, and 60 molecules each of actin and profilin. Together, these results demonstrated for the first time a cardinal role for profilin, an actin-modulatory protein, in the transcription of a paramyxovirus RNA genome.
Collapse
Affiliation(s)
- E Burke
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama 36688-0002, USA
| | | | | | | |
Collapse
|
39
|
Villanueva N, Hardy R, Asenjo A, Yu Q, Wertz G. The bulk of the phosphorylation of human respiratory syncytial virus phosphoprotein is not essential but modulates viral RNA transcription and replication. J Gen Virol 2000; 81:129-33. [PMID: 10640550 DOI: 10.1099/0022-1317-81-1-129] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of variants of the human respiratory syncytial virus (HRSV) phosphoprotein (P protein) to support RNA transcription and replication has been studied by using HRSV-based subgenomic replicons. The serine residues normally phosphorylated in P during HRSV infection have been replaced by other residues. The results indicate that the bulk of phosphorylation of P (98%) is not essential for viral RNA transcription or replication but that phosphorylation can modulate these processes.
Collapse
Affiliation(s)
- N Villanueva
- Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid 28220, Spain.
| | | | | | | | | |
Collapse
|
40
|
Kohl A, di Bartolo V, Bouloy M. The Rift Valley fever virus nonstructural protein NSs is phosphorylated at serine residues located in casein kinase II consensus motifs in the carboxy-terminus. Virology 1999; 263:517-25. [PMID: 10544123 DOI: 10.1006/viro.1999.9978] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The S segment of Rift Valley fever virus (Bunyaviridae, Phlebovirus) codes for two proteins, the nucleoprotein N and the nonstructural protein NSs. The NSs protein is a phosphoprotein of unknown function that is localized in the cytoplasm and the nuclei of infected cells where it forms filamentous structures. To characterize further the protein expressed in VC10 cells infected with the MP12 strain, we analyzed its phosphorylation states and showed that phosphorylated forms were found in both compartments. Cytoplasmic and nuclear NSs were phosphorylated only at serine residues. Phosphopeptide mapping and molecular analysis of mutants obtained by site-directed mutagenesis allowed us to map the major phosphorylation sites of nuclear and cytoplasmic forms of NSs to serine residues 252 and 256, located at the carboxy-terminus in consensus sequences for casein kinase II. A similar map was obtained when the protein was purified from mosquito cells infected with MP12. In addition, we showed that the purified unphosphorylated NSs protein expressed from pET-NSs plasmid in a coupled transcription-translation reaction containing Escherichia coli S30 extracts did not possess autophosphorylation activity but was phosphorylated in vitro after incubation with recombinant casein kinase II.
Collapse
Affiliation(s)
- A Kohl
- Unité des Arbovirus et Virus des Fièvres Hémorragiques, Unité d'Immunologie Moléculaire, Institut Pasteur, 25 Rue du Dr Roux, Paris, 75724, France
| | | | | |
Collapse
|
41
|
Hu CJ, Kato A, Bowman MC, Kiyotani K, Yoshida T, Moyer SA, Nagai Y, Gupta KC. Role of primary constitutive phosphorylation of Sendai virus P and V proteins in viral replication and pathogenesis. Virology 1999; 263:195-208. [PMID: 10544094 DOI: 10.1006/viro.1999.9953] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional analysis of the primary constitutive phosphorylation of Sendai virus P and V proteins was performed using both in vitro and in vivo systems. Sendai virus minigenome transcription and replication in transfected cells were not significantly affected in the presence of primary phosphorylation deficient P protein (S249A, S249D, P250A) as measured by either the luciferase activity or the Northern blot analysis. Similarly, recombinant Sendai viruses lacking the primary phosphorylation in P grew to titers close to the wild-type virus in cell cultures and in the natural host of Sendai virus, the mouse. Mutant viruses showed no altered pathogenesis in mice lungs. Oligomerization of P by binding WT P or mutant P to GST-P (WT) Sepharose beads revealed that the primary phosphorylation was not crucial for P protein oligomerization. Similar to P protein primary phosphorylation, the V protein primary phosphorylation at serine249 was not essential for minigenome transcription and replication, as both WT and mutant V proteins were found equally inhibitory to the minigenome replication. These results show that the primary phosphorylation of P protein has no essential role in Sendai virus transcription, replication, and pathogenesis.
Collapse
Affiliation(s)
- C J Hu
- Department of Immunology/Microbiology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Dupuy LC, Dobson S, Bitko V, Barik S. Casein kinase 2-mediated phosphorylation of respiratory syncytial virus phosphoprotein P is essential for the transcription elongation activity of the viral polymerase; phosphorylation by casein kinase 1 occurs mainly at Ser(215) and is without effect. J Virol 1999; 73:8384-92. [PMID: 10482589 PMCID: PMC112856 DOI: 10.1128/jvi.73.10.8384-8392.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The major site of in vitro phosphorylation by casein kinase 2 (CK2) was the conserved Ser(232) in the P proteins of human, bovine, and ovine strains of respiratory syncytial virus (RSV). Enzymatic removal of this phosphate group from the P protein instantly halted transcription elongation in vitro. Transcription reconstituted in the absence of P protein or in the presence of phosphate-free P protein produced abortive initiation products but no full-length transcripts. A recombinant P protein in which Ser(232) was mutated to Asp exhibited about half of the transcriptional activity of the wild-type phosphorylated protein, suggesting that the negative charge of the phosphate groups is an important contributor to P protein function. Use of a temperature-sensitive CK2 mutant yeast revealed that in yeast, phosphorylation of recombinant P by non-CK2 kinase(s) occurs mainly at Ser(215). In vitro, P protein could be phosphorylated by purified CK1 at Ser(215) but this phosphorylation did not result in transcriptionally active P protein. A triple mutant P protein in which Ser(215), Ser(232), and Ser(237) were all mutated to Ala was completely defective in phosphorylation in vitro as well as ex vivo. The xanthate compound D609 inhibited CK2 but not CK1 in vitro and had a very modest effect on P protein phosphorylation and RSV yield ex vivo. Together, these results suggest a role for CK2-mediated phosphorylation of the P protein in the promoter clearance and elongation properties of the viral RNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- L C Dupuy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | | | | | | |
Collapse
|
43
|
Koch JO, Bartenschlager R. Modulation of hepatitis C virus NS5A hyperphosphorylation by nonstructural proteins NS3, NS4A, and NS4B. J Virol 1999; 73:7138-46. [PMID: 10438800 PMCID: PMC104237 DOI: 10.1128/jvi.73.9.7138-7146.1999] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
NS5A of the hepatitis C virus (HCV) is a highly phosphorylated protein involved in resistance against interferon and required most likely for replication of the viral genome. Phosphorylation of this protein is mediated by a cellular kinase(s) generating multiple proteins with different electrophoretic mobilities. In the case of the genotype 1b isolate HCV-J, in addition to the basal phosphorylated NS5A (designated pp56), a hyperphosphorylated form (pp58) was found on coexpression of NS4A (T. Kaneko, Y. Tanji, S. Satoh, M. Hijikata, S. Asabe, K. Kimura, and K. Shimotohno, Biochem. Biophys. Res. Commun. 205:320-326, 1994). Using a comparative analysis of two full-length genomes of genotype 1b, competent or defective for NS5A hyperphosphorylation, we investigated the requirements for this NS5A modification. We found that hyperphosphorylation occurs when NS5A is expressed as part of a continuous NS3-5A polyprotein but not when it is expressed on its own or trans complemented with one or several other viral proteins. Results obtained with chimeras of both genomes show that single amino acid substitutions within NS3 that do not affect polyprotein cleavage can enhance or reduce NS5A hyperphosphorylation. Furthermore, mutations in the central or carboxy-terminal NS4A domain as well as small deletions in NS4B can also reduce or block hyperphosphorylation without affecting polyprotein processing. These requirements most likely reflect the formation of a highly ordered NS3-5A multisubunit complex responsible for the differential phosphorylation of NS5A and probably also for modulation of its biological activities.
Collapse
Affiliation(s)
- J O Koch
- Institute for Virology, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | |
Collapse
|
44
|
Lenard J. Host cell protein kinases in nonsegmented negative-strand virus (mononegavirales) infection. Pharmacol Ther 1999; 83:39-48. [PMID: 10501594 DOI: 10.1016/s0163-7258(99)00016-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphorylation of one or more viral proteins is probably an essential step in the life cycle of every member of the nonsegmented negative-strand RNA virus (mononegavirales [MNV]) group. Since no virally encoded protein kinases have been discovered in this group, phosphorylation is effected entirely by host cell kinases. The virally encoded P proteins of the MNV are the only ones consistently phosphorylated with a stoichiometry > or =1. The P protein of vesicular stomatitis virus (VSV), and perhaps also of respiratory syncytial virus, are the only ones for which a function of phosphorylation has been established. Phosphorylation by casein kinase 2 at one or more identified sites in the VSV P protein activates transcriptional activity by promoting formation of a homotrimer, which is then capable of binding the RNA polymerase and attaching it to the N protein-RNA template. A second phosphorylation of VSV P protein by a different kinase also occurs, dependent upon prior modification by casein kinase 2, but its function is not definitely known. Phosphorylation of the other MNV P proteins may serve a different purpose. No evidence has been obtained yet for any function for phosphorylation of any other MNV protein.
Collapse
Affiliation(s)
- J Lenard
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
45
|
Hwang LN, Englund N, Das T, Banerjee AK, Pattnaik AK. Optimal replication activity of vesicular stomatitis virus RNA polymerase requires phosphorylation of a residue(s) at carboxy-terminal domain II of its accessory subunit, phosphoprotein P. J Virol 1999; 73:5613-20. [PMID: 10364310 PMCID: PMC112619 DOI: 10.1128/jvi.73.7.5613-5620.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoprotein, P, of vesicular stomatitis virus (VSV) is a key subunit of the viral RNA-dependent RNA polymerase complex. The protein is phosphorylated at multiple sites in two different domains. We recently showed that specific serine and threonine residues within the amino-terminal acidic domain I of P protein must be phosphorylated for in vivo transcription activity, but not for replication activity, of the polymerase complex. To examine the role of phosphorylation of the carboxy-terminal domain II residues of the P protein in transcription and replication, we have used a panel of mutant P proteins in which the phosphate acceptor sites (Ser-226, Ser-227, and Ser-233) were altered to alanines either individually or in various combinations. Analyses of the mutant proteins for their ability to support replication of a VSV minigenomic RNA suggest that phosphorylation of either Ser-226 or Ser-227 is necessary for optimal replication activity of the protein. The mutant protein (P226/227) in which both of these residues were altered to alanines was only about 8% active in replication compared to the wild-type (wt) protein. Substitution of alanine for Ser-233 did not have any adverse effect on replication activity of the protein. In contrast, all the mutant proteins showed activities similar to that of the wt protein in transcription. These results indicate that phosphorylation of the carboxy-terminal domain II residues of P protein are required for optimal replication activity but not for transcription activity. Furthermore, substitution of glutamic acid residues for Ser-226 and Ser-227 resulted in a protein that was only 14% active in replication but almost fully active in transcription. Taken together, these results, along with our earlier studies, suggest that phosphorylation of residues at two different domains in the P protein regulates its activity in transcription and replication of the VSV genome.
Collapse
Affiliation(s)
- L N Hwang
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
46
|
Burke E, Dupuy L, Wall C, Barik S. Role of cellular actin in the gene expression and morphogenesis of human respiratory syncytial virus. Virology 1998; 252:137-48. [PMID: 9875324 DOI: 10.1006/viro.1998.9471] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytoskeletal protein actin and nonactin cellular proteins were essential for human respiratory syncytial virus (RSV) gene expression. In vitro, specific antibodies against actin inhibited RSV transcription, whereas antibodies against other cytoskeletal proteins had little or no effect. Affinity purified cellular actin or bacterially expressed recombinant actin activated RSV transcription. However, optimal transcription required additional cellular protein(s) that appeared to function as accessory factor(s) for actin. In the absence of actin, these proteins did not activate viral transcription. Purified viral nucleocapsids contained actin, but no cytokeratin, tubulin, or vimentin. Cytochalasin D or DNasel--agents that destabilize actin polymers--had little effect on RSV transcription. RSV infection itself seemed to alter the structure of the cellular actin filaments. Treatment of infected cells with cytochalasin D produced a more severe disruption of the filaments and drastically reduced the production of infectious virus particles but still had little effect on intracellular synthesis of viral macromolecules. Thus actin seems to serve a dual role in RSV life cycle: its monomeric form as well as polymeric form activate viral transcription, while only the microfilament form may take part in viral morphogenesis and/or budding.
Collapse
Affiliation(s)
- E Burke
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile 36688-0002, USA
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- R Sedlmeier
- Abteilung Virusforschung, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
48
|
Ulloa L, Serra R, Asenjo A, Villanueva N. Interactions between cellular actin and human respiratory syncytial virus (HRSV). Virus Res 1998; 53:13-25. [PMID: 9617766 DOI: 10.1016/s0168-1702(97)00121-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin the main component of the cellular microfilament network, is present in human respiratory syncytial virus (HRSV) purified virions, as an internal component. This fact and the results of immunoprecipitation studies indicate that during HRSV infection in HEp-2 cells there are interactions between cellular actin and viral components, that can promote a transitory increase in the polymerization of synthetized actin, mainly of the beta isotype. This increased actin polymerization can be related with the formation of cytoplasmic extensions, that contain beta actin and viral particles observed in the HRSV infected HEp-2 cells. The formation of these structures may indicate that HRSV has developed an actin-based motility system similar to that described for other viral and bacterial systems.
Collapse
Affiliation(s)
- L Ulloa
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autonóma de Madrid, Cantoblanco, Spain
| | | | | | | |
Collapse
|
49
|
Pattnaik AK, Hwang L, Li T, Englund N, Mathur M, Das T, Banerjee AK. Phosphorylation within the amino-terminal acidic domain I of the phosphoprotein of vesicular stomatitis virus is required for transcription but not for replication. J Virol 1997; 71:8167-75. [PMID: 9343167 PMCID: PMC192273 DOI: 10.1128/jvi.71.11.8167-8175.1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphorylation by casein kinase II at three specific residues (S-60, T-62, and S-64) within the acidic domain I of the P protein of Indiana serotype vesicular stomatitis virus has been shown to be critical for in vitro transcription activity of the viral RNA polymerase (P-L) complex. To examine the role of phosphorylation of P protein in transcription as well as replication in vivo, we used a panel of mutant P proteins in which the phosphate acceptor sites in domain I were substituted with alanines or other amino acids. Analyses of the alanine-substituted mutant P proteins for the ability to support defective interfering RNA replication in vivo suggest that phosphorylation of these residues does not play a significant role in the replicative function of the P protein since these mutant P proteins supported replication at levels > or = 70% of the wild-type P-protein level. However, the transcription function of most of the mutant proteins in vivo was severely impaired (2 to 10% of the wild-type P-protein level). The level of transcription supported by the mutant P protein (P(60/62/64)) in which all phosphate acceptor sites have been mutated to alanines was at best 2 to 3% of that of the wild-type P protein. Increasing the amount of P(60/62/64) expression in transfected cells did not rescue significant levels of transcription. Substitution with other amino acids at these sites had various effects on replication and transcription. While substitution with threonine residues (P(TTT)) had no apparent effect on transcription (113% of the wild-type level) or replication (81% of the wild-type level), substitution with phenylalanine (P(FFF)) rendered the protein much less active in transcription (< 5%). Substitution with arginine residues led to significantly reduced activity in replication (6%), whereas glutamic acid substituted P protein (P(EEE)) supported replication (42%) and transcription (86%) well. In addition, the mutant P proteins that were defective in replication (P(RRR)) or transcription (P(60/62/64)) did not behave as transdominant repressors of replication or transcription when coexpressed with wild-type P protein. From these results, we conclude that phosphorylation of domain I residues plays a major role in in vivo transcription activity of the P protein, whereas in vivo replicative function of the protein does not require phosphorylation. These findings support the contention that different phosphorylated states of the P protein regulate the transcriptase and replicase functions of the polymerase protein, L.
Collapse
Affiliation(s)
- A K Pattnaik
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33101, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Reed KE, Xu J, Rice CM. Phosphorylation of the hepatitis C virus NS5A protein in vitro and in vivo: properties of the NS5A-associated kinase. J Virol 1997; 71:7187-97. [PMID: 9311791 PMCID: PMC192058 DOI: 10.1128/jvi.71.10.7187-7197.1997] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NS5A derived from a hepatitis C virus (HCV) genotype 1b isolate has previously been shown to undergo phosphorylation on serine residues (T. Kaneko, Y. Tanji, S. Satoh, M. Hijikata, S. Asabe, K. Kimura, and K. Shimotohno, Biochem. Biophys. Res. Commun. 205:320-326, 1994). In this report, phosphorylation of NS5A derived from HCV isolates of the 1a and distantly related 2a genotypes is demonstrated. Phosphoamino acid analysis of NS5A from the 1a isolate indicated that phosphorylation occurs predominantly on serine, with a minor fraction of threonine residues also being phosphorylated. NS5A phosphorylation was observed in diverse cell types, including COS-1, BHK-21, HeLa, and the hepatoma cell line HuH-7. Phosphorylation of a glutathione S-transferase (GST)/HCV-H NS5A fusion protein was also demonstrated in an in vitro kinase assay. This activity seemed to be highest when the pH of the reaction was neutral or slightly alkaline and displayed a preference for Mn2+ over Mg2+, with an optimum concentration of approximately 10 mM Mn2+. Somewhat surprisingly, in vitro phosphorylation of NS5A was inhibited by the addition of > or = 0.25 mM Ca2+ to reaction buffer containing Mn2+ and/or Mg2+. Comparison of phosphopeptide maps of NS5A phosphorylated in vitro and in cultured cells showed that most of the phosphopeptides comigrated, suggesting that one or more kinases involved in NS5A phosphorylation in vivo and in vitro are the same. The effects of various kinase inhibitors on NS5A phosphorylation were consistent with a kinase activity belonging to the CMGC group of serine-threonine kinases. The development of an in vitro kinase assay for NS5A phosphorylation should facilitate identification of kinase(s) responsible for its phosphorylation and of phosphorylation sites which may influence the function of NS5A in HCV propagation.
Collapse
Affiliation(s)
- K E Reed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | | | |
Collapse
|