1
|
Host AAA+ ATPase TER94 Plays Critical Roles in Building the Baculovirus Viral Replication Factory and Virion Morphogenesis. J Virol 2020; 94:JVI.01674-19. [PMID: 31896597 DOI: 10.1128/jvi.01674-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
TER94 is a multifunctional AAA+ ATPase crucial for diverse cellular processes, especially protein quality control and chromatin dynamics in eukaryotic organisms. Many viruses, including coronavirus, herpesvirus, and retrovirus, coopt host cellular TER94 for optimal viral invasion and replication. Previous proteomics analysis identified the association of TER94 with the budded virions (BVs) of baculovirus, an enveloped insect large DNA virus. Here, the role of TER94 in the prototypic baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) life cycle was investigated. In virus-infected cells, TER94 accumulated in virogenic stroma (VS) at the early stage of infection and subsequently partially rearranged in the ring zone region. In the virions, TER94 was associated with the nucleocapsids of both BV and occlusion-derived virus (ODV). Inhibition of TER94 ATPase activity significantly reduced viral DNA replication and BV production. Electron/immunoelectron microscopy revealed that inhibition of TER94 resulted in the trapping of nucleocapsids within cytoplasmic vacuoles at the nuclear periphery for BV formation and blockage of ODV envelopment at a premature stage within infected nuclei, which appeared highly consistent with its pivotal function in membrane biogenesis. Further analyses showed that TER94 was recruited to the VS or subnuclear structures through interaction with viral early proteins LEF3 and helicase, whereas inhibition of TER94 activity blocked the proper localization of replication-related viral proteins and morphogenesis of VS, providing an explanation for its role in viral DNA replication. Taken together, these data indicated the crucial functions of TER94 at multiple steps of the baculovirus life cycle, including genome replication, BV formation, and ODV morphogenesis.IMPORTANCE TER94 constitutes an important AAA+ ATPase that associates with diverse cellular processes, including protein quality control, membrane fusion of the Golgi apparatus and endoplasmic reticulum network, nuclear envelope reformation, and DNA replication. To date, little is known regarding the role(s) of TER94 in the baculovirus life cycle. In this study, TER94 was found to play a crucial role in multiple steps of baculovirus infection, including viral DNA replication and BV and ODV formation. Further evidence showed that the membrane fission/fusion function of TER94 is likely to be exploited by baculovirus for virion morphogenesis. Moreover, TER94 could interact with the viral early proteins LEF3 and helicase to transport and further recruit viral replication-related proteins to establish viral replication factories. This study highlights the critical roles of TER94 as an energy-supplying chaperon in the baculovirus life cycle and enriches our knowledge regarding the biological function of this important host factor.
Collapse
|
2
|
P143 proteins from heterologous nucleopolyhedroviruses induce apoptosis in BM-N cells derived from the silkworm Bombyx mori. Virus Res 2017; 233:70-76. [DOI: 10.1016/j.virusres.2017.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/18/2022]
|
3
|
Identification of amino acid residues of AcMNPV P143 protein involved in rRNA degradation and restricted viral replication in BM-N cells from the silkworm Bombyx mori. Virology 2015; 485:244-51. [PMID: 26313611 DOI: 10.1016/j.virol.2015.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/30/2015] [Accepted: 08/08/2015] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that rRNA undergoes rapid and extensive degradation in Bombyx mori BM-N cells upon infection with AcMNPV, which is triggered by AcMNPV P143 (Ac-P143) protein. Here, we showed that six amino acid residues of Ac-P143 protein, distributing between positions 514 and 599, are involved in rRNA degradation in BM-N cells. The six residues are highly conserved among P143 proteins from AcMNPV, HycuMNPV, SeMNPV and SpltMNPV, which trigger rRNA degradation in BM-N cells upon infection, but are only partially conserved in Bm-P143 protein, which does not induce rRNA degradation in BM-N cells. We also demonstrated that substitution of only two selected residues (N565S/L578F) of Bm-P143 protein with the corresponding Ac-P143 protein residues generates a mutant Bm-P143 protein that is capable of triggering rRNA degradation in BM-N cells. These results indicate that BmNPV evolved a unique P143 protein to evade the antiviral response and allow replication in B. mori cells.
Collapse
|
4
|
Identification of a high-efficiency baculovirus DNA replication origin that functions in insect and mammalian cells. J Virol 2014; 88:13073-85. [PMID: 25187548 DOI: 10.1128/jvi.01713-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The p143 gene from Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) has been found to increase the expression of luciferase, which is driven by the polyhedrin gene promoter, in a plasmid with virus coinfection. Further study indicated that this is due to the presence of a replication origin (ori) in the coding region of this gene. Transient DNA replication assays showed that a specific fragment of the p143 coding sequence, p143-3, underwent virus-dependent DNA replication in Spodoptera frugiperda IPLB-Sf-21 (Sf-21) cells. Deletion analysis of the p143-3 fragment showed that subfragment p143-3.2a contained the essential sequence of this putative ori. Sequence analysis of this region revealed a unique distribution of imperfect palindromes with high AT contents. No sequence homology or similarity between p143-3.2a and any other known ori was detected, suggesting that it is a novel baculovirus ori. Further study showed that the p143-3.2a ori can replicate more efficiently in infected Sf-21 cells than baculovirus homologous regions (hrs), the major baculovirus ori, or non-hr oris during virus replication. Previously, hr on its own was unable to replicate in mammalian cells, and for mammalian viral oris, viral proteins are generally required for their proper replication in host cells. However, the p143-3.2a ori was, surprisingly, found to function as an efficient ori in mammalian cells without the need for any viral proteins. We conclude that p143 contains a unique sequence that can function as an ori to enhance gene expression in not only insect cells but also mammalian cells. IMPORTANCE Baculovirus DNA replication relies on both hr and non-hr oris; however, so far very little is known about the latter oris. Here we have identified a new non-hr ori, the p143 ori, which resides in the coding region of p143. By developing a novel DNA replication-enhanced reporter system, we have identified and located the core region required for the p143 ori. This ori contains a large number of imperfect inverted repeats and is the most active ori in the viral genome during virus infection in insect cells. We also found that it is a unique ori that can replicate in mammalian cells without the assistance of baculovirus gene products. The identification of this ori should contribute to a better understanding of baculovirus DNA replication. Also, this ori is very useful in assisting with gene expression in mammalian cells.
Collapse
|
5
|
Hamajima R, Ito Y, Ichikawa H, Mitsutake H, Kobayashi J, Kobayashi M, Ikeda M. Degradation of rRNA in BM-N cells from the silkworm Bombyx mori during abortive infection with heterologous nucleopolyhedroviruses. J Gen Virol 2013; 94:2102-2111. [PMID: 23784443 DOI: 10.1099/vir.0.053645-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell lines derived from the silkworm, Bombyx mori, are only permissive for B. mori nucleopolyhedrovirus (NPV), with other NPVs generally resulting in abortive infection. Here, we demonstrate that rRNA of B. mori BM-N cells undergoes rapid degradation through site-specific cleavage upon infection with NPVs from Autographa californica (AcMNPV), Hyphantria cunea (HycuMNPV), Spodoptera exigua (SeMNPV) and Spodoptera litura (SpltMNPV). No significant decreases in cellular RNA were observed in Ld652Y, Se301, Sf9, SpIm and S2 cells infected with AcMNPV or HycuMNPV, indicating the response is unique to BM-N cells. A transient expression assay using a cosmid library of the HycuMNPV genome demonstrated that HycuMNPV P143 is responsible for rRNA degradation, which was also detected in BM-N cells transfected with plasmids expressing the P143 proteins from AcMNPV, SeMNPV and SpltMNPV. These results indicate that B. mori evolved to acquire a unique antiviral immune mechanism that is activated by P143 proteins from heterologous NPVs.
Collapse
Affiliation(s)
- Rina Hamajima
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yuya Ito
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Haruka Ichikawa
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Hiroshi Mitsutake
- United Graduate School of Agricultural Sciences, Tottori University, Koyama-cho, Minami 4-101, Tottori 680-8553, Japan
| | - Jun Kobayashi
- Faculty of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan.,United Graduate School of Agricultural Sciences, Tottori University, Koyama-cho, Minami 4-101, Tottori 680-8553, Japan
| | - Michihiro Kobayashi
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Motoko Ikeda
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Ikeda M, Yamada H, Hamajima R, Kobayashi M. Baculovirus genes modulating intracellular innate antiviral immunity of lepidopteran insect cells. Virology 2013; 435:1-13. [DOI: 10.1016/j.virol.2012.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 12/11/2022]
|
7
|
Yu M, Carstens EB. Characterization of an Autographa californica multiple nucleopolyhedrovirus mutant lacking the ac39(p43) gene. Virus Res 2010; 155:300-6. [PMID: 20974197 DOI: 10.1016/j.virusres.2010.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 01/12/2023]
Abstract
Open reading frame 39 [orf39(p43)] of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is present in 10 isolates of the Alphabaculovirus genus. It is highly conserved in sequence and genomic location in the Group I but much less conserved in the Group II viruses. To investigate the potential role of p43 in AcMNPV infection, we constructed and characterized a p43 knockout mutant. The results showed that the p43 region was expressed as RNA from 3h post infection to at least 24h post infection, and its expression pattern was identical to the expression profile of its neighbouring gene, p47. P47 is an essential core gene component of the baculovirus RNA polymerase. The deletion of the p43 region was confirmed by PCR analysis of bacmid DNA and by RT-PCR analysis of RNA purified from p43 knockout infected cells. The results supported the hypothesis that a large transcript, initiating upstream of p47, includes the p43 ORF. Analyses of protein synthesis in p43 knockout infected cells clearly demonstrated that there were no obvious differences in the timing or amount of expression of P47, LEF-3, or VP39. Growth curves showed that infectious budded virus production and occlusion body formation were also not affected by the p43 knockout. We conclude that orf39(p43) is not essential for virus replication in cell culture.
Collapse
Affiliation(s)
- Mei Yu
- Department of Microbiology and Immunology, Queen's University, Kingston, Canada ON K7L 3N6
| | | |
Collapse
|
8
|
Identification of a domain of the baculovirus Autographa californica multiple nucleopolyhedrovirus single-strand DNA-binding protein LEF-3 essential for viral DNA replication. J Virol 2010; 84:6153-62. [PMID: 20357098 DOI: 10.1128/jvi.00115-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) lef-3 is one of nine genes required for viral DNA replication in transient assays. LEF-3 is predicted to contain several domains related to its functions, including nuclear localization, single-strand DNA binding, oligomerization, interaction with P143 helicase, and interaction with a viral alkaline nuclease. To investigate the essential nature of LEF-3 and the roles it may play during baculovirus DNA replication, a lef-3 null bacmid (bKO-lef3) was constructed in Escherichia coli and characterized in Sf21 cells. The results showed that AcMNPV lef-3 is essential for DNA replication, budded virus production, and late gene expression in vivo. Cells transfected with the lef-3 knockout bacmid produced low levels of early proteins (P143, DNA polymerase, and early GP64) and no late proteins (P47, VP39, or late GP64). To investigate the functional role of domains within the LEF-3 open reading frame in the presence of the whole viral genome, plasmids expressing various LEF-3 truncations were transfected into Sf21 cells together with bKO-lef3 DNA. The results showed that expression of AcMNPV LEF-3 amino acids 1 to 125 was sufficient to stimulate viral DNA replication and to support late gene expression. Expression of Choristoneura fumiferana MNPV lef-3 did not rescue any LEF-3 functions. The construction of a LEF-3 amino acid 1 to 125 rescue bacmid revealed that this region of LEF-3, when expressed in the presence of the rest of the viral genome, stimulated viral DNA replication and late and very late protein expression, as well as budded virus production.
Collapse
|
9
|
|
10
|
Au V, Yu M, Carstens EB. Characterization of a baculovirus nuclear localization signal domain in the late expression factor 3 protein. Virology 2009; 385:209-17. [DOI: 10.1016/j.virol.2008.10.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/12/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
|
11
|
Wu W, Lin T, Pan L, Yu M, Li Z, Pang Y, Yang K. Autographa californica multiple nucleopolyhedrovirus nucleocapsid assembly is interrupted upon deletion of the 38K gene. J Virol 2006; 80:11475-85. [PMID: 16987976 PMCID: PMC1642600 DOI: 10.1128/jvi.01155-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
38K (ac98) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved baculovirus gene whose function is unknown. To determine the role of 38K in the baculovirus life cycle, a 38K knockout bacmid containing the AcMNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a 38K repair bacmid was constructed by transposing the 38K open reading frame with its native promoter region into the polyhedrin locus of the 38K knockout bacmid. After transfection of these viruses into Spodoptera frugiperda cells, the 38K knockout bacmid led to a defect in production of infectious budded virus, while the 38K repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Slot blot analysis indicated that 38K deletion did not affect the levels of viral DNA replication. Subsequent immunoelectron-microscopic analysis revealed that masses of electron-lucent tubular structures containing the capsid protein VP39 were present in cells transfected with 38K knockout bacmids, suggesting that nucleocapsid assembly was interrupted. In contrast, the production of normal nucleocapsids was restored when the 38K knockout bacmid was rescued with a copy of 38K. Recombinant virus that expresses 38K fused to green fluorescent protein as a visual marker was constructed to monitor protein transport and localization within the nucleus during infection. Fluorescence was first detected along the cytoplasmic periphery of the nucleus and subsequently localized to the center of the nucleus. These results demonstrate that 38K plays a role in nucleocapsid assembly and is essential for viral replication in the AcMNPV life cycle.
Collapse
Affiliation(s)
- Wenbi Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Helicases are promising antiviral drug targets because their enzymatic activities are essential for viral genome replication, transcription, and translation. Numerous potent inhibitors of helicases encoded by herpes simplex virus, severe acute respiratory syndrome coronavirus, hepatitis C virus, Japanese encephalitis virus, West Nile virus, and human papillomavirus have been recently reported in the scientific literature. Some inhibitors have also been shown to decrease viral replication in cell culture and animal models. This review discusses recent progress in understanding the structure and function of viral helicases to help clarify how these potential antiviral compounds function and to facilitate the design of better inhibitors. The above helicases and all related viral proteins are classified here based on their evolutionary and functional similarities, and the key mechanistic features of each group are noted. All helicases share a common motor function fueled by ATP hydrolysis, but differ in exactly how the motor moves the protein and its cargo on a nucleic acid chain. The helicase inhibitors discussed here influence rates of helicase-catalyzed DNA (or RNA) unwinding by preventing ATP hydrolysis, nucleic acid binding, nucleic acid release, or by disrupting the interaction of a helicase with a required cofactor.
Collapse
Affiliation(s)
- D N Frick
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | | |
Collapse
|
13
|
Chen Z, Carstens EB. Identification of domains in Autographa californica multiple nucleopolyhedrovirus late expression factor 3 required for nuclear transport of P143. J Virol 2005; 79:10915-22. [PMID: 16103143 PMCID: PMC1193572 DOI: 10.1128/jvi.79.17.10915-10922.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) late expression factor 3 (LEF-3) is an essential protein for DNA replication in transient assays. P143, a large DNA-binding protein with DNA-unwinding activity, is also essential for viral DNA replication in vivo. Both LEF-3 and P143 are found in the nucleus of AcMNPV-infected cells, but only LEF-3 localizes to the nucleus when expressed in transfected cells on its own from a plasmid expression vector. P143 requires LEF-3 as a transporter to enter the nucleus. To investigate the possibility that LEF-3 carries a nuclear localization signal domain, we constructed a series of LEF-3 deletion mutants and examined the intracellular localization of the products in plasmid-transfected cells. We discovered that the N-terminal 56 amino acid residues of LEF-3 were sufficient for nuclear localization and that this domain, when fused with either the green fluorescent protein reporter gene or P143, was able to direct these proteins to the nucleus. Transient DNA replication assays demonstrated that fusing the LEF-3 nuclear localization signal domain to P143 did not alter the function of P143 in supporting DNA replication but was not sufficient to substitute for whole LEF-3. These data show that although one role for LEF-3 during virus infection is to transport P143 to the nucleus, LEF-3 performs other essential replication functions once inside the nucleus.
Collapse
Affiliation(s)
- Zhilin Chen
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
14
|
Ito E, Sahri D, Knippers R, Carstens EB. Baculovirus proteins IE-1, LEF-3, and P143 interact with DNA in vivo: a formaldehyde cross-linking study. Virology 2004; 329:337-47. [PMID: 15518813 DOI: 10.1016/j.virol.2004.08.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 08/18/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
IE-1, LEF-3, and P143 are three of six proteins encoded by Autographa californica nucleopolyhedrovirus (AcMNPV) essential for baculovirus DNA replication in transient replication assays. IE-1 is the major baculovirus immediate early transcription regulator. LEF-3 is a single-stranded DNA binding protein (SSB) and P143 is a DNA helicase protein. To investigate their interactions in vivo, we treated AcMNPV-infected Spodoptera frugiperda cells with formaldehyde and separated soluble proteins from chromatin by cell fractionation and cesium chloride equilibrium centrifugation. Up to 70% of the total LEF-3 appeared in the fraction of soluble, probably nucleoplasmic proteins, while almost all P143 and IE-1 were associated with viral chromatin in the nucleus. This suggests that LEF-3 is produced in quantities that are higher than needed for the coverage of single stranded regions that arise during viral DNA replication and is consistent with the hypothesis that LEF-3 has other functions such as the localization of P143 to the nucleus. Using a chromatin immunoprecipitation procedure, we present the first direct evidence of LEF-3, P143, and IE-1 proteins binding to closely linked sites on viral chromatin in vivo, suggesting that they may form replication complexes on viral DNA in infected cells.
Collapse
Affiliation(s)
- Emma Ito
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
15
|
Abstract
Autographa californica nuclear polyhedrosis virus, or AcMNPV, is the type member of the baculoviruses, a family of double-stranded DNA viruses with large circular genomes. The successive and concomitant expression of an assortment of early, late and very late genes is instrumental for successful baculovirus infection, and requires a switch from early dependence on a host cell-derived polymerase II to a novel virus-encoded RNA polymerase that is required for transcription later on in infection. A series of repetitive and highly conserved sequences known as homologous regions, or hrs, function both as origins of DNA replication as well as transcriptional enhancers of late gene expression. An array of AcMNPV genes produced early on in infection, known as late expression factors, or LEFs, are essential for both replication and late gene expression. In this review, an overview of baculovirus LEFs and their roles in viral replication and late gene expression is presented. The role of LEFs in determining baculovirus host range is described. Finally, we compare baculovirus replication and transcription machinery with other viral systems.
Collapse
|
16
|
Chen T, Sahri D, Carstens EB. Characterization of the interaction between P143 and LEF-3 from two different baculovirus species: Choristoneura fumiferana nucleopolyhedrovirus LEF-3 can complement Autographa californica nucleopolyhedrovirus LEF-3 in supporting DNA replication. J Virol 2004; 78:329-39. [PMID: 14671115 PMCID: PMC303401 DOI: 10.1128/jvi.78.1.329-339.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The baculovirus protein P143 is essential for viral DNA replication in vivo, likely as a DNA helicase. We have demonstrated that another viral protein, LEF-3, first described as a single-stranded DNA binding protein, is required for transporting P143 into the nuclei of insect cells. Both of these proteins, along with several other early viral proteins, are also essential for DNA replication in transient assays. We now describe the identification, nucleotide sequences, and transcription patterns of the Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) homologues of p143 and lef-3 and demonstrate that CfMNPV LEF-3 is also responsible for P143 localization to the nucleus. We predicted that the interaction between P143 and LEF-3 might be critical for cross-species complementation of DNA replication. Support for this hypothesis was generated by substitution of heterologous P143 and LEF-3 between two different baculovirus species, Autographa californica nucleopolyhedrovirus and CfMNPV, in transient DNA replication assays. The results suggest that the P143-LEF-3 complex is an important baculovirus replication factor.
Collapse
Affiliation(s)
- Tricia Chen
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
17
|
Hefferon KL, Miller LK. Reconstructing the replication complex of AcMNPV. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:6233-40. [PMID: 12473119 DOI: 10.1046/j.1432-1033.2002.03342.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Baculoviruses are well known for their large, circular, double-stranded DNA genomes. The type member, AcMNPV, is the best characterized and undergoes a succession of early, late and very late gene expression during its infection cycle. The viral genes involved in DNA replication have previously been identified and their products are required for the activation of late gene expression. In this study, we FLAG- and HA-tagged the replication late expression factors of AcMNPV, examined their expression and functional activities by CAT assay and Western blot analysis, and determined their subcellular localization in transfected cells by subcellular fractionation and immunofluorescent microscopy. We found that all replication LEFs with the exception of P143 and P35 resided in the nucleus of transfected cells. We further investigated the interactions among various replication LEFs using both yeast two-hybrid and coprecipitation strategies. A summary of the interactive properties of the replication LEFs is presented and a model for a putative AcMNPV replication complex is offered.
Collapse
Affiliation(s)
- Kathleen L Hefferon
- Center for Virology, Department of Botany, University of Toronto, Ontario, Canada
| | | |
Collapse
|
18
|
Abstract
P143 is a DNA helicase that tightly binds both double-stranded and single-stranded DNA. DNA-protein complexes rapidly dissociated in the presence of ATP and Mg(2+). This finding suggests that ATP hydrolysis causes a conformational change in P143 which decreases affinity for DNA. This supports the model of an inchworm mechanism of DNA unwinding.
Collapse
Affiliation(s)
- V V McDougal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | |
Collapse
|
19
|
McDougal VV, Guarino LA. The Autographa californica nuclear polyhedrosis virus p143 gene encodes a DNA helicase. J Virol 2000; 74:5273-9. [PMID: 10799604 PMCID: PMC110882 DOI: 10.1128/jvi.74.11.5273-5279.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The P143 protein of Autographa californica nuclear polyhedrosis virus is essential for replication of viral DNA. To determine the function of P143, the protein was purified to near homogeneity from recombinant baculovirus-infected cells that overexpress P143. ATPase activity copurified with P143 protein during purification and also during gel filtration at a high salt concentration. The ATPase activity did not require the presence of single-stranded DNA, but was stimulated fourfold by the addition of single-stranded DNA. The ATPase activity of P143 had a K(m) of 60 microM and a turnover of 4.5 molecules of ATP hydrolyzed/s/molecule of enzyme, indicating moderate affinity for ATP and high catalytic efficiency. P143 unwound a 40-nucleotide primer in an ATP-dependent manner, indicating that the enzyme possesses in vitro DNA helicase activity. Based on this result, it seems likely that P143 functions as a helicase in viral DNA replication.
Collapse
Affiliation(s)
- V V McDougal
- Departments of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | |
Collapse
|
20
|
Lapointe R, Back DW, Ding Q, Carstens EB. Identification and molecular characterization of the Choristoneura fumiferana multicapsid nucleopolyhedrovirus genomic region encoding the regulatory genes pkip, p47, lef-12, and gta. Virology 2000; 271:109-21. [PMID: 10814576 DOI: 10.1006/viro.2000.0301] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Choristoneura fumiferana multicapsid nucleopolyhedrovirus (CfMNPV) is a baculovirus pathogenic to spruce budworm, the most damaging insect pest in Canadian forestry. CfMNPV is less virulent to its host insect and its replication cycle is slower than the baculovirus type species Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) but the basis of these characteristics is not known. We have now identified, localized, and determined the sequence of the region of CfMNPV carrying potentially important regulatory genes including p47, lef-12, gta, and pkip. DNA database searches revealed that this region of CfMNPV is most closely related to the homologous OpMNPV genes. Transcription analysis demonstrated that CfMNPV P47 is encoded by a 1.6-kb transcript, LEF-12 is encoded by a 2.6-kb transcript, and GTA is encoded by a 2.1-kb transcript. Transcripts for these genes were detectable at 6 h postinfection but all of them showed a burst in expression levels between 12 and 24 h postinfection corresponding to the time of initiation of CfMNPV DNA replication. A polyclonal antibody, raised against CfMNPV P47, detected a nuclear 43-kDa polypeptide from 12 to 72 h postinfection, demonstrating that the CfMNPV p47 gene product is first expressed at a time corresponding to the burst of transcriptional activity between the early and the late phases. Both AcMNPV and CfMNPV P47 translocate to the nucleus of infected cells.
Collapse
Affiliation(s)
- R Lapointe
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | | | | | |
Collapse
|
21
|
Okano K, Mikhailov VS, Maeda S. Colocalization of baculovirus IE-1 and two DNA-binding proteins, DBP and LEF-3, to viral replication factories. J Virol 1999; 73:110-9. [PMID: 9847313 PMCID: PMC103814 DOI: 10.1128/jvi.73.1.110-119.1999] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/1998] [Accepted: 09/23/1998] [Indexed: 11/20/2022] Open
Abstract
We have recently identified a DNA-binding protein (DBP) from the baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) which can destabilize double-stranded DNA (V. S. Mikhailov, A. L. Mikhailova, M. Iwanaga, S. Gomi, and S. Maeda, J. Virol. 72:3107-3116, 1998). DBP was found to be an early gene product that was not present in budded or occlusion-derived virions. In order to characterize the localization of DBP during viral replication, BmNPV-infected BmN cells were examined by immunostaining and confocal microscopy with DBP antibodies. DBP first appeared as diffuse nuclear staining at 4 to 6 h postinfection (p.i.) and then localized to several specific foci within the nucleus at 6 to 8 h p.i. After the onset of viral DNA replication at around 8 h p.i., these foci began to enlarge and eventually occupied more than half of the nucleus by 14 h p.i. After the termination of viral DNA replication at about 20 h p.i., the DBP-stained regions appeared to break down into approximately 100 small foci within the nucleus. At 8 h p.i., the distribution of DBP as well as that of IE-1 or LEF-3 (two proteins involved in baculovirus DNA replication) overlapped well with that of DNA replication sites labeled with bromodeoxyuridine incorporation. Double-staining experiments with IE-1 and DBP or IE-1 and LEF-3 further confirmed that, between 8 and 14 h p.i., the distribution of IE-1 and LEF-3 overlapped with that of DBP. However, IE-1 localized to the specific foci prior to DBP or LEF-3 at 4 h p.i. In the presence of aphidicolin, an inhibitor of DNA synthesis, immature foci containing IE-1, LEF-3, and DBP were observed by 8 h p.i. However, the subsequent enlargement of these foci was completely suppressed, suggesting that the enlargement depended upon viral DNA replication. At 4 h p.i., the number of IE-1 foci correlated with the multiplicity of infection (MOI) between 0.4 and 10. At higher MOIs (e.g., 50), the number of foci plateaued at around 15. These results suggested that there are about 15 preexisting sites per nucleus which are associated with the initiation of viral DNA replication and assembly of viral DNA replication factories.
Collapse
Affiliation(s)
- K Okano
- Laboratory of Molecular Entomology and Baculovirology, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama, Japan.
| | | | | |
Collapse
|
22
|
Wu Y, Carstens EB. A baculovirus single-stranded DNA binding protein, LEF-3, mediates the nuclear localization of the putative helicase P143. Virology 1998; 247:32-40. [PMID: 9683569 DOI: 10.1006/viro.1998.9235] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular localization of the baculovirus Autographa californica nuclear polyhedrosis virus p143 gene product (P143) was investigated by immunofluoresence staining of infected and transfected cells. As expected for a protein essential for viral DNA replication, under these conditions, P143 was localized to the nucleus. However, when a plasmid directing the synthesis of P143 from its own promoter was co-transfected with a plasmid expressing IE-1, P143 was found in the cytoplasm. Cotransfection of cells with a series of plasmids expressing viral genes sufficient for stimulation of plasmid replication resulted in nuclear localization of P143 suggesting that one of the gene products required for viral DNA replication may also assist nuclear localization of P143. Sequential deletion of various genes from this assay revealed that when the plasmid expressing LEF-3 was deleted from the mixture, P143 remained in the cytoplasm. Plasmids were constructed where the synthesis of LEF-3 and P143 were directed by the ie-1 promoter. When these plasmids were cotransfected, both LEF-3 and P143 colocalized to the nucleus suggesting that an important function of LEF-3 is intracellular trafficking of P143 and directing it to the nucleus.
Collapse
Affiliation(s)
- Y Wu
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
23
|
Mikhailov VS, Mikhailova AL, Iwanaga M, Gomi S, Maeda S. Bombyx mori nucleopolyhedrovirus encodes a DNA-binding protein capable of destabilizing duplex DNA. J Virol 1998; 72:3107-16. [PMID: 9525636 PMCID: PMC109761 DOI: 10.1128/jvi.72.4.3107-3116.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A DNA-binding protein (designated DBP) with an apparent molecular mass of 38 kDa was purified to homogeneity from BmN cells (derived from Bombyx mori) infected with the B. mori nucleopolyhedrovirus (BmNPV). Six peptides obtained after digestion of the isolated protein with Achromobacter protease I were partially or completely sequenced. The determined amino acid sequences indicated that DBP was encoded by an open reading frame (ORF16) located at nucleotides (nt) 16189 to 17139 in the BmNPV genome (GenBank accession no. L33180). This ORF (designated dbp) is a homolog of Autographa californica multicapsid NPV ORF25, whose product has not been identified. BmNPV DBP is predicted to contain 317 amino acids (calculated molecular mass of 36.7 kDa) and to have an isoelectric point of 7.8. DBP showed a tendency to multimerization in the course of purification and was found to bind preferentially to single-stranded DNA. When bound to oligonucleotides, DBP protected them from hydrolysis by phage T4 DNA polymerase-associated 3'-->5' exonuclease. The sizes of the protected fragments indicated that a binding site size for DBP is about 30 nt per protein monomer. DBP, but not BmNPV LEF-3, was capable of unwinding partial DNA duplexes in an in vitro system. This helix-destabilizing ability is consistent with the prediction that DBP functions as a single-stranded DNA binding protein in virus replication.
Collapse
Affiliation(s)
- V S Mikhailov
- N. K. Koltzov Institute of Developmental Biology, Moscow, Russia.
| | | | | | | | | |
Collapse
|