1
|
Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiol Rev 2021; 45:fuaa066. [PMID: 33512504 PMCID: PMC8371277 DOI: 10.1093/femsre/fuaa066] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Lipid droplets (LDs) contribute to key pathways important for the physiology and pathophysiology of cells. In a homeostatic view, LDs regulate the storage of neutral lipids, protein sequestration, removal of toxic lipids and cellular communication; however, recent advancements in the field show these organelles as essential for various cellular stress response mechanisms, including inflammation and immunity, with LDs acting as hubs that integrate metabolic and inflammatory processes. The accumulation of LDs has become a hallmark of infection, and is often thought to be virally driven; however, recent evidence is pointing to a role for the upregulation of LDs in the production of a successful immune response to viral infection. The fatty acids housed in LDs are also gaining interest due to the role that these lipid species play during viral infection, and their link to the synthesis of bioactive lipid mediators that have been found to have a very complex role in viral infection. This review explores the role of LDs and their subsequent lipid mediators during viral infections and poses a paradigm shift in thinking in the field, whereby LDs may play pivotal roles in protecting the host against viral infection.
Collapse
Affiliation(s)
- Ebony A Monson
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Jay L Laws
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Karla J Helbig
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| |
Collapse
|
2
|
Li EJ, Lu J, Dong SM, Zhang MZ, Cen S, Li LJ, Huang WH. Instability of Nucleic Acids in Airborne Microorganisms under Far Infrared Radiation. Health (London) 2020. [DOI: 10.4236/health.2020.128074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Lee IK, Bae S, Gu MJ, You SJ, Kim G, Park SM, Jeung WH, Ko KH, Cho KJ, Kang JS, Yun CH. H9N2-specific IgG and CD4+CD25+ T cells in broilers fed a diet supplemented with organic acids. Poult Sci 2018; 96:1063-1070. [PMID: 28158799 DOI: 10.3382/ps/pew382] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/25/2016] [Indexed: 11/20/2022] Open
Abstract
Organic acids have long been known for their beneficial effects on growth performance in domestic animals. However, their impact on immune responses against viral antigens in chickens is unclear. The present study aimed to investigate immunological parameters in broilers immunized with a H9N2 vaccine and/or fed a diet containing organic acids (citric, formic, and lactic acids). We allotted 1-day-old broilers into 4 groups: control (C), fed a diet supplemented with organic acids (O), administered a H9N2 vaccine (V), and fed a diet supplemented with organic acids and administered a H9N2 vaccine (OV). Blood and spleen samples were taken at 2, 7 and 14 d post vaccination (DPV). At 14 DPV, total and H9N2-specific IgG levels were significantly lower in the OV group than in the V group. However, it was intriguing to observe that at 2 DPV, the percentage of CD4+CD25+ T cells was significantly higher in the OV group than in the other groups, indicating the potential induction of regulatory T cells by organic acids. In contrast, at 2 DPV, the percentage of CD4+CD28+ T cells were significantly lower in the OV group than in the other groups, suggesting that CD28 molecules are down-regulated by the treatment. The expression of CD28 on CD4+ T cells, up-regulated by the stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin (Iono), was inhibited upon organic acid treatment in OV group. In addition, the proliferation of lymphocytes, stimulated with formalin-inactivated H9N2, was significantly higher in the V group than in the OV group. Alpha 1-acid glycoprotein (AGP) production was significantly lower in the OV group than in the V group, suggesting that the organic acids inhibited the inflammation caused by the vaccination. Overall, induction of regulatory CD4+CD25+ T cells, coinciding with the decrease of H9N2-specific antibodies, was observed in broilers fed organic acids.
Collapse
Affiliation(s)
- In Kyu Lee
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Suhan Bae
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.,Seoul feed Co., Ltd., Incheon 405-819, Republic of Korea
| | - Min Jeong Gu
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sun Jong You
- DongA One Co., Ltd., Seoul 150-763, Republic of Korea
| | - Girak Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sung-Moo Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Woon-Hee Jeung
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Kwang Hyun Ko
- Biomodulation major and Center for Food Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea
| | - Kyung Jin Cho
- Genebiotech Co., Ltd., Gongju 32619, Republic of Korea
| | - Jung Sun Kang
- Genebiotech Co., Ltd., Gongju 32619, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.,Biomodulation major and Center for Food Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea.,Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 232-916, Republic of Korea
| |
Collapse
|
4
|
El-Shesheny R, Bagato O, Kandeil A, Mostafa A, Mahmoud SH, Hassanneen HM, Webby RJ, Ali MA, Kayali G. Re-emergence of amantadine-resistant variants among highly pathogenic avian influenza H5N1 viruses in Egypt. INFECTION GENETICS AND EVOLUTION 2016; 46:102-109. [PMID: 27876611 DOI: 10.1016/j.meegid.2016.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/12/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 virus continues to undergo substantial evolution. Emergence of antiviral resistance among H5N1 avian influenza viruses is a major challenge in the control of pandemic influenza. Numerous studies have focused on the genetic and evolutionary dynamics of the hemagglutinin and neuraminidase genes; however, studies on the susceptibility of HPAI H5N1 viruses to amantadine and genetic diversity of the matrix (M) gene are limited. Accordingly, we studied the amantadine susceptibility of the HPAI H5N1 viruses isolated in Egypt during 2006-2015 based on genotypic and phenotypic characteristics. We analyzed data on 253 virus sequences and constructed a phylogenetic tree to calculate selective pressures on sites in the M2 gene associated with amantadine-resistance among different clades. Selection pressure was identified in the transmembrane domain of M2 gene at positions 27 and 31. Amantadine-resistant variants emerged in 2007 but were not circulating between 2012 and 2014. By 2015, amantadine-resistant HPAI H5N1 viruses re-emerged. This may be associated with the uncontrolled prescription of amantadine for prophylaxis and control of avian influenza infections in the poultry farm sector in Egypt. More epidemiological research is required to verify this observation.
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ola Bagato
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Hamdi M Hassanneen
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt.
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center, Houston, TX, USA; Human Link, Hazmieh, Lebanon.
| |
Collapse
|
5
|
Terrier O, Carron C, De Chassey B, Dubois J, Traversier A, Julien T, Cartet G, Proust A, Hacot S, Ressnikoff D, Lotteau V, Lina B, Diaz JJ, Moules V, Rosa-Calatrava M. Nucleolin interacts with influenza A nucleoprotein and contributes to viral ribonucleoprotein complexes nuclear trafficking and efficient influenza viral replication. Sci Rep 2016; 6:29006. [PMID: 27373907 PMCID: PMC4931502 DOI: 10.1038/srep29006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/09/2016] [Indexed: 01/18/2023] Open
Abstract
Influenza viruses replicate their single-stranded RNA genomes in the nucleus of infected cells and these replicated genomes (vRNPs) are then exported from the nucleus to the cytoplasm and plasma membrane before budding. To achieve this export, influenza viruses hijack the host cell export machinery. However, the complete mechanisms underlying this hijacking remain not fully understood. We have previously shown that influenza viruses induce a marked alteration of the nucleus during the time-course of infection and notably in the nucleolar compartment. In this study, we discovered that a major nucleolar component, called nucleolin, is required for an efficient export of vRNPs and viral replication. We have notably shown that nucleolin interacts with the viral nucleoprotein (NP) that mainly constitutes vRNPs. Our results suggest that this interaction could allow vRNPs to "catch" the host cell export machinery, a necessary step for viral replication.
Collapse
Affiliation(s)
- Olivier Terrier
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Coralie Carron
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Benoît De Chassey
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Julia Dubois
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Aurélien Traversier
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Julien
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Gaëlle Cartet
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anaïs Proust
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Sabine Hacot
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, Lyon, France and Université de Lyon, Lyon, France
| | - Denis Ressnikoff
- CIQLE, Centre d’imagerie quantitative Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Vincent Lotteau
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bruno Lina
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Laboratory of Virology, Lyon, France
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, Lyon, France and Université de Lyon, Lyon, France
| | - Vincent Moules
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| |
Collapse
|
6
|
The host protein CLUH participates in the subnuclear transport of influenza virus ribonucleoprotein complexes. Nat Microbiol 2016; 1:16062. [DOI: 10.1038/nmicrobiol.2016.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/31/2016] [Indexed: 11/08/2022]
|
7
|
Kebaabetswe LP, Haick AK, Gritsenko MA, Fillmore TL, Chu RK, Purvine SO, Webb-Robertson BJ, Matzke MM, Smith RD, Waters KM, Metz TO, Miura TA. Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus. Virology 2015; 483:96-107. [PMID: 25965799 DOI: 10.1016/j.virol.2015.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/13/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022]
Abstract
Infection of type II alveolar epithelial (ATII) cells by influenza A viruses (IAV) correlates with severe respiratory disease in humans and mice. To understand pathogenic mechanisms during IAV infection of ATII cells, murine ATII cells were cultured to maintain a differentiated phenotype, infected with IAV-PR8, which causes severe lung pathology in mice, and proteomics analyses were performed using liquid chromatography-mass spectrometry. PR8 infection increased levels of proteins involved in interferon signaling, antigen presentation, and cytoskeleton regulation. Proteins involved in mitochondrial membrane permeability, energy metabolism, and chromatin formation had reduced levels in PR8-infected cells. Phenotypic markers of ATII cells in vivo were identified, confirming the differentiation status of the cultures. Surfactant protein B had decreased levels in PR8-infected cells, which was confirmed by immunoblotting and immunofluorescence assays. Analysis of ATII cell protein profiles will elucidate cellular processes in IAV pathogenesis, which may provide insight into potential therapies to modulate disease severity.
Collapse
Affiliation(s)
- Lemme P Kebaabetswe
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Anoria K Haick
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas L Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bobbie-Jo Webb-Robertson
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Melissa M Matzke
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
8
|
Hu Y, Liu X, Zhang A, Zhou H, Liu Z, Chen H, Jin M. CHD3 facilitates vRNP nuclear export by interacting with NES1 of influenza A virus NS2. Cell Mol Life Sci 2015; 72:971-82. [PMID: 25213355 PMCID: PMC4323543 DOI: 10.1007/s00018-014-1726-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 11/23/2022]
Abstract
NS2 from influenza A virus mediates Crm1-dependent vRNP nuclear export through interaction with Crm1. However, even though the nuclear export signal 1 (NES1) of NS2 does not play a requisite role in NS2-Crm1 interaction, there is no doubt that NES1 is crucial for vRNP nuclear export. While the mechanism of the NES1 is still unclear, it is speculated that certain host partners might mediate the NES1 function through their interaction with NES1. In the present study, chromodomain-helicase-DNA-binding protein 3 (CHD3) was identified as a novel host nuclear protein for locating NS2 and Crm1 on dense chromatin for NS2 and Crm1-dependent vRNP nuclear export. CHD3 was confirmed to interact with NES1 in NS2, and a disruption to this interaction by mutation in NES1 significantly delayed viral vRNPs export and viral propagation. Further, the knockdown of CHD3 would affect the propagation of the wild-type virus but not the mutant with the weakened NS2-CHD3 interaction. Therefore, this study demonstrates that NES1 is required for maximal binding of NS2 to CHD3, and that the NS2-CHD3 interaction on the dense chromatin contributed to the NS2-mediated vRNP nuclear export.
Collapse
Affiliation(s)
- Yong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, 430070 People’s Republic of China
| | - Xiaokun Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Ziduo Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
9
|
Abstract
Influenza A viral ribonucleoprotein (vRNP) complexes comprise the eight genomic negative-sense RNAs, each of which is bound to multiple copies of the vRNP and a trimeric viral polymerase complex. The influenza virus life cycle centres on the vRNPs, which in turn rely on host cellular processes to carry out functions that are necessary for the successful completion of the virus life cycle. In this Review, we discuss our current knowledge about vRNP trafficking within host cells and the function of these complexes in the context of the virus life cycle, highlighting how structure contributes to function and the crucial interactions with host cell pathways, as well as on the information gaps that remain. An improved understanding of how vRNPs use host cell pathways is essential to identify mechanisms of virus pathogenicity, host adaptation and, ultimately, new targets for antiviral intervention.
Collapse
|
10
|
Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses. mBio 2014; 5:e01174-14. [PMID: 24846384 PMCID: PMC4030454 DOI: 10.1128/mbio.01174-14] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antiviral state within the host, impeding viral pathogenesis. While successful respiratory viruses overcome individual ISG effectors, analysis of the global ISG response and subsequent viral antagonism has yet to be examined. Employing models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) infection. The results illustrated distinct approaches utilized by each virus to antagonize the global ISG response. In addition, the data revealed that highly virulent HPAI virus and MERS-CoV induce repressive histone modifications, which downregulate expression of ISG subsets. Notably, influenza A virus NS1 appears to play a central role in this histone-mediated downregulation in highly pathogenic influenza strains. Together, the work demonstrates the existence of unique and common viral strategies for controlling the global ISG response and provides a novel avenue for viral antagonism via altered histone modifications. This work combines systems biology and experimental validation to identify and confirm strategies used by viruses to control the immune response. Using a novel screening approach, specific comparison between highly pathogenic influenza viruses and coronaviruses revealed similarities and differences in strategies to control the interferon and innate immune response. These findings were subsequently confirmed and explored, revealing both a common pathway of antagonism via type I interferon (IFN) delay as well as a novel avenue for control by altered histone modification. Together, the data highlight how comparative systems biology analysis can be combined with experimental validation to derive novel insights into viral pathogenesis.
Collapse
|
11
|
Transcriptional derepression of the ERVWE1 locus following influenza A virus infection. J Virol 2014; 88:4328-37. [PMID: 24478419 DOI: 10.1128/jvi.03628-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Syncytin-1, a fusogenic protein encoded by a human endogenous retrovirus of the W family (HERV-W) element (ERVWE1), is expressed in the syncytiotrophoblast layer of the placenta. This locus is transcriptionally repressed in adult tissues through promoter CpG methylation and suppressive histone modifications. Whereas syncytin-1 appears to be crucial for the development and functioning of the human placenta, its ectopic expression has been associated with pathological conditions, such as multiple sclerosis and schizophrenia. We previously reported on the transactivation of HERV-W elements, including ERVWE1, during influenza A/WSN/33 virus infection in a range of human cell lines. Here we report the results of quantitative PCR analyses of transcripts encoding syncytin-1 in both cell lines and primary fibroblast cells. We observed that spliced ERVWE1 transcripts and those encoding the transcription factor glial cells missing 1 (GCM1), acting as an enhancer element upstream of ERVWE1, are prominently upregulated in response to influenza A/WSN/33 virus infection in nonplacental cells. Knockdown of GCM1 by small interfering RNA followed by infection suppressed the transactivation of ERVWE1. While the infection had no influence on CpG methylation in the ERVWE1 promoter, chromatin immunoprecipitation assays detected decreased H3K9 trimethylation (H3K9me3) and histone methyltransferase SETDB1 levels along with influenza virus proteins associated with ERVWE1 and other HERV-W loci in infected CCF-STTG1 cells. The present findings suggest that an exogenous influenza virus infection can transactivate ERVWE1 by increasing transcription of GCM1 and reducing H3K9me3 in this region and in other regions harboring HERV-W elements. IMPORTANCE Syncytin-1, a protein encoded by the env gene in the HERV-W locus ERVWE1, appears to be crucial for the development and functioning of the human placenta and is transcriptionally repressed in nonplacental tissues. Nevertheless, its ectopic expression has been associated with pathological conditions, such as multiple sclerosis and schizophrenia. In the present paper, we report findings suggesting that an exogenous influenza A virus infection can transactivate ERVWE1 by increasing the transcription of GCM1 and reducing the repressive histone mark H3K9me3 in this region and in other regions harboring HERV-W elements. These observations have implications of potential relevance for viral pathogenesis and for conditions associated with the aberrant transcription of HERV-W loci.
Collapse
|
12
|
Knipe DM, Lieberman PM, Jung JU, McBride AA, Morris KV, Ott M, Margolis D, Nieto A, Nevels M, Parks RJ, Kristie TM. Snapshots: chromatin control of viral infection. Virology 2013; 435:141-56. [PMID: 23217624 DOI: 10.1016/j.virol.2012.09.023] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 12/11/2022]
Abstract
Like their cellular host counterparts, many invading viral pathogens must contend with, modulate, and utilize the host cell's chromatin machinery to promote efficient lytic infection or control persistent-latent states. While not intended to be comprehensive, this review represents a compilation of conceptual snapshots of the dynamic interplay of viruses with the chromatin environment. Contributions focus on chromatin dynamics during infection, viral circumvention of cellular chromatin repression, chromatin organization of large DNA viruses, tethering and persistence, viral interactions with cellular chromatin modulation machinery, and control of viral latency-reactivation cycles.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu X, Zhao Z, Liu W. Insights into the roles of cyclophilin A during influenza virus infection. Viruses 2013; 5:182-91. [PMID: 23322171 PMCID: PMC3564116 DOI: 10.3390/v5010182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/22/2012] [Accepted: 01/09/2013] [Indexed: 01/31/2023] Open
Abstract
Cyclophilin A (CypA) is the main member of the immunophilin superfamily that has peptidyl-prolyl cis-trans isomerase activity. CypA participates in protein folding, cell signaling, inflammation and tumorigenesis. Further, CypA plays critical roles in the replication of several viruses. Upon influenza virus infection, CypA inhibits viral replication by interacting with the M1 protein. In addition, CypA is incorporated into the influenza virus virions. Finally, Cyclosporin A (CsA), the main inhibitor of CypA, inhibits influenza virus replication through CypA-dependent and -independent pathways. This review briefly summarizes recent advances in understanding the roles of CypA during influenza virus infection.
Collapse
Affiliation(s)
- Xiaoling Liu
- Center for Molecular Virology, Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | |
Collapse
|
14
|
Ran Z, Chen Y, Shen H, Xiang X, Liu Q, Bawa B, Qi W, Zhu L, Young A, Richt J, Ma W, Li F. In vitro and in vivo replication of influenza A H1N1 WSN33 viruses with different M1 proteins. J Gen Virol 2012; 94:884-895. [PMID: 23255622 DOI: 10.1099/vir.0.046219-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The M1 protein is a major structural protein that has multiple functions in various steps within the life cycle of the influenza A virus (IAV). However, little is currently known about the role of M1 in IAV replication in vivo and the associated pathogenesis. In this study, six isogenic H1N1 WSN33 viruses, constructed to express unique M1 proteins derived from various strains, subtypes or WSN33 itself, were tested to determine in vitro and in vivo functional exchangeability of M1 proteins in the replication and pathogenesis of the WSN33 virus. Despite five chimeric M1 viruses replicating to levels similar to those of the parental WSN33 virus in cell cultures, all M1 chimeras exhibited improved replication and enhanced virulence in mice when compared with the WSN33 virus. Interestingly, M1 proteins derived from swine viruses caused more severe clinical diseases than those from human or quail. These data indicate that the M1 protein is an important determinant of viral replication and pathogenic properties in mice, although the functions of M1 observed in vivo are not adequately reflected in simple infections of cultured cells. Chimeric M1 viruses that are variable in their clinical manifestations described here will aid future understanding of the role of M1 in IAV pathogenesis.
Collapse
Affiliation(s)
- Zhiguang Ran
- Veterinary Diagnostic Division, Chongqing Municipal Center for Animal Disease Control and Prevention, Chongqing 401120, PR China.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Ying Chen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Huigang Shen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Xiaoxiao Xiang
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Qinfang Liu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Bhupinder Bawa
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Wenbao Qi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Laihua Zhu
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Alan Young
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Juergen Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Feng Li
- Shandong Academy of Agricultural Sciences, Jinan, PR China.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
15
|
Wang T, Yu B, Lin L, Zhai X, Han Y, Qin Y, Guo Z, Wu S, Zhong X, Wang Y, Tong L, Zhang F, Si X, Zhao W, Zhong Z. A functional nuclear localization sequence in the VP1 capsid protein of coxsackievirus B3. Virology 2012; 433:513-21. [PMID: 23010168 PMCID: PMC7111942 DOI: 10.1016/j.virol.2012.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 01/07/2023]
Abstract
The capsid proteins of some RNA viruses can translocate to the nucleus and interfere with cellular phenotypes. In this study we found that the VP1 capsid protein of coxsackievirus B3 (CVB3) was dominantly localized in the nucleus of the cells transfected with VP1-expressing plasmid. The VP1 nuclear localization also occurred in the cells infected with CVB3. Truncation analysis indicated that the VP1 nuclear localization sequence located near the C-terminal. The substitution of His220 with threonine completely abolished its translocation. The VP1 proteins of other CVB types might have the nuclear localization potential because this region was highly conserved. Moreover, the VP1 nuclear localization induced cell cycle deregulation, including a prolonged S phase and shortened G2-M phase. Besides these findings, we also found a domain between Ala72 and Phe106 that caused the VP1 truncates dotted distributed in the cytoplasm. Our results suggest a new pathogenic mechanism of CVB.
Collapse
Affiliation(s)
- Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
A nuclear export signal in the matrix protein of Influenza A virus is required for efficient virus replication. J Virol 2012; 86:4883-91. [PMID: 22345442 DOI: 10.1128/jvi.06586-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus matrix 1 protein (M1) shuttles between the cytoplasm and the nucleus during the viral life cycle and plays an important role in the replication, assembly, and budding of viruses. Here, a leucine-rich nuclear export signal (NES) was identified specifically for the nuclear export of the M1 protein. The predicted NES, designated the Flu-A-M1 NES, is highly conserved among all sequences from the influenza A virus subtype, but no similar NES motifs are found in the M1 sequences of influenza B or C viruses. The biological function of the Flu-A-M1 NES was demonstrated by its ability to translocate an enhanced green fluorescent protein (EGFP)-NES fusion protein from the nucleus to the cytoplasm in transfected cells, compared to the even nuclear and cytoplasmic distribution of EGFP. The translocation of EGFP-NES from the nucleus to the cytoplasm was not inhibited by leptomycin B. NES mutations in M1 caused a nuclear retention of the protein and an increased nuclear accumulation of NEP during transfection. Indeed, as shown by rescued recombinant viruses, the mutation of the NES impaired the nuclear export of M1 and significantly reduced the virus titer compared to titers of wild-type viruses. The NES-defective M1 protein was retained in the nucleus during infection, accompanied by a lowered efficiency of the nuclear export of viral RNPs (vRNPs). In conclusion, M1 nuclear export was specifically dependent on the Flu-A-M1 NES and critical for influenza A virus replication.
Collapse
|
17
|
Zhou Y, Rojas MR, Park MR, Seo YS, Lucas WJ, Gilbertson RL. Histone H3 interacts and colocalizes with the nuclear shuttle protein and the movement protein of a geminivirus. J Virol 2011; 85:11821-32. [PMID: 21900168 PMCID: PMC3209288 DOI: 10.1128/jvi.00082-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/26/2011] [Indexed: 11/20/2022] Open
Abstract
Geminiviruses are plant-infecting viruses with small circular single-stranded DNA genomes. These viruses utilize nuclear shuttle proteins (NSPs) and movement proteins (MPs) for trafficking of infectious DNA through the nuclear pore complex and plasmodesmata, respectively. Here, a biochemical approach was used to identify host factors interacting with the NSP and MP of the geminivirus Bean dwarf mosaic virus (BDMV). Based on these studies, we identified and characterized a host nucleoprotein, histone H3, which interacts with both the NSP and MP. The specific nature of the interaction of histone H3 with these viral proteins was established by gel overlay and in vitro and in vivo coimmunoprecipitation (co-IP) assays. The NSP and MP interaction domains were mapped to the N-terminal region of histone H3. These experiments also revealed a direct interaction between the BDMV NSP and MP, as well as interactions between histone H3 and the capsid proteins of various geminiviruses. Transient-expression assays revealed the colocalization of histone H3 and NSP in the nucleus and nucleolus and of histone H3 and MP in the cell periphery and plasmodesmata. Finally, using in vivo co-IP assays with a Myc-tagged histone H3, a complex composed of histone H3, NSP, MP, and viral DNA was recovered. Taken together, these findings implicate the host factor histone H3 in the process by which an infectious geminiviral DNA complex forms within the nucleus for export to the cell periphery and cell-to-cell movement through plasmodesmata.
Collapse
Affiliation(s)
- Yanchen Zhou
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Maria R. Rojas
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Mi-Ri Park
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Young-Su Seo
- Department of Plant Pathology, University of California, Davis, California 95616
| | - William J. Lucas
- Department of Plant Biology, University of California, Davis, California 95616
| | - Robert L. Gilbertson
- Department of Plant Pathology, University of California, Davis, California 95616
| |
Collapse
|
18
|
Alfonso R, Lutz T, Rodriguez A, Chavez JP, Rodriguez P, Gutierrez S, Nieto A. CHD6 chromatin remodeler is a negative modulator of influenza virus replication that relocates to inactive chromatin upon infection. Cell Microbiol 2011; 13:1894-906. [PMID: 21899694 DOI: 10.1111/j.1462-5822.2011.01679.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The influenza virus establishes close functional and structural connections with the nucleus of the infected cell. Thus, viral ribonucleoproteins (RNPs) are closely bound to chromatin components and the main constituent of viral RNPs, the nucleoprotein (NP) protein, interacts with histone tails. Using a yeast two-hybrid screening, we previously found that the PA influenza virus polymerase subunit interacts with the CHD6 protein, a member of the CHD family of chromatin remodelers. Here we show that CHD6 also interacts with the viral polymerase complex and colocalizes with viral RNPs in the infected cells. To study the relationships between RNPs, chromatin and CHD6, we have analysed whether NP and CHD6 binds to peptides representing trimethylated lysines of histone 3 tails that mark transcriptionally active or inactive chromatin. Upon infection, NP binds to marks of repressed chromatin and, interestingly an important recruitment of CHD6 to these heterochromatin marks occurs in this situation. Silencing experiments indicate that CHD6 acts as a negative modulator of influenza virus replication. Hence, the CHD6 association with inactive chromatin could be part of a process where the influenza virus triggers modifications of chromatin-associated proteins that could contribute to the pathogenic events used by the virus to induce host cell shut-off.
Collapse
Affiliation(s)
- Roberto Alfonso
- Centro Nacional de Biotecnología. Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. PLoS One 2011; 6:e24365. [PMID: 21909430 PMCID: PMC3164731 DOI: 10.1371/journal.pone.0024365] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/08/2011] [Indexed: 12/24/2022] Open
Abstract
Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection.
Collapse
|
20
|
Chase GP, Rameix-Welti MA, Zvirbliene A, Zvirblis G, Götz V, Wolff T, Naffakh N, Schwemmle M. Influenza virus ribonucleoprotein complexes gain preferential access to cellular export machinery through chromatin targeting. PLoS Pathog 2011; 7:e1002187. [PMID: 21909257 PMCID: PMC3164630 DOI: 10.1371/journal.ppat.1002187] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/17/2011] [Indexed: 01/21/2023] Open
Abstract
In contrast to most RNA viruses, influenza viruses replicate their genome in the nucleus of infected cells. As a result, newly-synthesized vRNA genomes, in the form of viral ribonucleoprotein complexes (vRNPs), must be exported to the cytoplasm for productive infection. To characterize the composition of vRNP export complexes and their interplay with the nucleus of infected cells, we affinity-purified tagged vRNPs from biochemically fractionated infected nuclei. After treatment of infected cells with leptomycin B, a potent inhibitor of Crm1-mediated export, we isolated vRNP export complexes which, unexpectedly, were tethered to the host-cell chromatin with very high affinity. At late time points of infection, the cellular export receptor Crm1 also accumulated at the same regions of the chromatin as vRNPs, which led to a decrease in the export of other nuclear Crm1 substrates from the nucleus. Interestingly, chromatin targeting of vRNP export complexes brought them into association with Rcc1, the Ran guanine exchange factor responsible for generating RanGTP and driving Crm1-dependent nuclear export. Thus, influenza viruses gain preferential access to newly-generated host cell export machinery by targeting vRNP export complexes at the sites of Ran regeneration.
Collapse
Affiliation(s)
- Geoffrey P. Chase
- Department of Virology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | | | | | | | - Veronika Götz
- Department of Virology, University of Freiburg, Freiburg, Germany
| | | | | | - Martin Schwemmle
- Department of Virology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Liu D, Liu X, Yan J, Liu WJ, Gao GF. Interspecies transmission and host restriction of avian H5N1 influenza virus. ACTA ACUST UNITED AC 2009; 52:428-38. [PMID: 19471865 PMCID: PMC7089370 DOI: 10.1007/s11427-009-0062-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 04/18/2009] [Indexed: 12/15/2022]
Abstract
Long-term endemicity of avian H5N1 influenza virus in poultry and continuous sporadic human infections in several countries has raised the concern of another potential pandemic influenza. Suspicion of the avian origin of the previous pandemics results in the close investigation of the mechanism of interspecies transmission. Entry and fusion is the first step for the H5N1 influenza virus to get into the host cells affecting the host ranges. Therefore receptor usage study has been a major focus for the last few years. We now know the difference of the sialic acid structures and distributions in different species, even in the different parts of the same host. Many host factors interacting with the influenza virus component proteins have been identified and their role in the host range expansion and interspecies transmission is under detailed scrutiny. Here we review current progress in the receptor usage and host factors.
Collapse
Affiliation(s)
- Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | | | | | | | | |
Collapse
|
22
|
Liu X, Sun L, Yu M, Wang Z, Xu C, Xue Q, Zhang K, Ye X, Kitamura Y, Liu W. Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication. Cell Microbiol 2009; 11:730-41. [PMID: 19207730 DOI: 10.1111/j.1462-5822.2009.01286.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Influenza A virus matrix protein (M1) is the most abundant conservative protein that regulates the replication, assembly and budding of the viral particles upon infection. Several host cell factors have been determined to interact with M1 possibly in regulating influenza virus replication. By yeast two-hybrid screening, the isomerase cyclophilin A (CypA) was identified to interact with the M1 protein. CypA specifically interacted with M1 both in vitro and in vivo. The mutagenesis results showed CypA bound to the functional middle (M) domain of M1. The depletion of endogenous CypA by RNA interference resulted in the increase of influenza virus infectivity while overexpression of CypA caused decreasing the infectivity in affected cells. The immunofluorescence assays indicated that overexpressed CypA deduced the infectivity and inhibited the translocation of M1 protein into the nucleus while did not affect nucleoprotein entering the nucleus. Further studies indicated that overexpression of CypA significantly increased M1 self-association. Western blot with purified virions confirmed that CypA was encapsidated within the virus particle. These results together indicated that CypA interacted with the M1 protein and affected the early stage of the viral replication.
Collapse
Affiliation(s)
- Xiaoling Liu
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Influenza A replication and host nuclear compartments: Many changes and many questions. J Clin Virol 2008; 43:381-90. [DOI: 10.1016/j.jcv.2008.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/14/2008] [Indexed: 11/18/2022]
|
24
|
Nagata K, Kawaguchi A, Naito T. Host factors for replication and transcription of the influenza virus genome. Rev Med Virol 2008; 18:247-60. [PMID: 18383427 DOI: 10.1002/rmv.575] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
For replication and transcription of the influenza virus genome of eight-segmented and negative-stranded RNAs, not only viral factors but also host-derived cellular factors (host factors) are required. This paper focuses on the identification and characterisation of the host factors involved in replication and transcription of the influenza virus genome, reviewing recent progresses in the related molecular mechanisms. Functional assay systems for screening of host factors using cell-free reconstitution systems and an yeast-based influenza virus replicon system are highlighted. We have summarised the property of host factors comprehensively and provided a clue for the perspective in the determination mechanism of host range and virulence and the development of a new strategy to control the influenza virus.
Collapse
Affiliation(s)
- Kyosuke Nagata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.
| | | | | |
Collapse
|
25
|
Hui EKW, Smee DF, Wong MH, Nayak DP. Mutations in influenza virus M1 CCHH, the putative zinc finger motif, cause attenuation in mice and protect mice against lethal influenza virus infection. J Virol 2006; 80:5697-707. [PMID: 16731908 PMCID: PMC1472591 DOI: 10.1128/jvi.02729-05] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in CCHH, the putative zinc finger motif, apparently do not play an important role in virus replication in MDCK cells in culture (E. K.-W. Hui, K. Ralston, A. K. Judd, and D. P. Nayak, J. Gen. Virol. 84:3105-3113, 2003). In this report, however, we demonstrate that the CCHH motif plays a critical role in virulence in mice and that some CCHH mutants are highly attenuated in BALB/c mice. Some of the mutant viruses replicated the least in mice lungs, induced little or no lung lesions, and caused highly reduced morbidity and mortality. Furthermore, growth patterns of mutant viruses in different cell lines (MDCK, MLE12, 3LL, A549, and 293T) varied. Mutant viruses that were attenuated in mice also grew poorly in mouse and human cells in culture. However, wild-type (WT) and all mutant viruses replicated to the same titer in MDCK (canine) cells or embryonated chicken eggs. Attenuation in mice correlated with reduced growth in mouse cells in culture, suggesting that potential attenuation in a given host can be predicted from the growth characteristics of the virus in cultured cells (preferably lung cells) from the same species. In challenge experiments, mice immunized by infection with attenuated mutant viruses were fully protected from lethal challenge with WT virus. In summary, the replication and attenuating properties of these mutants suggest that the CCHH motif provides a critical determinant for virulence in mouse and that mutations in the CCHH motif yield potential vaccine candidates for the development of live species-specific attenuated influenza virus vaccines.
Collapse
Affiliation(s)
- Eric Ka-Wai Hui
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1747, USA
| | | | | | | |
Collapse
|
26
|
Abstract
It is over 20 years since the publication of experiments that showed that influenza A virus RNA synthesis takes place in the cell nucleus and that here, the virus subverts the cellular transcription machinery to express and replicate its own single-strand RNA genome. In the years since, our understanding of the organisation of the nucleus has increased enormously, particularly with regards to the functional integration of the RNA polymerase II transcriptosome. This review summarises recent progress in defining the intimate association between the viral and cellular transcriptional machinery.
Collapse
Affiliation(s)
- Maria Joao Amorim
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
27
|
Lieberman PM. Chromatin regulation of virus infection. Trends Microbiol 2006; 14:132-40. [PMID: 16458005 DOI: 10.1016/j.tim.2006.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/14/2005] [Accepted: 01/16/2006] [Indexed: 02/02/2023]
Abstract
Cellular chromatin forms a dynamic structure that maintains the stability and accessibility of the host DNA genome. Viruses that enter and persist in the nucleus must, therefore, contend with the forces that drive chromatin formation and regulate chromatin structure. In some cases, cellular chromatin inhibits viral gene expression and replication by suppressing DNA accessibility. In other cases, cellular chromatin provides essential structure and organization to the viral genome and is necessary for successful completion of the viral life cycle. Consequently, viruses have acquired numerous mechanisms to manipulate cellular chromatin to ensure viral genome survival and propagation.
Collapse
|
28
|
Takizawa N, Watanabe K, Nouno K, Kobayashi N, Nagata K. Association of functional influenza viral proteins and RNAs with nuclear chromatin and sub-chromatin structure. Microbes Infect 2006; 8:823-33. [PMID: 16513387 DOI: 10.1016/j.micinf.2005.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 11/25/2022]
Abstract
Transcription and replication of the influenza virus genome occur in the nucleus. However, the intra-nuclear localization of viral RNP complexes and the function of nuclear domains involved in viral transcription and replication, if any, are not well known. In the present study, we determined the intra-nuclear localization of viral proteins and viral RNAs and the in vitro RNA synthesis activity of viral RNP complexes associated with distinct nuclear fractions prepared from infected nuclei. A majority of viral RNA polymerases and M1 were recovered in DNase-sensitive fractions, whereas some portion of RNA polymerases and approximately 25% of NP were tightly associated with so-called nuclear matrix fractions. The amount of vRNA associated with the nuclear matrix was significantly more than that of cRNA. The in vitro viral RNA synthesis activity was detected in DNase-insensitive fractions, including the nuclear matrix. In contrast, newly synthesized viral RNAs were recovered in the DNase-sensitive fraction. These observations suggest that vRNP complexes are, at least partially, associated with densely packed chromatin, where viral transcription and replication occur, and the newly synthesized vRNP complexes to be transported into the cytoplasm are released into the nucleoplasm.
Collapse
Affiliation(s)
- Naoki Takizawa
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| | | | | | | | | |
Collapse
|
29
|
Engelhardt OG, Fodor E. Functional association between viral and cellular transcription during influenza virus infection. Rev Med Virol 2006; 16:329-45. [PMID: 16933365 DOI: 10.1002/rmv.512] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza viruses replicate and transcribe their segmented negative-sense single-stranded RNA genome in the nucleus of the infected host cell. All RNA synthesising activities associated with influenza virus are performed by the virally encoded RNA-dependent RNA polymerase (RdRp) that consists of three subunits, PA, PB1 and PB2. However, viral transcription is critically dependent on on-going cellular transcription, in particular, on activities associated with the cellular DNA-dependent RNA polymerase II (Pol II). Thus, the viral RdRp uses short 5' capped RNA fragments, derived from cellular Pol II transcripts, as primers for viral mRNA synthesis. These capped RNA primers are generated by cleavage of host Pol II transcripts by an endonuclease activity associated with the viral RdRp. Moreover, some viral transcripts require splicing and since influenza virus does not encode splicing machinery, it is dependent on host splicing, an activity also related to Pol II transcription. Despite these functional links between viral and host Pol II transcription, there has been no evidence that a physical association existed between the two transcriptional machineries. However, recently it was reported that there is a physical interaction between the trimeric viral RdRp and cellular Pol II. The viral RdRp was found to interact with the C-terminal domain (CTD) of initiating Pol II, at a stage in the transcription cycle when capping takes place. It was therefore proposed that this interaction may be required for the viral RNA (vRNA) polymerase to gain access to capped RNA substrates for endonucleolytic cleavage. The virus not only relies on cellular factors to support its own RNA synthesis, but also subverts cellular pathways in order to generate an environment optimised for viral multiplication. In this respect, the interaction of the viral NS1 protein with factors involved in cellular pre-mRNA processing is of particular relevance. The virus also alters the distribution of Pol II on cellular genes, leading to a reduction in elongating Pol II thereby contributing to the phenomenon known as host shut-off.
Collapse
|
30
|
Garcia-Robles I, Akarsu H, Müller CW, Ruigrok RWH, Baudin F. Interaction of influenza virus proteins with nucleosomes. Virology 2005; 332:329-36. [PMID: 15661164 DOI: 10.1016/j.virol.2004.09.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 08/23/2004] [Accepted: 09/28/2004] [Indexed: 11/19/2022]
Abstract
During influenza virus infection, transcription and replication of the viral RNA take place in the cell nucleus. Directly after entry in the nucleus the viral ribonucleoproteins (RNPs, the viral subunits containing vRNA, nucleoprotein and the viral polymerase) are tightly associated with the nuclear matrix. Here, we have analysed the binding of RNPs, M1 and NS2/NEP proteins to purified nucleosomes, reconstituted histone octamers and purified single histones. RNPs and M1 both bind to the chromatin components but at two different sites, RNP to the histone tails and M1 to the globular domain of the histone octamer. NS2/NEP did not bind to nucleosomes at all. The possible consequences of these findings for nuclear release of newly made RNPs and for other processes during the infection cycle are discussed.
Collapse
|
31
|
Cros JF, Palese P. Trafficking of viral genomic RNA into and out of the nucleus: influenza, Thogoto and Borna disease viruses. Virus Res 2003; 95:3-12. [PMID: 12921991 DOI: 10.1016/s0168-1702(03)00159-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most RNA viruses that lack a DNA phase replicate in the cytoplasm. However, several negative-stranded RNA viruses such as influenza, Thogoto, and Borna disease viruses replicate their RNAs in the nucleus, taking advantage of the host cell's nuclear machinery. A challenge faced by these viruses is the trafficking of viral components into and out of the nucleus through the nuclear membrane. The genomic RNAs of these viruses associate with proteins to form large complexes called viral ribonucleoproteins (vRNPs), which exceed the size limit for passive diffusion through the nuclear pore complex (NPC). To insure efficient transport across the nuclear membrane, these viruses use nuclear import and export signals exposed on the vRNPs. These signals recruit the cellular import and export complexes, which are responsible for the translocation of the vRNPs through the NPC. The ability to control the direction of vRNP trafficking throughout the viral life cycle is critical. Various mechanisms, ranging from simple post-translational modification to complex, sequential masking-and-exposure of localization signals, are used to insure the proper movement of the vRNPs.
Collapse
Affiliation(s)
- Jerome F Cros
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
32
|
Hui EKW, Barman S, Yang TY, Nayak DP. Basic residues of the helix six domain of influenza virus M1 involved in nuclear translocation of M1 can be replaced by PTAP and YPDL late assembly domain motifs. J Virol 2003; 77:7078-92. [PMID: 12768027 PMCID: PMC156155 DOI: 10.1128/jvi.77.12.7078-7092.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Influenza type A virus matrix (M1) protein possesses multiple functional motifs in the helix 6 (H6) domain (amino acids 91 to 105), including nuclear localization signal (NLS) (101-RKLKR-105) involved in translocating M1 from the cytoplasm into the nucleus. To determine the role of the NLS motif in the influenza virus life cycle, we mutated these and the neighboring sequences by site-directed mutagenesis, and influenza virus mutants were generated by reverse genetics. Our results show that infectious viruses were rescued by reverse genetics from all single alanine mutations of amino acids in the H6 domain and the neighboring region except in three positions (K104A and R105A within the NLS motif and E106A in loop 6 outside the NLS motif). Among the rescued mutant viruses, R101A and R105K exhibited reduced growth and small-plaque morphology, and all other mutant viruses showed the wild-type phenotype. On the other hand, three single mutations (K104A, K105A, and E106A) and three double mutations (R101A/K102A, K104A/K105A, and K102A/R105A) failed to generate infectious virus. Deletion (Delta YRKL) or mutation (4A) of YRKL also abolished generation of infectious virus. However, replacement of the YRKL motif with PTAP or YPDL as well as insertion of PTAP after 4A mutation yielded infectious viruses with the wild-type phenotype. Furthermore, mutant M1 proteins (R101A/K102A, Delta YRKL, 4A, PTAP, 4A+PTAP, and YPDL) when expressed alone from cloned cDNAs were only cytoplasmic, whereas the wild-type M1 expressed alone was both nuclear and cytoplasmic as expected. These results show that the nuclear translocation function provided by the positively charged residues within the NLS motif does not play a critical role in influenza virus replication. Furthermore, these sequences of H6 domain can be replaced by late (L) domain motifs and therefore may provide a function similar to that of the L domains of other negative-strand RNA and retroviruses.
Collapse
Affiliation(s)
- Eric Ka-Wai Hui
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California 90095-1747, USA
| | | | | | | |
Collapse
|
33
|
Sato Y, Yoshioka K, Suzuki C, Awashima S, Hosaka Y, Yewdell J, Kuroda K. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells. Virology 2003; 310:29-40. [PMID: 12788628 DOI: 10.1016/s0042-6822(03)00104-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied influenza virus M1 protein by generating HeLa and MDCK cell lines that express M1 genetically fused to green fluorescent protein (GFP). GFP-M1 was incorporated into virions produced by influenza virus infected MDCK cells expressing the fusion protein indicating that the fusion protein is at least partially functional. Following infection of either HeLa or MDCK cells with influenza A virus (but not influenza B virus), GFP-M1 redistributes from its cytosolic/nuclear location and accumulates in nuclear dots. Immunofluorescence revealed that the nuclear dots represent nuclear dot 10 (ND10) structures. The colocalization of authentic M1, as well as NS1 and NS2 protein, with ND10 was confirmed by immunofluorescence following in situ isolation of ND10. These findings demonstrate a previously unappreciated involvement of influenza virus with ND10, a structure involved in cellular responses to immune cytokines as well as the replication of a rapidly increasing list of viruses.
Collapse
Affiliation(s)
- Yoshiko Sato
- Department of Virology and Immunology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The cellular nuclear transport machinery relies on the assembly of specialized transport complexes between soluble transport receptors, transport substrates, and additional accessory proteins. This study focuses on the structural characteristics of influenza virus protein NS2 (NEP), which interacts with the nuclear export machinery during viral replication, and has been proposed to act as an adapter molecule between the nuclear export machinery and the viral ribonucleoprotein complex. For this purpose, we have purified recombinant NS2 under nondenaturing conditions, and have investigated its structure and aggregation state using optical spectroscopy, differential scanning calorimetry, as well as hydrodynamic techniques. Our results indicate that isolated NS2 exists as a monomer in solution, and adopts a compact, but very flexible conformation, which shows characteristics of the molten globule state under near physiological conditions. Proteolytic sensitivity suggests that, despite its overall plasticity, the structure of NS2 is heterogeneous. While the C terminus of the protein adopts a relatively rigid conformation, its N terminus, which is recognized by the nuclear export machinery, exists in a highly mobile and exposed state. It is proposed that the flexibility observed in the nuclear export domain of NS2 is an important element in the recognition of substrate proteins by the nuclear export machinery.
Collapse
MESH Headings
- Acrylamide/pharmacology
- Calorimetry, Differential Scanning
- Cell Nucleus/metabolism
- Chromatography, Gel
- Circular Dichroism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Escherichia coli/metabolism
- Guanidine/pharmacology
- Isoelectric Focusing
- Kinetics
- Orthomyxoviridae/chemistry
- Protein Binding
- Protein Conformation
- Protein Folding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Recombinant Proteins/metabolism
- Spectrometry, Fluorescence
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spectrophotometry
- Spectroscopy, Fourier Transform Infrared
- Temperature
- Ultracentrifugation
- Viral Nonstructural Proteins/chemistry
Collapse
Affiliation(s)
- Barbara S Lommer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-4400, USA
| | | |
Collapse
|
35
|
Ma K, Roy AM, Whittaker GR. Nuclear export of influenza virus ribonucleoproteins: identification of an export intermediate at the nuclear periphery. Virology 2001; 282:215-20. [PMID: 11289803 DOI: 10.1006/viro.2001.0833] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A critical phase of the influenza virus life cycle is the regulated translocation of genomic ribonucleoproteins (vRNPs) from the nuclear interior, across the nuclear envelope, and into the cytoplasm. Two viral proteins, M1 and NS2, have previously been implicated as mediators of vRNP export. We show here that vRNP nuclear export is prevented by leptomycin B (LMB), an inhibitor of the cellular factor CRM1. In LMB-treated cells, vRNPs were found in a peripheral nuclear location that localized with the nuclear lamina. vRNPs were not colocalized with either M1 or NS2. In situ extraction of cells late in infection also revealed a peripheral localization of nuclear vRNPs, whereas early in infection vRNPs were dispersed throughout the nuclear interior. We believe that vRNPs at the nuclear periphery represent a novel intermediate in the influenza virus nuclear export pathway.
Collapse
Affiliation(s)
- K Ma
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
36
|
Baudin F, Petit I, Weissenhorn W, Ruigrok RW. In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein. Virology 2001; 281:102-8. [PMID: 11222100 DOI: 10.1006/viro.2000.0804] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spontaneous proteolysis of influenza virus M1 protein during crystallisation has defined an N-terminal domain of amino acids 1--164. Full-length M1, the N-terminal domain, and the C-terminal part of M1 (residues 165--252) were produced in Escherichia coli. In vitro tests showed that only full-length M1 and its N-terminal domain bind to negatively charged liposomes and that only full-length M1 and its C-terminal part bind to RNP. However, only full-length M1 had transcription inhibition activity. Several independent experimental approaches indicate that in vitro transcription inhibition occurs through polymerisation/aggregation of M1 onto RNP, or of M1 onto M1 already bound to RNP, rather than by binding to a specific active site on the nucleoprotein or the polymerase. The structure/function of influenza virus M1 will be compared with that of the Ebola virus matrix protein, VP40.
Collapse
Affiliation(s)
- F Baudin
- EMBL Grenoble Outstation, B.P. 156, 38042 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
37
|
Elton D, Simpson-Holley M, Archer K, Medcalf L, Hallam R, McCauley J, Digard P. Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol 2001; 75:408-19. [PMID: 11119609 PMCID: PMC113933 DOI: 10.1128/jvi.75.1.408-419.2001] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2000] [Accepted: 10/10/2000] [Indexed: 11/20/2022] Open
Abstract
Influenza virus transcription occurs in the nuclei of infected cells, where the viral genomic RNAs are complexed with a nucleoprotein (NP) to form ribonucleoprotein (RNP) structures. Prior to assembly into progeny virions, these RNPs exit the nucleus and accumulate in the cytoplasm. The mechanisms responsible for RNP export are only partially understood but have been proposed to involve the viral M1 and NS2 polypeptides. We found that the drug leptomycin B (LMB), which specifically inactivates the cellular CRM1 polypeptide, caused nuclear retention of NP in virus-infected cells, indicating a role for the CRM1 nuclear export pathway in RNP egress. However, no alteration was seen in the cellular distribution of M1 or NS2, even in the case of a mutant virus which synthesizes greatly reduced amounts of NS2. Furthermore, NP was distributed throughout the nuclei of infected cells at early times postinfection but, when retained in the nucleus at late times by LMB treatment, was redistributed to the periphery of the nucleoplasm. No such change was seen in the nuclear distribution of M1 or NS2 after drug treatment. Similar to the behavior of NP, M1 and NS2 in infected cells, LMB treatment of cells expressing each polypeptide in isolation caused nuclear retention of NP but not M1 or NS2. Conversely, overexpression of CRM1 caused increased cytoplasmic accumulation of NP but had little effect on M1 or NS2 distribution. Consistent with this, NP bound CRM1 in vitro. Overall, these data raise the possibility that RNP export is mediated by a direct interaction between NP and the cellular CRM1 export pathway.
Collapse
Affiliation(s)
- D Elton
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Bui M, Wills EG, Helenius A, Whittaker GR. Role of the influenza virus M1 protein in nuclear export of viral ribonucleoproteins. J Virol 2000; 74:1781-6. [PMID: 10644350 PMCID: PMC111655 DOI: 10.1128/jvi.74.4.1781-1786.2000] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase inhibitor H7 blocks influenza virus replication, inhibits production of the matrix protein (M1), and leads to a retention of the viral ribonucleoproteins (vRNPs) in the nucleus at late times of infection (K. Martin and A. Helenius, Cell 67:117-130, 1991). We show here that production of assembled vRNPs occurs normally in H7-treated cells, and we have used H7 as a biochemical tool to trap vRNPs in the nucleus. When H7 was removed from the cells, vRNP export was specifically induced in a CHO cell line stably expressing recombinant M1. Similarly, fusion of cells expressing recombinant M1 from a Semliki Forest virus vector allowed nuclear export of vRNPs. However, export was not rescued when H7 was present in the cells, implying an additional role for phosphorylation in this process. The viral NS2 protein was undetectable in these systems. We conclude that influenza virus M1 is required to induce vRNP nuclear export but that cellular phosphorylation is an additional factor.
Collapse
Affiliation(s)
- M Bui
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
39
|
Volchkova VA, Feldmann H, Klenk HD, Volchkov VE. The nonstructural small glycoprotein sGP of Ebola virus is secreted as an antiparallel-orientated homodimer. Virology 1998; 250:408-14. [PMID: 9792851 DOI: 10.1006/viro.1998.9389] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nonstructural small glycoprotein sGP, which unlike the transmembrane GP is synthesized from primary nonedited mRNA species, is secreted from infected cells as a disulfide-linked homodimer. Site-directed mutagenesis of all cysteine residues revealed that dimerization is due to an intermolecular disulfide linkage between cysteine residues at positions 53 and 306. Formic acid hydrolysis of sGP demonstrated that sGP dimers consist of monomers in antiparallel orientation. Another editing product of the GP gene of Ebola virus (ssGP), which shares 295 amino-terminal amino acid residues with sGP, is secreted from cells in a monomeric form due to the lack of the carboxyl-terminal part (present in sGP), including cysteine at position 306.
Collapse
Affiliation(s)
- V A Volchkova
- Institut für Virologie, Philipps-Universität, Robert-Koch-Strasse 17, Marburg, D-35037, Germany.
| | | | | | | |
Collapse
|