1
|
Hao J, Fu J, Yu K, Gao X, Zang K, Ma H, Xue H, Song Y, Zhu K, Yang M, Zhang Y. Isolation of the Initial Bovine Alphaherpesvirus 1 Isolate from Yanbian, China. Vet Sci 2024; 11:348. [PMID: 39195802 PMCID: PMC11360619 DOI: 10.3390/vetsci11080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Bovine infectious rhinotracheitis (IBR), caused by bovine alphaherpesvirus 1 (BoAHV1), poses significant challenges to the global cattle industry due to its high contagiousness and economic impact. In our study, we successfully isolated a BoAHV1 strain from suspected infected bovine nasal mucus samples in Yanji city, revealing genetic similarities with strains from Sichuan, Egypt, and the USA, while strains from Xinjiang, Beijing, Hebei, and Inner Mongolia showed more distant associations, indicating potential cross-border transmission. Additionally, our investigation of BoAHV1 infection dynamics within host cells revealed early upregulation of gB, which is critical for sustained infection, while the expression of gC and gD showed variations compared to previous studies. These findings enhance our understanding of BoAHV1 diversity and infection kinetics, underscoring the importance of international collaboration for effective surveillance and control strategies. Furthermore, they lay the groundwork for the development of targeted therapeutics and vaccines to mitigate the impact of IBR on the cattle industry.
Collapse
Affiliation(s)
- Jingrui Hao
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Jingfeng Fu
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Kai Yu
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Xu Gao
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Keyan Zang
- Department of Animal Disease Prevention and Control Centre, Longjing 133400, China;
| | - Haoyuan Ma
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Haowen Xue
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Yanhao Song
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Kunru Zhu
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Meng Yang
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Yaning Zhang
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| |
Collapse
|
2
|
Tan WS, Rong E, Dry I, Lillico S, Law A, Digard P, Whitelaw B, Dalziel RG. Validation of Candidate Host Cell Entry Factors for Bovine Herpes Virus Type-1 Based on a Genome-Wide CRISPR Knockout Screen. Viruses 2024; 16:297. [PMID: 38400072 PMCID: PMC10893506 DOI: 10.3390/v16020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
To identify host factors that affect Bovine Herpes Virus Type 1 (BoHV-1) infection we previously applied a genome wide CRISPR knockout screen targeting all bovine protein coding genes. By doing so we compiled a list of both pro-viral and anti-viral proteins involved in BoHV-1 replication. Here we provide further analysis of those that are potentially involved in viral entry into the host cell. We first generated single cell knockout clones deficient in some of the candidate genes for validation. We provide evidence that Polio Virus Receptor-related protein (PVRL2) serves as a receptor for BoHV-1, mediating more efficient entry than the previously identified Polio Virus Receptor (PVR). By knocking out two enzymes that catalyze HSPG chain elongation, HST2ST1 and GLCE, we further demonstrate the significance of HSPG in BoHV-1 entry. Another intriguing cluster of candidate genes, COG1, COG2 and COG4-7 encode six subunits of the Conserved Oligomeric Golgi (COG) complex. MDBK cells lacking COG6 produced fewer but bigger plaques compared to control cells, suggesting more efficient release of newly produced virions from these COG6 knockout cells, due to impaired HSPG biosynthesis. We further observed that viruses produced by the COG6 knockout cells consist of protein(s) with reduced N-glycosylation, potentially explaining their lower infectivity. To facilitate candidate validation, we also detailed a one-step multiplex CRISPR interference (CRISPRi) system, an orthogonal method to KO that enables quick and simultaneous deployment of three CRISPRs for efficient gene inactivation. Using CRISPR3i, we verified eight candidates that have been implicated in the synthesis of surface heparan sulfate proteoglycans (HSPGs). In summary, our experiments confirmed the two receptors PVR and PVRL2 for BoHV-1 entry into the host cell and other factors that affect this process, likely through the direct or indirect roles they play during HSPG synthesis and glycosylation of viral proteins.
Collapse
Affiliation(s)
- Wenfang Spring Tan
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Enguang Rong
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Inga Dry
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Simon Lillico
- Division of Functional Genetics and Development, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK; (S.L.); (B.W.)
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK
| | - Andy Law
- Division of Genetics and Genomics, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK;
| | - Paul Digard
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Bruce Whitelaw
- Division of Functional Genetics and Development, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK; (S.L.); (B.W.)
- Division of Genetics and Genomics, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK;
| | - Robert G. Dalziel
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| |
Collapse
|
3
|
Hou LN, Wang FX, Wang YX, Guo H, Liu CY, Zhao HZ, Yu MH, Wen YJ. Subunit vaccine based on glycoprotein B protects pattern animal guinea pigs from tissue damage caused by infectious bovine rhinotracheitis virus. Virus Res 2022; 320:198899. [PMID: 36030927 DOI: 10.1016/j.virusres.2022.198899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Infectious bovine rhinotracheitis (IBR) is caused by Bovine herpesvirus type 1 (BoHV-1), which seriously threatens the global cattle industry. Only vaccination to improve immunity is the most direct and effective means to prevent IBR. Attempts are being made to use subunit vaccines, deleted or recombinant viral vaccines to reduce or eradicate IBR. For investigating the immunological characteristics of glycoprotein B subunit vaccine in pattern animal guinea pigs, the partial glycoprotein B (gB) of BoHV-1 with dominant antigenic characteristic was selected. A recombinant prokaryotic expression vector pET-32a-gB with the truncated gB gene was constructed, expressed, identified and the purified proteins were used to immunize guinea pigs. The immune effect of the subunit vaccine was assessed by monitoring clinical symptoms, viral load, antibody secretion, and histopathological changes. The results indicated that guinea pigs immunized with the gB subunit vaccine produced high levels of anti-gB antibodies and virus-neutralizing antibodies. The gB subunit vaccine significantly reduced viral shedding and lung tissue damage after IBRV challenge. The animals inoculated the gB subunit vaccine also had less virus reactivation. Its protective effect on viral shedding and tissue damage was similar to that of inactivated BoHV-1 vaccine. This work is a proof-of-concept study of subunit vaccine-induced protection against BoHV-1. And it is expected to be a candidate vaccine for the prevention of IBR.
Collapse
Affiliation(s)
- Li-Na Hou
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Feng-Xue Wang
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Ya-Xin Wang
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Hao Guo
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Chun-Yu Liu
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Hong-Zhe Zhao
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Ming-Hua Yu
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Yong-Jun Wen
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China.
| |
Collapse
|
4
|
Wang D, Huo H, Werid GM, Ibrahim YM, Tang L, Wang Y, Chen H. TBK1 Mediates Innate Antiviral Immune Response against Duck Enteritis Virus. Viruses 2022; 14:1008. [PMID: 35632751 PMCID: PMC9145522 DOI: 10.3390/v14051008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Duck enteritis virus (DEV) can infect several types of waterfowl can cause high mortality and huge economic losses to the global waterfowl industry. Type I interferons (IFN) are important for host defense against virus infection through induction of antiviral effector molecules. TANK-binding kinase 1 (TBK1) is a key kinase required for the induction of type I IFNs; however, the role of TBK1 on DEV infection remains unclear. Here, we observed that the expression levels of TBK1 and IFN-β were upregulated during DEV infection in vivo and in vitro. Thus, the function of TBK1 on DEV infection was determined. The results showed that overexpression of TBK1 reduced DEV infection and knockdown of TBK1 resulted in the increased of DEV infection. Additionally, TBK1 overexpression upregulated the expression of IFN-β and a few interferon-stimulated genes (ISGs), which thus inhibited the synthesis of DEV glycoprotein B. On the other hand, the TBK1 inhibitor Amlexanox down-regulated the expression levels of IFN-β and IRF3. Interestingly, the expression levels of MAVS and GSK-3β were decreased in the cells treated with Amlexanox. Furthermore, overexpression of TBK1 activated the expression of upstream molecules MAVS and GSK-3β. Whereas, the expression of TBK1, IRF3 and IFN-β was inhibited by the GSK-3β inhibitor SB216763. Our findings suggest that DEV-stimulated TBK1 may be involved in defense against DEV infection.
Collapse
Affiliation(s)
- Dongfang Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hong Huo
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
| | - Gebremeskel Mamu Werid
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
| | - Yassein M. Ibrahim
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Science, Chongqing 408599, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
| |
Collapse
|
5
|
Role of Sphingomyelin in Alphaherpesvirus Entry. J Virol 2019; 93:JVI.01547-18. [PMID: 30541840 DOI: 10.1128/jvi.01547-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an alphaherpesvirus that causes disease in cattle populations worldwide. Sphingomyelin (SM) is the most abundant sphingolipid in the mammalian cell membrane, where it preferentially associates with cholesterol to form lipid raft domains. SM is a substrate for the lysosome-resident enzyme acid sphingomyelinase, which plays a role in cell membrane repair following injury. Treatment of cells with noncytotoxic concentrations of Staphylococcus aureus-derived sphingomyelinase successfully reduced cell surface-exposed sphingomyelin but did not significantly inhibit BoHV-1 entry and infection, as measured by the beta-galactosidase reporter assay. Interestingly, entry of the porcine alphaherpesvirus pseudorabies virus (PRV) was inhibited by sphingomyelin-depletion of cells. Treatment of BoHV-1 particles with sphingomyelinase inhibited viral entry activity, suggesting that viral SM plays a role in BoHV-1 entry, while cellular SM does not. Treatment of cells with noncytotoxic concentrations of the functional inhibitors of host acid sphingomyelinase, imipramine and amitriptyline, which induce degradation of the cellular enzyme, did not significantly inhibit BoHV-1 entry. In contrast, inhibition of cellular acid sphingomyelinase inhibited PRV entry. Entry of the human alphaherpesvirus herpes simplex virus 1 (HSV-1) was independent of both host SM and acid sphingomyelinase, in a manner similar to BoHV-1. Together, the results suggest that among the alphaherpesviruses, there is variability in entry requirements for cellular sphingomyelin and acid sphingomyelinase activity.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an ubiquitous pathogen affecting cattle populations worldwide. Infection can result in complicated, polymicrobial infections due to the immunosuppressive properties of the virus. Available vaccines limit disease severity and spread but do not prevent infection. The financial and animal welfare ramifications of BoHV-1 are significant. In order to develop more effective prevention and treatment regimens, a more complete understanding of the initial steps in viral infection is necessary. We recently identified a low pH endocytosis pathway for BoHV-1. Here, we examine the role of cellular factors responsible for membrane integrity and repair in alphaherpesviral entry. This study allows comparisons of the BoHV-1 entry pathway with those of other alphaherpesviruses (pseudorabies virus [PRV] and herpes simplex virus 1 [HSV-1]). Lastly, this is the first report of sphingomyelin and lysosomal sphingomyelinase playing a role in the entry of a herpesvirus. The results may lead to the development of more effective prevention and treatment regimens.
Collapse
|
6
|
Pastenkos G, Lee B, Pritchard SM, Nicola AV. Bovine Herpesvirus 1 Entry by a Low-pH Endosomal Pathway. J Virol 2018; 92:e00839-18. [PMID: 30045989 PMCID: PMC6158438 DOI: 10.1128/jvi.00839-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an alphaherpesvirus that poses a significant challenge to health and welfare in the cattle industry. We investigated the cellular entry route utilized by BoHV-1. We report that BoHV-1 enters Madin Darby bovine kidney (MDBK) cells, bovine turbinate cells, and African green monkey kidney (Vero) cells via a low-pH-mediated endocytosis pathway. Treatment of MDBK cells with hypertonic medium, which inhibits receptor-mediated endocytosis, prevented infection as measured by a beta-galactosidase reporter assay. Treatment of cells with noncytotoxic concentrations of the lysosomotropic agents ammonium chloride and monensin, which block the acidification of endosomes, inhibited BoHV-1 entry in a concentration-dependent fashion. The kinetics of endocytic uptake of BoHV-1 from the cell surface was rapid (50% uptake by ∼5 min). Time-of-addition experiments indicated that the lysosomotropic agents acted at early times postinfection, consistent with entry. Inactivation of virions by pretreatment with mildly acidic pH is a hallmark characteristic of viruses that utilize a low-pH-activated entry pathway. When BoHV-1 particles were exposed to pH 5.0 in the absence of target membrane, infectivity was markedly reduced. Lastly, treatment of cells with the proteasome inhibitor MG132 inhibited BoHV-1 entry in a concentration-dependent manner. Together, these results support a model of BoHV-1 infection in which low endosomal pH is a critical host trigger for fusion of the viral envelope with an endocytic membrane and necessary for successful infection of the target cell.IMPORTANCE BoHV-1 is a ubiquitous pathogen affecting cattle populations worldwide. Infection can result in complicated, polymicrobial infections due to the immunosuppressive properties of the virus. While there are vaccines on the market, they only limit disease severity and spread but do not prevent infection. The financial and animal welfare ramifications of this virus are significant, and in order to develop more effective prevention and treatment regimens, a more complete understanding of the initial steps in viral infection is necessary. This research establishes the initial entry pathway of BoHV-1, which provides a foundation for future development of effective treatments and preventative vaccines. Additionally, it allows comparisons to the entry pathways of other alphaherpesviruses, such as HSV-1.
Collapse
Affiliation(s)
- Gabrielle Pastenkos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Becky Lee
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Suzanne M Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
7
|
Zhao Y, Cao Y, Cui L, Ma B, Mu X, Li Y, Zhang Z, Li D, Wei W, Gao M, Wang J. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks. PLoS One 2014; 9:e95093. [PMID: 24736466 PMCID: PMC3988170 DOI: 10.1371/journal.pone.0095093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/22/2014] [Indexed: 11/19/2022] Open
Abstract
DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.
Collapse
Affiliation(s)
- Yan Zhao
- Group of Avian Respiratory infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Northeast Agricultural University, Harbin, China
| | | | - Lihong Cui
- Northeast Agricultural University, Harbin, China
| | - Bo Ma
- Northeast Agricultural University, Harbin, China
| | - Xiaoyu Mu
- Northeast Agricultural University, Harbin, China
| | - Yanwei Li
- Northeast Agricultural University, Harbin, China
| | - Zhihui Zhang
- Northeast Agricultural University, Harbin, China
| | - Dan Li
- Northeast Agricultural University, Harbin, China
| | - Wei Wei
- Northeast Agricultural University, Harbin, China
| | - Mingchun Gao
- Northeast Agricultural University, Harbin, China
| | - Junwei Wang
- Northeast Agricultural University, Harbin, China
- * E-mail:
| |
Collapse
|
8
|
Huang Y, Babiuk LA, van Drunen Littel-van den Hurk S. The cell-mediated immune response induced by plasmid encoding bovine herpesvirus 1 glycoprotein B is enhanced by plasmid encoding IL-12 when delivered intramuscularly or by gene gun, but not after intradermal injection. Vaccine 2006; 24:5349-59. [PMID: 16714071 DOI: 10.1016/j.vaccine.2006.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/15/2006] [Accepted: 04/19/2006] [Indexed: 11/20/2022]
Abstract
Bovine herpesvirus 1 (BHV-1) causes respiratory and genital infections in cattle. Previously we demonstrated that a DNA vaccine encoding a truncated, secreted form of BHV-1 glycoprotein B (tgB) induces cytotoxic T lymphocyte (CTL) responses in C3H mice. In this study we investigated the potential of interleukin 12 (IL-12) to further enhance the CTL response. C3H mice were immunized with a plasmid encoding tgB or with plasmids encoding tgB and murine IL-12. When the plasmid encoding tgB was delivered intramuscularly or epidermally by a gene gun, co-administration with IL-12 plasmid stimulated the synthesis of more IgG2a, the production of higher levels of IFN-gamma, and more effective killing by CTLs. In contrast, after intradermal delivery no effect of co-administration of IL-12 encoding plasmid was observed. Further investigation suggested that antigen and IL-12 need to be expressed in the draining lymph nodes, where IL-12 can have a direct effect on T cells.
Collapse
Affiliation(s)
- Y Huang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | |
Collapse
|
9
|
Okazaki K, Fujii S, Takada A, Kida H. The amino-terminal residue of glycoprotein B is critical for neutralization of bovine herpesvirus 1. Virus Res 2005; 115:105-11. [PMID: 16153736 DOI: 10.1016/j.virusres.2005.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 11/26/2022]
Abstract
In order to address the neutralization epitope on bovine herpesvirus 1 (BHV1) glycoprotein B (gB), a panel of monoclonal antibodies (MAbs), a series of truncation forms of the glycoprotein and an MAb-escape mutant were used in this study. Immunocytochemistry on the truncations using MAbs against the glycoprotein revealed that the neutralization epitopes recognized by the MAbs lay between residues 1 and 52 of mature gB. Comparison of the sequences among the mutant, parent, and revertant viruses demonstrated that the amino-terminal residue of mature gB of the escape mutant was changed from Arg to Gln. These findings indicate that the amino-terminal residue of gB is critical for neutralization of BHV1.
Collapse
Affiliation(s)
- Katsunori Okazaki
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | | | | | |
Collapse
|
10
|
Tanghe S, Vanroose G, Van Soom A, Duchateau L, Ysebaert MT, Kerkhofs P, Thiry E, van Drunen Littel-van den Hurk S, Van Oostveldt P, Nauwynck H. Inhibition of bovine sperm–zona binding by bovine herpesvirus-1. Reproduction 2005; 130:251-9. [PMID: 16049163 DOI: 10.1530/rep.1.00636] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of the present study was to identify a potential interference of bovine herpesvirus-1 (BoHV-1) with sperm–oocyte interactions during bovinein vitrofertilization. An inhibition of almost 70% of sperm–zona binding was observed when bovine cumulus-denuded oocytes were inseminated in the presence of 10750% tissue culture infective dose/ml BoHV-1. The inhibitory effect of BoHV-1 on sperm–zona binding was mediated by an interaction of the virus with spermatozoa, but not with oocytes. Treatment of spermatozoa with BoHV-1, however, did not affect sperm motility and acrosomal status. Antiserum against BoHV-1 prevented the virus-induced inhibition of sperm–zona binding, indicating that BoHV-1 itself affects the fertilization process. In order to investigate which BoHV-1 glycoprotein(s) are responsible for the virus–sperm interaction, BoHV-1 was treated with monoclonal antibodies against the viral glycoproteins gB, gC, gD and gH prior to insemination. Anti-gC completely prevented the inhibitory effect of BoHV-1 on sperm–zona binding, while anti-gD caused a reduction of this inhibition. Further evidence for the involvement of gC and gD in the virus–sperm interaction was provided by the fact that purified gC and gD decreased sperm–zona binding in a dose-dependent way with gC being more effective than gD. These results indicated that BoHV-1 inhibits bovine sperm–zona binding by interacting with spermatozoa. The binding of BoHV-1 to a spermatozoon is mediated by the viral glycoproteins gC and gD, and therefore seems to be comparable with the mechanisms of BoHV-1 attachment to its natural host cell.
Collapse
Affiliation(s)
- S Tanghe
- Department of Reproduction, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang Y, Babiuk LA, van Drunen Littel-van den Hurk S. Immunization with a bovine herpesvirus 1 glycoprotein B DNA vaccine induces cytotoxic T-lymphocyte responses in mice and cattle. J Gen Virol 2005; 86:887-898. [PMID: 15784883 DOI: 10.1099/vir.0.80533-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus-specific cytotoxic T lymphocytes (CTLs) are considered to be important in protection against and recovery from viral infections. In this study, several approaches to induce cytotoxicity against bovine herpesvirus 1 (BHV-1) were evaluated. Vaccination of C57BL/6 mice with BHV-1 induced a strong humoral, but no CTL, response, which may be due to downregulation of major histocompatibility complex class I molecules. In contrast, vaccinia virus expressing glycoprotein B (gB) elicited a weaker antibody response, but strong cytotoxicity, in mice. As an approach to inducing both strong humoral and cellular immune responses, a plasmid vector was then used to express gB. Both antibody and CTL responses were induced by the plasmid encoding gB in C57BL/6 and C3H mice, regardless of the type of vector backbone. This demonstrated that DNA immunization induces a broad-based immune response to BHV-1 gB. Interestingly, removal of the membrane anchor, which resulted in secretion of gB from transfected cells, did not result in reduced cytotoxicity. Here, it is shown that, compared with the cell-associated counterpart, plasmid-encoded secreted protein may induce enhanced immune responses in cattle. Therefore, calves were immunized intradermally with pMASIAtgB, a plasmid encoding the secreted form of gB (tgB), using a needle-free injection system. This demonstrated that pMASIAtgB elicited both humoral responses and activated gamma interferon-secreting CD8+ CTLs, suggesting that a DNA vaccine expressing tgB induces a CTL response in the natural host of BHV-1.
Collapse
Affiliation(s)
- Y Huang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - L A Babiuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - S van Drunen Littel-van den Hurk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| |
Collapse
|
12
|
Okazaki K, Kida H. A synthetic peptide from a heptad repeat region of herpesvirus glycoprotein B inhibits virus replication. J Gen Virol 2004; 85:2131-2137. [PMID: 15269351 DOI: 10.1099/vir.0.80051-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycoprotein B (gB) is the most conserved glycoprotein of herpesviruses and plays important roles in virus infectivity. Two intervening heptad repeat (HR) sequences were found in the C-terminal half of all herpesvirus gBs analysed. A synthetic peptide derived from the HR region (aa 477-510) of bovine herpesvirus type 1 (BoHV-1) gB was studied for its ability to inhibit virus replication. The peptide interfered with cell-to-cell spread and consistently inhibited replication of BoHV-1, with a 50 % effective concentration value (EC(50)) of 5 microM. Inhibition of replication was obtained not only with herpesviruses including pseudorabies virus and herpes simplex virus type 1 but also partly with Newcastle disease virus. Possible mechanisms of membrane fusion inhibition by the peptide are discussed.
Collapse
Affiliation(s)
- Katsunori Okazaki
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hiroshi Kida
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
13
|
Ioannou XP, Griebel P, Hecker R, Babiuk LA, van Drunen Littel-van den Hurk S. The immunogenicity and protective efficacy of bovine herpesvirus 1 glycoprotein D plus Emulsigen are increased by formulation with CpG oligodeoxynucleotides. J Virol 2002; 76:9002-10. [PMID: 12186884 PMCID: PMC136463 DOI: 10.1128/jvi.76.18.9002-9010.2002] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Accepted: 06/11/2002] [Indexed: 11/20/2022] Open
Abstract
The immunogenicity and protective efficacy of a bovine herpesvirus 1 (BHV-1) subunit vaccine formulated with Emulsigen (Em) and a synthetic oligodeoxynucleotide containing unmethylated CpG dinucleotides (CpG ODN) was determined in cattle. A truncated, secreted version of BHV-1 glycoprotein D (tgD) formulated with Em and CpG ODN at concentrations of 25, 2.5, or 0.25 mg/dose produced a more balanced immune response, higher levels of virus neutralizing antibodies, and greater protection after BHV-1 challenge compared to tgD adjuvanted with either Em or CpG ODN alone. In contrast, tgD formulated with Em and either 25 mg of a non-CpG ODN or another immunostimulatory compound, dimethyl dioctadecyl ammonium bromide, induced similar immunity and protection compared to tgD formulated with Em alone, a finding which confirms the immunostimulatory effect of ODN to be CpG motif mediated. Our results demonstrate the ability of CpG ODN to induce a strong and balanced immune response in a target species.
Collapse
Affiliation(s)
- X P Ioannou
- Veterinary Infectious Disease Organization, Saskatoon, Saskatchewan, S7N 5E3 Canada
| | | | | | | | | |
Collapse
|
14
|
Loehr BI, Willson P, Babiuk LA. Gene gun-mediated DNA immunization primes development of mucosal immunity against bovine herpesvirus 1 in cattle. J Virol 2000; 74:6077-86. [PMID: 10846091 PMCID: PMC112106 DOI: 10.1128/jvi.74.13.6077-6086.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination by a mucosal route is an excellent approach to the control of mucosally acquired infections. Several reports on rodents suggest that DNA vaccines can be used to achieve mucosal immunity when applied to mucosal tissues. However, with the exception of one study with pigs and another with horses, there is no information on mucosal DNA immunization of the natural host. In this study, the potential of inducing mucosal immunity in cattle by immunization with a DNA vaccine was demonstrated. Cattle were immunized with a plasmid encoding bovine herpesvirus 1 (BHV-1) glycoprotein B, which was delivered with a gene gun either intradermally or intravulvomucosally. Intravulvomucosal DNA immunization induced strong cellular immune responses and primed humoral immune responses. This was evident after BHV-1 challenge when high levels of both immunoglobulin G (IgG) and IgA were detected. Intradermal delivery resulted in lower levels of immunity than mucosal immunization. To determine whether the differences between the immune responses induced by intravulvomucosal and intradermal immunizations might be due to the efficacy of antigen presentation, the distributions of antigen and Langerhans cells in the skin and mucosa were compared. After intravulvomucosal delivery, antigen was expressed early and throughout the mucosa, but after intradermal administration, antigen expression occurred later and superficially in the skin. Furthermore, Langerhans cells were widely distributed in the mucosal epithelium but found primarily in the basal layers of the epidermis of the skin. Collectively, these observations may account for the stronger immune response induced by mucosal administration.
Collapse
Affiliation(s)
- B I Loehr
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
15
|
Wanas E, Efler S, Ghosh K, Ghosh HP. Mutations in the conserved carboxy-terminal hydrophobic region of glycoprotein gB affect infectivity of herpes simplex virus. J Gen Virol 1999; 80 ( Pt 12):3189-3198. [PMID: 10567651 DOI: 10.1099/0022-1317-80-12-3189] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycoprotein gB is the most highly conserved glycoprotein in the herpesvirus family and plays a critical role in virus entry and fusion. Glycoprotein gB of herpes simplex virus type 1 contains a hydrophobic stretch of 69 aa near the carboxy terminus that is essential for its biological activity. To determine the role(s) of specific amino acids in the carboxy-terminal hydrophobic region, a number of amino acids were mutagenized that are highly conserved in this region within the gB homologues of the family HERPESVIRIDAE: Three conserved residues in the membrane anchor domain, namely A786, A790 and A791, as well as amino acids G743, G746, G766, G770 and P774, that are non-variant in Herpesviridae, were mutagenized. The ability of the mutant proteins to rescue the infectivity of the gB-null virus, K082, in trans was measured by a complementation assay. All of the mutant proteins formed dimers and were incorporated in virion particles produced in the complementation assay. Mutants G746N, G766N, F770S and P774L showed negligible complementation of K082, whereas mutant G743R showed a reduced activity. Virion particles containing these four mutant glycoproteins also showed a markedly reduced rate of entry compared to the wild-type. The results suggest that non-variant residues in the carboxy-terminal hydrophobic region of the gB protein may be important in virus infectivity.
Collapse
Affiliation(s)
- Essam Wanas
- Department of Biochemistry, Health Sciences Centre, McMaster University, 1200 Main St W., Hamilton, Ontario, Canada L8N 3Z51
| | - Sue Efler
- Department of Biochemistry, Health Sciences Centre, McMaster University, 1200 Main St W., Hamilton, Ontario, Canada L8N 3Z51
| | - Kakoli Ghosh
- Department of Biochemistry, Health Sciences Centre, McMaster University, 1200 Main St W., Hamilton, Ontario, Canada L8N 3Z51
| | - Hara P Ghosh
- Department of Biochemistry, Health Sciences Centre, McMaster University, 1200 Main St W., Hamilton, Ontario, Canada L8N 3Z51
| |
Collapse
|
16
|
Odell D, Wanas E, Yan J, Ghosh HP. Influence of membrane anchoring and cytoplasmic domains on the fusogenic activity of vesicular stomatitis virus glycoprotein G. J Virol 1997; 71:7996-8000. [PMID: 9311894 PMCID: PMC192161 DOI: 10.1128/jvi.71.10.7996-8000.1997] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chimeric proteins in which the transmembrane anchoring sequence (TM) or both the TM and the cytoplasmic tail (CT) of vesicular stomatitis virus glycoprotein G were replaced with corresponding domains of viral or cellular integral membrane proteins were used to examine the influence of these domains on acidic-pH-induced membrane fusion by G protein. The TM and CT of G were also replaced with the lipid anchor glycosylphosphatidylinositol. Hybrids containing foreign TM or TM and CT sequences were fusogenic at acidic pH but glycosylphosphatidylinositol-anchored G was nonfusogenic at acidic pH. The results suggest that the fusogenic activity of G protein requires membrane anchoring by a hydrophobic peptide sequence and the specific amino acid sequence of the TM has no influence on fusogenic activity.
Collapse
Affiliation(s)
- D Odell
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|