1
|
Ferrara F, Del Rosario JMM, da Costa KAS, Kinsley R, Scott S, Fereidouni S, Thompson C, Kellam P, Gilbert S, Carnell G, Temperton N. Development of Lentiviral Vectors Pseudotyped With Influenza B Hemagglutinins: Application in Vaccine Immunogenicity, mAb Potency, and Sero-Surveillance Studies. Front Immunol 2021; 12:661379. [PMID: 34108964 PMCID: PMC8182064 DOI: 10.3389/fimmu.2021.661379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza B viruses (IBV) cause respiratory disease epidemics in humans and are therefore components of seasonal influenza vaccines. Serological methods are employed to evaluate vaccine immunogenicity prior to licensure. However, classical methods to assess influenza vaccine immunogenicity such as the hemagglutination inhibition assay (HI) and the serial radial hemolysis assay (SRH), have been proven to have many limitations. As such, there is a need to develop innovative methods that can improve on these traditional assays and provide advantages such as ease of production and access, safety, reproducibility, and specificity. It has been previously demonstrated that the use of replication-defective viruses, such as lentiviral vectors pseudotyped with influenza A hemagglutinins in microneutralization assays (pMN) is a safe and sensitive alternative to study antibody responses elicited by natural influenza infection or vaccination. Consequently, we have produced Influenza B hemagglutinin-pseudotypes (IBV PV) using plasmid-directed transfection. To activate influenza B hemagglutinin, we have explored the use of proteases in increasing PV titers via their co-transfection during pseudotype virus production. When tested for their ability to transduce target cells, the influenza B pseudotypes produced exhibit tropism for different cell lines. The pseudotypes were evaluated as alternatives to live virus in microneutralization assays using reference sera standards, mouse and human sera collected during vaccine immunogenicity studies, surveillance sera from seals, and monoclonal antibodies (mAbs) against IBV. The influenza B pseudotype pMN was found to effectively detect neutralizing and cross-reactive responses in all assays and shows promise as an effective and versatile tool in influenza research.
Collapse
Affiliation(s)
- Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Joanne Marie M Del Rosario
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Physical Sciences & Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Kelly A S da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Rebecca Kinsley
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Sasan Fereidouni
- Research Institute of Wildlife Ecology, Veterinary Medicine University, Vienna, Austria
| | - Craig Thompson
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Paul Kellam
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - George Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| |
Collapse
|
2
|
Laporte M, Stevaert A, Raeymaekers V, Boogaerts T, Nehlmeier I, Chiu W, Benkheil M, Vanaudenaerde B, Pöhlmann S, Naesens L. Hemagglutinin Cleavability, Acid Stability, and Temperature Dependence Optimize Influenza B Virus for Replication in Human Airways. J Virol 2019; 94:e01430-19. [PMID: 31597759 PMCID: PMC6912116 DOI: 10.1128/jvi.01430-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/28/2019] [Indexed: 12/15/2022] Open
Abstract
Influenza A virus (IAV) and influenza B virus (IBV) cause yearly epidemics with significant morbidity and mortality. When zoonotic IAVs enter the human population, the viral hemagglutinin (HA) requires adaptation to achieve sustained virus transmission. In contrast, IBV has been circulating in humans, its only host, for a long period of time. Whether this entailed adaptation of IBV HA to the human airways is unknown. To address this question, we compared two seasonal IAVs (A/H1N1 and A/H3N2) and two IBVs (B/Victoria and B/Yamagata lineages) with regard to host-dependent activity of HA as the mediator of membrane fusion during viral entry. We first investigated proteolytic activation of HA by covering all type II transmembrane serine protease (TTSP) and kallikrein enzymes, many of which proved to be present in human respiratory epithelium. The IBV HA0 precursor is cleaved by a broader panel of TTSPs and activated with much higher efficiency than IAV HA0. Accordingly, knockdown of a single protease, TMPRSS2, abrogated spread of IAV but not IBV in human respiratory epithelial cells. Second, the HA fusion pH values proved similar for IBV and human-adapted IAVs (with one exception being the HA of 1918 IAV). Third, IBV HA exhibited higher expression at 33°C, a temperature required for membrane fusion by B/Victoria HA. This indicates pronounced adaptation of IBV HA to the mildly acidic pH and cooler temperature of human upper airways. These distinct and intrinsic features of IBV HA are compatible with extensive host adaptation during prolonged circulation of this respiratory virus in the human population.IMPORTANCE Influenza epidemics are caused by influenza A and influenza B viruses (IAV and IBV, respectively). IBV causes substantial disease; however, it is far less studied than IAV. While IAV originates from animal reservoirs, IBV circulates in humans only. Virus spread requires that the viral hemagglutinin (HA) is active and sufficiently stable in human airways. We resolve here how these mechanisms differ between IBV and IAV. Whereas human IAVs rely on one particular protease for HA activation, this is not the case for IBV. Superior activation of IBV by several proteases should enhance shedding of infectious particles. IBV HA exhibits acid stability and a preference for 33°C, indicating pronounced adaptation to the human upper airways, where the pH is mildly acidic and a cooler temperature exists. These adaptive features are rationalized by the long existence of IBV in humans and may have broader relevance for understanding the biology and evolution of respiratory viruses.
Collapse
MESH Headings
- Cell Line
- Epithelial Cells/pathology
- Epithelial Cells/virology
- Gene Expression Regulation
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Hydrogen-Ion Concentration
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/metabolism
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza B virus/genetics
- Influenza B virus/metabolism
- Influenza B virus/pathogenicity
- Influenza, Human/pathology
- Influenza, Human/virology
- Kallikreins/classification
- Kallikreins/genetics
- Kallikreins/metabolism
- Lung/pathology
- Lung/virology
- Membrane Fusion
- Membrane Proteins/classification
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Proteolysis
- Respiratory Mucosa/pathology
- Respiratory Mucosa/virology
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
- Serine Proteases/classification
- Serine Proteases/genetics
- Serine Proteases/metabolism
- Species Specificity
- Temperature
- Virus Internalization
- Virus Replication/genetics
Collapse
Affiliation(s)
- Manon Laporte
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Annelies Stevaert
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Valerie Raeymaekers
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Talitha Boogaerts
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Winston Chiu
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Mohammed Benkheil
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Bart Vanaudenaerde
- Katholieke Universiteit Leuven, Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Pneumology, University Hospital Leuven, Leuven, Belgium
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Lieve Naesens
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
3
|
Stech J, Garn H, Herwig A, Stech O, Dauber B, Wolff T, Mettenleiter TC, Klenk HD. Influenza B virus with modified hemagglutinin cleavage site as a novel attenuated live vaccine. J Infect Dis 2011; 204:1483-90. [PMID: 21917878 DOI: 10.1093/infdis/jir613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Both pandemic and interpandemic influenza is associated with high morbidity and mortality worldwide. Seasonal epidemics are caused by both influenza A and B virus strains that cocirculate with varying predominance and may give rise to severe illness equally. According to World Health Organization recommendations, current annual vaccines are composed of 2 type A and 1 type B virus-specific component. METHODS As a novel attenuated live vaccine against influenza B virus, we generated a hemagglutinin cleavage site mutant of strain B/Lee/40 by replacing the common monobasic cleavage site recognized by trypsinlike proteases with an elastase-sensitive site, and we investigated the in vitro properties, attenuation, humoral responses, and efficacy in mice. RESULTS This mutant virus replicated in cell culture equally well as the wild type but in a strictly elastase-dependent manner. In contrast to the mouse-pathogenic parental virus, the cleavage site mutant was fully attenuated in mice and not detectable in their lungs. After 1 intranasal immunization, the animals survived lethal challenge with wild-type virus without weight loss or any other signs of disease. Furthermore, no challenge virus could be reisolated from the lungs of vaccinated mice. CONCLUSIONS These findings demonstrate that proteolytic activation mutants can serve as live vaccine against influenza B virus.
Collapse
Affiliation(s)
- Jürgen Stech
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
In vitro characterization of naturally occurring influenza H3NA- viruses lacking the NA gene segment: toward a new mechanism of viral resistance? Virology 2010; 404:215-24. [PMID: 20627352 DOI: 10.1016/j.virol.2010.04.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/30/2010] [Accepted: 04/27/2010] [Indexed: 11/21/2022]
Abstract
Among a panel of 788 clinical influenza H3N2 isolates, two isolates were characterized by an oseltamivir-resistant phenotype linked to the absence of any detectable NA activity. Here, we established that the two H3NA- isolates lack any detectable full-length NA segment, and one of these could be rescued by reverse genetics in the absence of any NA segment sequence. We found that the absence of NA segment induced a moderate growth defect of the H3NA- viruses as on cultured cells. The glycoproteins density at the surface of H3NA- virions was unchanged as compared to H3N2 virions. The HA protein as well as residues 188 and 617 of the PB1 protein were shown to be strong determinants of the ability of H3NA- viruses to grow in the absence of the NA segment. The significance of these findings about naturally occurring seven-segment influenza A viruses is discussed.
Collapse
|
5
|
Mould JA, Paterson RG, Takeda M, Ohigashi Y, Venkataraman P, Lamb RA, Pinto LH. Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes. Dev Cell 2003; 5:175-84. [PMID: 12852861 DOI: 10.1016/s1534-5807(03)00190-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Successful uncoating of the influenza B virus in endosomes is predicted to require acidification of the interior of the virus particle. We report that a virion component, the BM2 integral membrane protein, when expressed in Xenopus oocytes or in mammalian cells, causes acidification of the cells and possesses ion channel activity consistent with proton conduction. Furthermore, coexpression of BM2 with hemagglutinin (HA) glycoprotein prevents HA from adopting its low-pH-induced conformation during transport to the cell surface, and overexpression of BM2 causes a delay in intracellular transport in the exocytic pathway and causes morphological changes in the Golgi. These data are consistent with BM2 equilibrating the pH gradient between the Golgi and the cytoplasm. The transmembrane domain of BM2 protein and the influenza A virus A/M2 ion channel protein both contain the motif HXXXW, and, for both proteins, the His and Trp residues are important for channel function.
Collapse
Affiliation(s)
- Jorgen A Mould
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Luo C, Nobusawa E, Nakajima K. Analysis of the desialidation process of the haemagglutinin protein of influenza B virus: the host-dependent desialidation step. J Gen Virol 2002; 83:1729-1734. [PMID: 12075092 DOI: 10.1099/0022-1317-83-7-1729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It was reported previously that haemadsorption by the haemagglutinin (HA) protein of influenza B virus required that the protein must undergo desialidation. When MDCK and COS cells were infected with influenza B/Kanagawa/73 virus in the presence of a neuraminidase (NA) inhibitor, Zanamivir, haemadsorption on MDCK cells was inhibited but that on COS cells was not. The activity of the NA protein of the two types of infected cells was similar and both were inhibited by Zanamivir in a dose-dependent manner. A comparison of the desialidation of the HA protein was made on MDCK and COS cells in the presence of bacterial NA and both cells were found to have similar sensitivity. On the accumulation of the HA and NA proteins in the trans-Golgi network of MDCK cells by means of low-temperature treatment, desialidation of the HA protein in the presence of Zanamivir was detected by two-dimensional gel electrophoresis. Because this agent was reported to be unable to penetrate cells, these data suggest that, in MDCK cells, desialidation of the HA protein occurs on the cell surface but, in COS cells, the HA and NA proteins might accumulate in the trans-Golgi network, thus allowing NA desialidation before their migration to the cell surface.
Collapse
Affiliation(s)
- C Luo
- Department of Virology, Medical School, Nagoya City University, 1 Kawasumi, Mizuho-chou, Mizuho-ku, Nagoya 467-8601, Japan1
| | - E Nobusawa
- Department of Virology, Medical School, Nagoya City University, 1 Kawasumi, Mizuho-chou, Mizuho-ku, Nagoya 467-8601, Japan1
| | - K Nakajima
- Department of Virology, Medical School, Nagoya City University, 1 Kawasumi, Mizuho-chou, Mizuho-ku, Nagoya 467-8601, Japan1
| |
Collapse
|
7
|
Binley JM, Sanders RW, Master A, Cayanan CS, Wiley CL, Schiffner L, Travis B, Kuhmann S, Burton DR, Hu SL, Olson WC, Moore JP. Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. J Virol 2002; 76:2606-16. [PMID: 11861826 PMCID: PMC135977 DOI: 10.1128/jvi.76.6.2606-2616.2002] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2001] [Accepted: 12/06/2001] [Indexed: 12/31/2022] Open
Abstract
In virus-infected cells, the envelope glycoprotein (Env) precursor, gp160, of human immunodeficiency virus type 1 is cleaved by cellular proteases into a fusion-competent gp120-gp41 heterodimer in which the two subunits are noncovalently associated. However, cleavage can be inefficient when recombinant Env is expressed at high levels, either as a full-length gp160 or as a soluble gp140 truncated immediately N-terminal to the transmembrane domain. We have explored several methods for obtaining fully cleaved Env for use as a vaccine antigen. We tested whether purified Env could be enzymatically digested with purified protease in vitro. Plasmin efficiently cleaved the Env precursor but also cut at a second site in gp120, most probably the V3 loop. In contrast, a soluble form of furin was specific for the gp120-gp41 cleavage site but cleaved inefficiently. Coexpression of Env with the full-length or soluble form of furin enhanced Env cleavage but also reduced Env expression. When the Env cleavage site (REKR) was mutated in order to see if its use by cellular proteases could be enhanced, several mutants were found to be processed more efficiently than the wild-type protein. The optimal cleavage site sequences were RRRRRR, RRRRKR, and RRRKKR. These mutations did not significantly alter the capacity of the Env protein to mediate fusion, so they have not radically perturbed Env structure. Furthermore, unlike that of wild-type Env, expression of the cleavage site mutants was not significantly reduced by furin coexpression. Coexpression of Env cleavage site mutants and furin is therefore a useful method for obtaining high-level expression of processed Env.
Collapse
Affiliation(s)
- James M Binley
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Porotto M, Greengard O, Poltoratskaia N, Horga MA, Moscona A. Human parainfluenza virus type 3 HN-receptor interaction: effect of 4-guanidino-Neu5Ac2en on a neuraminidase-deficient variant. J Virol 2001; 75:7481-8. [PMID: 11462020 PMCID: PMC114983 DOI: 10.1128/jvi.75.16.7481-7488.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope of human parainfluenza virus type 3 (HPF3) contains two viral glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). HN, which is responsible for receptor attachment and for promoting F-mediated fusion, also possesses neuraminidase (receptor-destroying) activity. We reported previously that 4-guanidino-neu5Ac2en (4-GU-DANA) and related sialic acid-based inhibitors of HPF3 neuraminidase activity also inhibit HN-mediated receptor binding and fusion processes not involving neuraminidase activity. We have now examined this mechanism, as well as neuraminidase's role in the viral life cycle, using a neuraminidase-deficient HPF3 variant (C28a) and stable cell lines expressing C28a or wild-type (wt) HN. C28a, which has a wt F sequence and two point mutations in the HN gene corresponding to two amino acid changes in the HN protein, is the first HPF3 variant with insignificant neuraminidase activity. Cells expressing C28a HN did not bind erythrocytes at 4 degrees C unless pretreated with neuraminidase, but no such pretreatment was required for hemadsorption activity (HAD) at 22 or 37 degrees C. HAD was blocked by 4-GU-DANA, attesting to the ability of this compound to inhibit HN's receptor-binding activity. C28a or wt plaque enlargement, a process that involves cell-cell fusion and does not depend on virion release, is diminished by the presence of 4-GU-DANA, confirming the inhibitory effect of 4-GU-DANA on the fusogenic function of C28a HN. In C28a-infected cell monolayers, virion release and thus multicycle replication are severely restricted. This defect was corrected by supplementation of exogenous neuraminidase and also by the addition of 4-GU-DANA; neuraminidase destroys the receptors whereby newly formed C28a virions would remain attached to the cell surface, whereas 4-GU-DANA prevents the attachment itself, obviating the need for receptor cleavage. In accord with the ability of 4-GU-DANA to prevent attachment, the neuraminidase inhibitory effect of 4-GU-DANA on wt HPF3 did not diminish virion release into the medium. Thus, it is by inhibition of viral entry and syncytium formation that sialic acid analogs like 4-GU-DANA may counteract wt HPF3 infection.
Collapse
Affiliation(s)
- M Porotto
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
The rapid evolution of influenza A and B viruses contributes to annual influenza epidemics in humans. In addition, pandemics of influenza are also caused by influenza A viruses, whereas influenza B does not have the potential to cause pandemics because there is no animal reservoir of the virus. Study of the genetic differences between influenza A and influenza B viruses, which are restricted to humans, may be informative in understanding the factors that govern mammalian adaptation of influenza A viruses. Aquatic birds provide the natural reservoir for influenza A viruses, but in general, avian influenza is asymptomatic in feral birds. Occasionally, however, highly pathogenic strains of influenza cause serious systemic infections in domestic poultry. The pathogenicity of these strains is related to the presence of a polybasic cleavage sequence in the precursor of the surface glycoprotein haemagglutinin, which makes the glycoprotein susceptible to activation by ubiquitous proteases such as furin and PC6. However, the mechanism of pathogenicity may differ in highly pathogenic strains of human influenza, such as the H1N1 pandemic strain of 1918 and the H5N1 strain involved in the outbreak in Hong Kong in 1997. Binding of host proteases by the viral neuraminidase to assist activation of the haemagglutinin, shortening of the neuraminidase and substitutions in the polymerase gene, PB2, have all been suggested as alternative molecular correlates of pathogenicity of human influenza viruses. Additionally, systemic spread in humans of pathogenic subtypes has not been demonstrated and host factors such as interferons may be crucial in preventing the spread of the virus outside the respiratory tract.
Collapse
Affiliation(s)
- M C Zambon
- Enteric and Respiratory Virus Laboratory, PHLS Central Public Health Laboratory, Colindale, London NW9 5HT, UK.
| |
Collapse
|
10
|
Luo C, Nobusawa E, Nakajima K. An analysis of the role of neuraminidase in the receptor-binding activity of influenza B virus: the inhibitory effect of Zanamivir on haemadsorption. J Gen Virol 1999; 80 ( Pt 11):2969-2976. [PMID: 10580059 DOI: 10.1099/0022-1317-80-11-2969] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analysed the role of neuraminidase (NA) on haemadsorption by the haemagglutinin (HA) protein of influenza B virus. The influenza B virus mutant ts-7 has a temperature-sensitive mutation in the NA protein. At high temperature, cells infected with this virus did not exhibit haemadsorption activity, but the addition of bacterial neuraminidase (bNA) restored haemadsorption activity. COS cells transfected with HA cDNAs of B/Kanagawa/73 or B/Lee/40 virus showed no evidence of haemadsorption. However, with the addition of bNA or co- transfection with NA cDNA of the B/Lee/40 virus, haemadsorption was observed. Experiments with point-mutated HA cDNAs of B/Lee/40 virus showed that two N-acetyl glycosylation sites at amino acid residues 160 and 217 were responsible for the inability of the HA protein to adsorb to erythrocytes. These results indicated that haemadsorption by the HA protein of influenza B virus required the involvement of NA. Because the NA inhibitor Zanamivir was reported not to penetrate cells, we investigated the action of this inhibitor and found that Zanamivir inhibited haemadsorption on MDCK cells infected with B/Kanagawa/73 or B/Lee/40 virus. After removing Zanamivir by washing, the addition of bNA restored the haemadsorption activity on the infected cells. Scanning electron microscopy indicated that at 0.4 microM Zanamivir, HA protein did not adsorb to erythrocytes but retained the ability to aggregate virions. However, at 4 microM Zanamivir, distinct virion formation could not be observed.
Collapse
Affiliation(s)
- C Luo
- Department of Virology, Medical School, Nagoya City University, 1 Kawasumi, Mizuho-chou, Mizuho-ku, Nagoya 467, Japan 1
| | - E Nobusawa
- Department of Virology, Medical School, Nagoya City University, 1 Kawasumi, Mizuho-chou, Mizuho-ku, Nagoya 467, Japan 1
| | - K Nakajima
- Department of Virology, Medical School, Nagoya City University, 1 Kawasumi, Mizuho-chou, Mizuho-ku, Nagoya 467, Japan 1
| |
Collapse
|