1
|
Genomic Sequencing of High-Efficiency Transducing Streptococcal Bacteriophage A25: Consequences of Escape from Lysogeny. J Bacteriol 2018; 200:JB.00358-18. [PMID: 30224437 DOI: 10.1128/jb.00358-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/12/2018] [Indexed: 12/26/2022] Open
Abstract
Lytic bacteriophage A25, which infects Streptococcus pyogenes and several related species, has been used to better understand phage-microbe interactions due to its ability to mediate high-efficiency transduction. Most of these studies, however, are decades old and were conducted prior to the advent of next-generation sequencing and bioinformatics. The aim of our study was to gain a better understanding of the mechanism of high-efficiency transduction through analysis of the A25 genome. We show here that phage A25 is related to a family of genome prophages and became a lytic phage following escape from lysogeny. A lambdoid-like residual lysogeny module consisting of an operator site with two promoters and a cro-like antirepressor gene was identified, but the genes for the cI-like repressor and integrase are missing. Additionally, the genetic organization of the A25 genome was found to be modular in nature and similar to that of many prophages of S. pyogenes as well as from other streptococcal species. A study of A25 homology to all annotated prophages within S. pyogenes revealed near identity within the remnant lysogeny module of the A25 phage genome to the corresponding regions in resident prophages of genome strains MGAS10270 (M2), MGAS315 (M3), MGAS10570 (M4), and STAB902 (M4). Host range studies of MGAS10270, MGAS315, and MGAS10750 demonstrated that these strains were resistant to A25 infection. The resistance mechanism of superinfection immunity was confirmed experimentally through complementation of the operator region and cI-like repressor from prophage MGAS10270.2 into susceptible strains SF370, CEM1Δ4 (SF370ΔSpyCIM1), and ATCC 12204, which rendered all three strains resistant to A25 infection. In silico prediction of packaging through homology analysis of the terminase large subunit from bacteriophages within the known packaging mechanism of Gram-positive bacteria as well as the evidence of terminally redundant and/or circularly permuted sequences suggested that A25 grouped with phages employing the less stringent pac-type packaging mechanisms, which likely explains the characteristic A25 high-efficiency transduction capabilities. Only a few examples of lytic phages appearing following loss of part or all of the lysogeny module have been reported previously, and the genetic mosaicism of A25 suggests that this event may not have been a recent one. However, the discovery that this lytic bacteriophage shares some of the genetic pool of S. pyogenes prophages emphasizes the importance of genetic and biological characterization of bacteriophages when selecting phages for therapeutics or disinfectants, as phage-phage and phage-microbe interactions can be complex, requiring more than just assessment of host range and carriage of toxoid or virulence genes.IMPORTANCE Bacteriophages (bacterial viruses) play an important role in the shaping of bacterial populations as well as the dissemination of bacterial genetic material to new strains, resulting in the spread of virulence factors and antibiotic resistance genes. This study identified the genetic origins of Streptococcus pyogenes phage A25 and uncovered the molecular mechanism employed to promote horizontal transfer of DNA by transduction to new strains of this bacterium as well as identified the basis for its host range.
Collapse
|
2
|
YMC-2011, a Temperate Phage of Streptococcus salivarius 57.I. Appl Environ Microbiol 2017; 83:AEM.03186-16. [PMID: 28062463 DOI: 10.1128/aem.03186-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus salivarius is an abundant isolate of the oral cavity. The genome of S. salivarius 57.I consists of a 2-Mb chromosome and a 40,758-bp circular molecule, designated YMC-2011. Annotation of YMC-2011 revealed 55 open reading frames, most of them associated with phage production, although plaque formation is not observed in S. salivarius 57.I after lytic induction using mitomycin C. Results from Southern hybridization and quantitative real-time PCR confirmed that YMC-2011 exists extrachromosomally, with an estimated copy number of 3 to 4. Phage particles were isolated from the supernatant of mitomycin C-treated S. salivarius 57.I cultures, and transmission electron microscopic examination indicated that YMC-2011 belongs to the Siphoviridae family. Phylogenetic analysis suggests that phage YMC-2011 and the cos-type phages of Streptococcus thermophilus originated from a common ancestor. An extended -10 element (p L ) and a σ70-like promoter (p R ) were mapped 5' to Ssal_phage00013 (encoding a CI-like repressor) and Ssal_phage00014 (encoding a hypothetical protein), respectively, using 5' rapid amplification of cDNA ends, indicating that YMC-2011 transcribes at least two mRNAs in opposite orientations. Studies using promoter-chloramphenicol acetyltransferase reporter gene fusions revealed that p R , but not p L , was sensitive to mitomycin C induction, suggesting that the switch from lysogenic growth to lytic growth was controlled mainly by the activity of these two promoters. In conclusion, a lysogenic state is maintained in S. salivarius 57.I, presumably by the repression of genes encoding proteins for lytic growth.IMPORTANCE The movement of mobile genetic elements such as bacteriophages and the establishment of lysogens may have profound effects on the balance of microbial ecology where lysogenic bacteria reside. The discovery of phage YMC-2011 from Streptococcus salivarius 57.I suggests that YMC-2011 and Streptococcus thermophilus-infecting phages share an ancestor. Although S. salivarius and S. thermophilus are close phylogenetically, S. salivarius is a natural inhabitant of the human mouth, whereas S. thermophilus is commonly found in the mammary mucosa of bovine species. Thus, the identification of YMC-2011 suggests that horizontal gene transfer via phage infection could take place between species from different ecological niches.
Collapse
|
3
|
Koberg S, Mohamed MDA, Faulhaber K, Neve H, Heller KJ. Identification and characterization of cis- and trans-acting elements involved in prophage induction in Streptococcus thermophilus J34. Mol Microbiol 2015; 98:535-52. [PMID: 26193959 DOI: 10.1111/mmi.13140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2015] [Indexed: 11/29/2022]
Abstract
The genetic switch region of temperate Streptococcus thermophilus phage TP-J34 contains two divergently oriented promoters and several predicted operator sites. It separates lytic cycle-promoting genes from those promoting lysogeny. A polycistronic transcript comprises the genes coding for repressor Crh, metalloproteinase-motif protein Rir and superinfection exclusion lipoprotein Ltp. Weak promoters effecting monocistronic transcripts were localized for ltp and int (encoding integrase) by Northern blot and 5'-RACE-PCR. These transcripts appeared in lysogenic as well as lytic state. A polycistronic transcript comprising genes coh (encoding Cro homolog), ant (encoding putative antirepressor), orf7, orf8 and orf9 was only detected in the lytic state. Four operator sites, of which three were located in the intergenic regions between crh and coh, and one between coh and ant, were identified by competition electromobility shift assays. Cooperative binding of Crh to two operator sites immediately upstream of coh could be demonstrated. Coh was shown to bind to the operator closest to crh only. Oligomerization was proven by cross-linking Crh by glutaraldehyde. Knock-out of rir revealed a key role in prophage induction. Rir and Crh were shown to form a complex in solution and Rir prevented binding of Crh to its operator sites.
Collapse
Affiliation(s)
- Sabrina Koberg
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Mazhar Desouki Ali Mohamed
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Katharina Faulhaber
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| |
Collapse
|
4
|
Ali Y, Koberg S, Heßner S, Sun X, Rabe B, Back A, Neve H, Heller KJ. Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front Microbiol 2014; 5:98. [PMID: 24659988 PMCID: PMC3952083 DOI: 10.3389/fmicb.2014.00098] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/23/2014] [Indexed: 11/17/2022] Open
Abstract
Lipoprotein Ltp encoded by temperate Streptococcus thermophilus phage TP-J34 is the prototype of the wide-spread family of host cell surface-exposed lipoproteins involved in superinfection exclusion (sie). When screening for other S. thermophilus phages expressing this type of lipoprotein, three temperate phages—TP-EW, TP-DSM20617, and TP-778—were isolated. In this communication we present the total nucleotide sequences of TP-J34 and TP-778L. For TP-EW, a phage almost identical to TP-J34, besides the ltp gene only the two regions of deviation from TP-J34 DNA were analyzed: the gene encoding the tail protein causing an assembly defect in TP-J34 and the gene encoding the lysin, which in TP-EW contains an intron. For TP-DSM20617 only the sequence of the lysogeny module containing the ltp gene was determined. The region showed high homology to the same region of TP-778. For TP-778 we could show that absence of the attR region resulted in aberrant excision of phage DNA. The amino acid sequence of mature LtpTP-EW was shown to be identical to that of mature LtpTP-J34, whereas the amino acid sequence of mature LtpTP-778 was shown to differ from mature LtpTP-J34 in eight amino acid positions. LtpTP-DSM20617 was shown to differ from LtpTP-778 in just one amino acid position. In contrast to LtpTP-J34, LtpTP-778 did not affect infection of lactococcal phage P008 instead increased activity against phage P001 was noticed.
Collapse
Affiliation(s)
- Yahya Ali
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany ; Medical Biology Department, Faculty of Medicine, Jazan University Jazan, Kingdom of Saudi Arabia ; Department of Biotechnology, Agricultural Research Center, Animal Health Research Institute Cairo, Egypt
| | - Sabrina Koberg
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Stefanie Heßner
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Xingmin Sun
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Björn Rabe
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Angela Back
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| |
Collapse
|
5
|
Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol 2010; 192:5441-53. [PMID: 20709901 DOI: 10.1128/jb.00709-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brochothrix belongs to the low-GC branch of Gram-positive bacteria (Firmicutes), closely related to Listeria, Staphylococcus, Clostridium, and Bacillus. Brochothrix thermosphacta is a nonproteolytic food spoilage organism, adapted to growth in vacuum-packaged meats. We report the first genome sequences and characterization of Brochothrix bacteriophages. Phage A9 is a myovirus with an 89-nm capsid diameter and a 171-nm contractile tail; it belongs to the Spounavirinae subfamily and shares significant homologies with Listeria phage A511, Staphylococcus phage Twort, and others. The A9 unit genome is 127 kb long with 11-kb terminal redundancy; it encodes 198 proteins and 6 tRNAs. Phages BL3 and NF5 are temperate siphoviruses with a head diameter of 56 to 59 nm. The BL3 tail is 270 nm long, whereas NF5 features a short tail of only 94 nm. The NF5 genome (36.95 kb) encodes 57 gene products, BL3 (41.52 kb) encodes 65 products, and both are arranged in life cycle-specific modules. Surprisingly, BL3 and NF5 show little relatedness to Listeria phages but rather demonstrate relatedness to lactococcal phages. Peptide mass fingerprinting of viral proteins indicate programmed -1 translational frameshifts in the NF5 capsid and the BL3 major tail protein. Both NF5 and BL3 feature circularly permuted, terminally redundant genomes, packaged by a headful mechanism, and integrases of the serine (BL3) and tyrosine (NF5) types. They utilize unique target sequences not previously described: BL3 inserts into the 3' end of a RNA methyltransferase, whereas NF5 integrates into the 5'-terminal part of a putative histidinol-phosphatase. Interestingly, both genes are reconstituted by phage sequence.
Collapse
|
6
|
Furuta Y, Abe K, Kobayashi I. Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res 2010; 38:2428-43. [PMID: 20071371 PMCID: PMC2853133 DOI: 10.1093/nar/gkp1226] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mobility of restriction–modification (RM) gene complexes and their association with genome rearrangements is a subject of active investigation. Here we conducted systematic genome comparisons and genome context analysis on fully sequenced prokaryotic genomes to detect RM-linked genome rearrangements. RM genes were frequently found to be linked to mobility-related genes such as integrase and transposase homologs. They were flanked by direct and inverted repeats at a significantly high frequency. Insertion by long target duplication was observed for I, II, III and IV restriction types. We found several RM genes flanked by long inverted repeats, some of which had apparently inserted into a genome with a short target duplication. In some cases, only a portion of an apparently complete RM system was flanked by inverted repeats. We also found a unit composed of RM genes and an integrase homolog that integrated into a tRNA gene. An allelic substitution of a Type III system with a linked Type I and IV system pair, and allelic diversity in the putative target recognition domain of Type IIG systems were observed. This study revealed the possible mobility of all types of RM systems, and the diversity in their mobility-related organization.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
7
|
Duplessis M, Russell WM, Romero DA, Moineau S. Global gene expression analysis of two Streptococcus thermophilus bacteriophages using DNA microarray. Virology 2005; 340:192-208. [PMID: 16043205 DOI: 10.1016/j.virol.2005.05.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 04/26/2005] [Accepted: 05/27/2005] [Indexed: 11/23/2022]
Abstract
A custom microarray was developed to study the temporal gene expression of the two groups of phages infecting the Gram-positive lactic acid bacterium Streptococcus thermophilus. The complete genomic sequence of the virulent cos-type phage DT1 (34,815 bp) and the pac-type phage 2972 (34,704 bp) were used for the construction of the microarray. Gene expression was measured at nine time intervals (0, 2, 7, 12, 17, 22, 27, 32 and 37 min) during phage infection and an expression curve was determined for each gene. Each phage gene was then classified into one of the three traditional transcription classes and these data were used to generate the complete transcriptional map of DT1 and 2972. Phage DT1 possesses 18 early genes, 12 middle genes and 12 late-expressed genes whereas 2972 has 16 early, 11 middle and 14 late genes. The trends of the phage gene expression profiles were also confirmed by slot blot hybridizations. Significant differences were observed when comparing the transcriptional maps of DT1 and 2972 with those already available for the S. thermophilus phages Sfi19 and Sfi21. To our knowledge, this report presents the first complete transcription analysis of bacteriophages infecting Gram-positive bacteria using the DNA microarray technology.
Collapse
Affiliation(s)
- Martin Duplessis
- Département de biochimie et de microbiologie, Faculté des sciences et de génie, Université Laval, Québec City, Canada
| | | | | | | |
Collapse
|
8
|
Lévesque C, Duplessis M, Labonté J, Labrie S, Fremaux C, Tremblay D, Moineau S. Genomic organization and molecular analysis of virulent bacteriophage 2972 infecting an exopolysaccharide-producing Streptococcus thermophilus strain. Appl Environ Microbiol 2005; 71:4057-68. [PMID: 16000821 PMCID: PMC1169050 DOI: 10.1128/aem.71.7.4057-4068.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 02/01/2005] [Indexed: 11/20/2022] Open
Abstract
The Streptococcus thermophilus virulent pac-type phage 2972 was isolated from a yogurt made in France in 1999. It is a representative of several phages that have emerged with the industrial use of the exopolysaccharide-producing S. thermophilus strain RD534. The genome of phage 2972 has 34,704 bp with an overall G+C content of 40.15%, making it the shortest S. thermophilus phage genome analyzed so far. Forty-four open reading frames (ORFs) encoding putative proteins of 40 or more amino acids were identified, and bioinformatic analyses led to the assignment of putative functions to 23 ORFs. Comparative genomic analysis of phage 2972 with the six other sequenced S. thermophilus phage genomes confirmed that the replication module is conserved and that cos- and pac-type phages have distinct structural and packaging genes. Two group I introns were identified in the genome of 2972. They interrupted the genes coding for the putative endolysin and the terminase large subunit. Phage mRNA splicing was demonstrated for both introns, and the secondary structures were predicted. Eight structural proteins were also identified by N-terminal sequencing and/or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Detailed analysis of the putative minor tail proteins ORF19 and ORF21 as well as the putative receptor-binding protein ORF20 showed the following interesting features: (i) ORF19 is a hybrid protein, because it displays significant identity with both pac- and cos-type phages; (ii) ORF20 is unique; and (iii) a protein similar to ORF21 of 2972 was also found in the structure of the cos-type phage DT1, indicating that this structural protein is present in both S. thermophilus phage groups. The implications of these findings for phage classification are discussed.
Collapse
Affiliation(s)
- Céline Lévesque
- GREB, Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|
9
|
Lamothe G, Lévesque C, Bissonnette F, Cochu A, Vadeboncoeur C, Frenette M, Duplessis M, Tremblay D, Moineau S. Characterization of the cro-ori region of the Streptococcus thermophilus virulent bacteriophage DT1. Appl Environ Microbiol 2005; 71:1237-46. [PMID: 15746324 PMCID: PMC1065193 DOI: 10.1128/aem.71.3.1237-1246.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulent cos-type Streptococcus thermophilus phage DT1 was previously isolated from a mozzarella whey sample, and its complete genomic sequence is available. The putative ori of phage DT1 is characterized by three inverted and two direct repeats located in a noncoding region between orf36 and orf37. As the replication ability of the putative ori and flanking genes could not be established, its ability to confer phage resistance was tested. When ori is cloned on a high-copy-number plasmid, it provides protection to S. thermophilus strains against phage infection during milk fermentation. This protection is phage specific and strain dependent. Then, a detailed transcriptional map was established for the region located between the cro-like gene (orf29) and the ori. The results of the Northern blots indicated that the transcription of this region started 5 min after the onset of phage infection. Comparative analysis of the expression of the cro-ori region in the three S. thermophilus cos-type phages DT1, Sfi19 (virulent), and Sfi21 (temperate) reveals significant differences in the number and size of transcripts. The promoter upstream of orf29 was further investigated by primer extension analysis, and its activity was confirmed by a chloramphenicol acetyltransferase assay, which showed that the phage promoter is more efficient than the constitutive bacterial promoter of the S. thermophilus operon encoding the general proteins of the phosphoenolpyruvate:sugar phosphotransferase system. However, the phage promoter is less efficient than the pts promoter in Lactococcus lactis and in Escherichia coli.
Collapse
Affiliation(s)
- Geneviève Lamothe
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P4
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sakellaris H, Luck SN, Al-Hasani K, Rajakumar K, Turner SA, Adler B. Regulated site-specific recombination of the she pathogenicity island of Shigella flexneri. Mol Microbiol 2004; 52:1329-36. [PMID: 15165236 DOI: 10.1111/j.1365-2958.2004.04048.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The she pathogenicity island (PAI) is a chromosomal, laterally acquired, integrative element of Shigella flexneri that carries genes with established or putative roles in virulence. We demonstrate that spontaneous, precise excision of the element from its integration site in the 3' terminus of the pheV tRNA gene is mediated by an integrase gene (int) and a gene designated rox (regulator of excision), both of which are carried on the she PAI. Integrase-mediated excision occurs via recombination between a 22 bp sequence at the 3' terminus of pheV and an imperfect direct repeat at the pheV-distal boundary of the PAI. Excision leads to the formation of a circular episomal form of the PAI, reminiscent of circular excision intermediates of other mobile elements that are substrates for lateral transfer processes such as conjugation, packaging into phage particles and recombinase-mediated integration into the chromosome. The circle junction consists of the pheV-proximal and pheV-distal boundaries of the PAI converging on a sequence identical to 22 bp at the 3' terminus of pheV. The isolated circle was transferred to Escherichia coli where it integrated specifically into phe tRNA genes, as it does in S. flexneri, independently of recA. We also demonstrate that Rox stimulates, but is not essential for, excision of the she PAI in an integrase-dependent manner. However, Rox does not stimulate excision by activating the transcription of the she PAI integrase gene, suggesting that it has an excisionase function similar to that of a related protein from the P4 satellite element of phage P2.
Collapse
Affiliation(s)
- Harry Sakellaris
- Australian Bacterial Pathogenesis Program, Department of Microbiology, School of Biomedical Sciences, Monash University, Victoria, 3800, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Prophages were automatically localized in sequenced bacterial genomes by a simple semantic script leading to the identification of 190 prophages in 115 investigated genomes. The distribution of prophages with respect to presence or absence in a given bacterial species, the location and orientation of the prophages on the replichore was not homogeneous. In bacterial pathogens, prophages are particularly prominent. They frequently encoded virulence genes and were major contributors to the genetic individuality of the strains. However, some commensal and free-living bacteria also showed prominent prophage contributions to the bacterial genomes. Lysogens containing multiple sequence-related prophages can experience rearrangements of the bacterial genome across prophages, leading to prophages with new gene constellations. Transfer RNA genes are the preferred chromosomal integration sites, and a number of prophages also carry tRNA genes. Prophage integration into protein coding sequences can lead to either gene disruption or new proteins. The phage repressor, immunity and lysogenic conversion genes are frequently transcribed from the prophage. The expression of the latter is sometimes integrated into control circuits linking prophages, the lysogenic bacterium and its animal host. Prophages are apparently as easily acquired as they are lost from the bacterial chromosome. Fixation of prophage genes seems to be restricted to those with functions that have been co-opted by the bacterial host.
Collapse
Affiliation(s)
- Carlos Canchaya
- Nestlé Research Centre, Nutrition and Health Department/Functional Microbiology Group, CH-1000 Lausanne 26 Vers-chez-les-Blanc, Switzerland
| | | | | |
Collapse
|
12
|
Neve H, Freudenberg W, Diestel-Feddersen F, Ehlert R, Heller KJ. Biology of the temperate Streptococcus thermophilus bacteriophage TP-J34 and physical characterization of the phage genome. Virology 2003; 315:184-94. [PMID: 14592770 DOI: 10.1016/s0042-6822(03)00516-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The temperate Streptococcus thermophilus bacteriophage TP-J34 was identified in the lysogenic host strain J34. The majority of phage particles produced upon induction was defective and noninfectious, consisting of DNA-filled heads lacking tails. A physical map (45.6 kb) was established. Analysis of minor restriction bands of the DNA isolated from phage particles as well as the analysis of the protein pattern indicated that phage TP-J34 is a pac-type phage. This was confirmed by immunoelectron microscopy using antisera raised against virulent cos- and pac-type S. thermophilus phages. The lysogenic host J34 but not its noninducible derivate J34-12 contained phage DNA in the nonintegrated state and exhibited autolysis at elevated temperatures. Prophage-carrying strains grew homogeneously while 16 of 20 prophage-cured derivatives aggregated and sedimented rapidly. When phage TP-J34 was propagated lytically on a prophage-cured host strain, a 2.7-kb site-specific deletion occurred in the phage genome. This deletion was also identified in the prophage DNAs of relysogenized strains.
Collapse
Affiliation(s)
- Horst Neve
- Institute for Microbiology, Federal Dairy Research Centre, P.O. Box 6069, D-24121 Kiel, Germany.
| | | | | | | | | |
Collapse
|
13
|
Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev 2003; 67:238-76, table of contents. [PMID: 12794192 PMCID: PMC156470 DOI: 10.1128/mmbr.67.2.238-276.2003] [Citation(s) in RCA: 488] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.
Collapse
Affiliation(s)
- Carlos Canchaya
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Bruttin A, Foley S, Brüssow H. DNA-binding activity of the Streptococcus thermophilus phage Sfi21 repressor. Virology 2002; 303:100-9. [PMID: 12482661 DOI: 10.1006/viro.2002.1574] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cloned Streptococcus thermophilus phage Sfi21 repressor open reading frame (orf) 127 gp protects a cell against superinfection with the homologous temperate, but not against virulent phages. As demonstrated by DNase protection assay and gel shift experiments, the repressor binds to a 25-bp operator site located upstream of the repressor gene. A second sequence-related operator was identified 265 bp apart at the 3'-end of orf 75, the topological equivalent of a cro repressor gene. The replacement of a bp at the middle or at the right side of the operator decreased substantially the affinity of the repressor for the operator. In gel shift assays, the 75 gp did not bind DNA from the genetic switch region. However, when increasing amounts of orf 75 gp containing cell extracts were added to orf 127 gp containing cell extracts, the repressor could no longer bind its operator site.
Collapse
Affiliation(s)
- Anne Bruttin
- Nestlé Research Center, Nestec Ltd. Vers-chez-les-Blanc, CH Lausanne, 26, Switzerland
| | | | | |
Collapse
|
15
|
Ventura M, Bruttin A, Canchaya C, Brüssow H. Transcription analysis of Streptococcus thermophilus phages in the lysogenic state. Virology 2002; 302:21-32. [PMID: 12429513 DOI: 10.1006/viro.2002.1571] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription of prophage genes was studied in two lysogenic Streptococcus thermophilus cells by Northern blot and primer-extension experiments. In the lysogen containing the cos-site phage Sfi21 only two gene regions of the prophage were transcribed. Within the lysogeny module an 1.6-kb-long mRNA started at the promoter of the phage repressor gene and covered also the next two genes, including a superinfection exclusion (sie) gene. A second, quantitatively more prominent 1-kb-long transcript was initiated at the promoter of the sie gene. Another prophage transcript of 1.6-kb length covered a group of genes without database matches that were located between the lysin gene and the right attachment site. The rest of the prophage genome was transcriptionally silent. A very similar transcription pattern was observed for a S. thermophilus lysogen containing the pac-site phage O1205 as a prophage. Prophages from pathogenic streptococci encode virulence genes downstream of the lysin gene. We speculate that temperate phages from lactic streptococci also encode nonessential phage genes ("lysogenic conversion genes") in this region that increase the ecological fitness of the lysogen to further their own evolutionary success. A comparative genome analysis revealed that many temperate phages from low GC content Gram-positive bacteria encode a variable number of genes in that region and none was linked to known phage-related function. Prophages from pathogenic streptococci encode toxin genes in this region. In accordance with theoretical predictions on prophage-host genome interactions a prophage remnant was detected in S. thermophilus that had lost most of the prophage DNA while transcribed prophage genes were spared from the deletion process.
Collapse
Affiliation(s)
- Marco Ventura
- Nestlé Research Center, Nestec Ltd. Vers-chez-les-Blanc, CH Lausanne, 26, Switzerland
| | | | | | | |
Collapse
|
16
|
Williams KP. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 2002; 30:866-75. [PMID: 11842097 PMCID: PMC100330 DOI: 10.1093/nar/30.4.866] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most classical integrases of prokaryotic genetic elements specify integration into tRNA or tmRNA genes. Sequences shared between element and host integration sites suggest that crossover can occur at any of three sublocations within a tRNA gene, two with flanking symmetry (anticodon-loop and T-loop tDNA) and the third at the asymmetric 3' end of the gene. Integrase phylogeny matches this classification: integrase subfamilies use exclusively either the symmetric sublocations or the asymmetric sublocation, although tRNA genes of several different aminoacylation identities may be used within any subfamily. These two familial sublocation preferences imply two modes by which new integration site usage evolves. The tmRNA gene has been adopted as an integration site in both modes, and its distinctive structure imposes some constraints on proposed evolutionary mechanisms.
Collapse
Affiliation(s)
- Kelly P Williams
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
17
|
Abstract
Bacteriophages of lactic acid bacteria are a threat to industrial milk fermentation. Owing to their economical importance, dairy phages became the most thoroughly sequenced phage group in the database. Comparative genomics identified related cos-site and pac-site phages, respectively, in lactococci, lactic streptococci and lactobacilli. Each group was represented with closely related temperate and virulent phages. Over the structural genes their gene maps resembled that of lambdoid coliphages, suggesting distant evolutionary relationships. Despite a lack of sequence similarity, a number of biochemical characteristics of these dairy phages are lambda-like (genetic switch, DNA packaging, head and tail morphogenesis, and integration, but not excision). These dairy phages thus provide interesting variations to the phage lambda paradigm. The structural gene cluster of Lactococcus phage r1t resembled that of phages from mycobacteria. Virulent lactococcal phages with prolate heads (c2-like genus of Siphoviridae), in contrast, have no known counterparts in other bacterial genera.
Collapse
Affiliation(s)
- H Brussow
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000 Switzerland.
| |
Collapse
|
18
|
Semsey S, Blaha B, Köles K, Orosz L, Papp PP. Site-specific integrative elements of rhizobiophage 16-3 can integrate into proline tRNA (CGG) genes in different bacterial genera. J Bacteriol 2002; 184:177-82. [PMID: 11741858 PMCID: PMC134759 DOI: 10.1128/jb.184.1.177-182.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrase protein of the Rhizobium meliloti 41 phage 16-3 has been classified as a member of the Int family of tyrosine recombinases. The site-specific recombination system of the phage belongs to the group in which the target site of integration (attB) is within a tRNA gene. Since tRNA genes are conserved, we expected that the target sequence of the site-specific recombination system of the 16-3 phage could occur in other species and integration could take place if the required putative host factors were also provided by the targeted cells. Here we report that a plasmid (pSEM167) carrying the attP element and the integrase gene (int) of the phage can integrate into the chromosomes of R. meliloti 1021 and eight other species. In all cases integration occurred at so-far-unidentified, putative proline tRNA (CGG) genes, indicating the possibility of their common origin. Multiple alignment of the sequences suggested that the location of the att core was different from that expected previously. The minimal attB was identified as a 23-bp sequence corresponding to the anticodon arm of the tRNA.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Institute of Genetics, Agricultural Biotechnology Center, Gödöllö, Szent-Györgyi A. 4., H-2100, Hungary
| | | | | | | | | |
Collapse
|
19
|
Grath S, van Sinderen D, Fitzgerald G. Bacteriophage-derived genetic tools for use in lactic acid bacteria. Int Dairy J 2002. [DOI: 10.1016/s0958-6946(01)00150-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Duplessis M, Moineau S. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol Microbiol 2001; 41:325-36. [PMID: 11489121 DOI: 10.1046/j.1365-2958.2001.02521.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phage-host interactions remain poorly understood in lactic acid bacteria and essentially in all Gram-positive bacteria. The aim of this study was to identify the phage genetic determinant (anti-receptor) involved in the recognition of Streptococcus thermophilus hosts. The complete genomic sequence of the lytic S. thermophilus phage DT1 was determined previously, and bioinformatic analysis indicated that orf18 might be the anti-receptor gene. The orf18 of six additional S. thermophilus phages was determined (DT2, DT4, MD1, MD2, MD4 and Q5) and compared with the orf18 of DT1. The deduced ORF18 was divided into three domains. The first domain, which contains the N-terminal part of the protein, was conserved in all seven phages. The second domain was detected in only two phages and flanked by a motif called collagen-like repeats. The second domain also contained a variable region (VR1). All seven phages had a third domain that consisted of the C-terminal section of the protein as well as another variable region (VR2). Chimeric DT1 phages were constructed by recombination; a portion of its orf18 was replaced by the corresponding section in orf18 of the phage MD4. All DT1 chimeric phages acquired the host range of phage MD4. Analysis of the orf18 in the chimeric phages revealed that host specificity in phages DT1 and MD4 resulted from VR2. This is the first report on the identification and characterization of a phage gene involved in the host recognition process of Gram-positive bacteria.
Collapse
Affiliation(s)
- M Duplessis
- Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada, G1K 7P4
| | | |
Collapse
|
21
|
Brüssow H, Desiere F. Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 2001; 39:213-22. [PMID: 11136444 DOI: 10.1046/j.1365-2958.2001.02228.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Comparative phage genomics can retrace part of the evolutionary history of phage modules encoding phage-specific functions such as capsid building or establishment of the lysogenic state. The diagnosis of relatedness is not based exclusively on sequence similarity, but includes topological considerations of genome organization. The gene maps from the lambda-, psiM2-, L5-, Sfi21-, Sfi11-, phiC31-, sk1- and TM4-like phages showed a remarkable synteny of their structural genes defining a lambda supergroup within Siphoviridae (Caudovirales with long non-contractile tails). A hierarchy of relatedness within the lambda supergroup suggested elements of vertical evolution in the capsid module of Siphoviridae. Links to P22-like Podoviridae and P2-like Myoviridae were also detected. Numerous cases of horizontal gene transfer were observed, but recent transfers were limited to interbreeding phage populations. We suggest that tailed phages are the result of both vertical and horizontal evolution and are thus a good model system for web-like phylogenies.
Collapse
Affiliation(s)
- H Brüssow
- Nestlé Research Centre, Nestec Ltd, CH-1000 Lausanne 26, Switzerland.
| | | |
Collapse
|
22
|
Kiewitz C, Larbig K, Klockgether J, Weinel C, Tümmler B. Monitoring genome evolution ex vivo: reversible chromosomal integration of a 106 kb plasmid at two tRNA(Lys) gene loci in sequential Pseudomonas aeruginosa airway isolates. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2365-2373. [PMID: 11021913 DOI: 10.1099/00221287-146-10-2365] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genome rearrangements in sequential Pseudomonas aeruginosa clone K isolates from the airways of a patient with cystic fibrosis were determined by an integrated approach of mapping, sequencing and bioinformatics. Restriction mapping uncovered an 8.9 kb deletion of PAO sequence between phnAB and oprL in clone K, and two 106 kb insertions either adjacent to this deletion or several hundred kilobases away, close to the pilA locus. These 106 kb blocks of extra DNA also co-existed as the circular plasmid pKLK106 in several clone K isolates and were found to be closely related to plasmid pKLC102 in P. aeruginosa clone C isolates. The breakpoints of the deletion in clone K and the attB-attP sequences for the reversible integration of the plasmid in clones C and K were located within the 3' end of the lysine tRNA structural genes (att site). pKLK106 sequentially recombined with either of the two tRNA(Lys) genes in clone K isolates. The att site of the pilA hypervariable region has been utilized by clone C to target its plasmid pKLC102 into the chromosome; the att site of the phnAB-oprL region has been employed by strain PAO to incorporate a DNA block encoding pyocin, transposases and IS elements. The use of typical phage attachment sites by conjugative genetic elements could be one of the major mechanisms used by P. aeruginosa to generate the mosaic genome structure of blocks of species-, clone- and strain-specific DNA. The example described here demonstrates the potential impact of systematic genome analysis of sequential isolates from the same habitat on our understanding of the evolution of microbial genomes.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern/methods
- Bronchi/microbiology
- Cystic Fibrosis/microbiology
- Electrophoresis, Gel, Pulsed-Field/methods
- Evolution, Molecular
- Genome, Bacterial
- Humans
- Molecular Sequence Data
- Plasmids/genetics
- Pseudomonas Infections/microbiology
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/isolation & purification
- RNA, Bacterial/genetics
- RNA, Transfer, Lys/genetics
- Recombination, Genetic/genetics
- Restriction Mapping/methods
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Claudia Kiewitz
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinderheilkunde, OE 6711, Medizinische Hochschule Hannover,Carl-Neuberg-Str. 1, D-30623 Hannover, Germany1
| | - Karen Larbig
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinderheilkunde, OE 6711, Medizinische Hochschule Hannover,Carl-Neuberg-Str. 1, D-30623 Hannover, Germany1
| | - Jens Klockgether
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinderheilkunde, OE 6711, Medizinische Hochschule Hannover,Carl-Neuberg-Str. 1, D-30623 Hannover, Germany1
| | - Christian Weinel
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinderheilkunde, OE 6711, Medizinische Hochschule Hannover,Carl-Neuberg-Str. 1, D-30623 Hannover, Germany1
| | - Burkhard Tümmler
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinderheilkunde, OE 6711, Medizinische Hochschule Hannover,Carl-Neuberg-Str. 1, D-30623 Hannover, Germany1
| |
Collapse
|
23
|
Lucchini S, Sidoti J, Brüssow H. Broad-range bacteriophage resistance in Streptococcus thermophilus by insertional mutagenesis. Virology 2000; 275:267-77. [PMID: 10998327 DOI: 10.1006/viro.2000.0499] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptococcus thermophilus is a lactic acid bacterium used in industrial milk fermentation. To obtain phage-resistant starters, S. thermophilus strain Sfi1 was submitted to mutagenesis with the thermolabile insertional vector pG(+)host9:ISS1 followed by a challenge with the lytic S. thermophilus phage Sfi19. Vector insertions into four distinct sites led to a phage-resistance phenotype. Three mutants were characterized further. They were protected against the homologous challenging phage and 14 heterologous phages. All three mutants adsorbed phages. No intracellular phage DNA synthesis was observed in mutants R7 and R71, while mutant R24 showed a delayed and diminished phage DNA synthesis compared to the parental Sfi1 strain. In mutant R7 a short deletion occurred next to the insertion site which removed the upstream sequences and the 15 initial codons from orf 394, encoding a likely transmembrane protein. Analogy with other phage systems suggests an involvement of this protein in the phage DNA injection process. In mutant R24 the vector was inserted into orf 269 predicting an oxido-reductase. When the vector sequence was removed via homologous recombination across the duplicated insertion elements, mutant R24 returned to the phage susceptibility of the parental strain. This observation suggested that inactivation of orf 269 was not crucial for the resistance phenotype. A gene encoding a likely restriction subunit of a type I restriction-modification system was located directly downstream of the insertion site in mutant R24. hsdM and hsdS genes encoding the modification and specificity subunits of a type I R-M system and biological evidence for an active R-M system were detected in strain Sfi1, suggesting involvement of a type I R-M system in the resistance phenotype of R24.
Collapse
Affiliation(s)
- S Lucchini
- Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | | | | |
Collapse
|
24
|
Gindreau E, López R, García P. MM1, a temperate bacteriophage of the type 23F Spanish/USA multiresistant epidemic clone of Streptococcus pneumoniae: structural analysis of the site-specific integration system. J Virol 2000; 74:7803-13. [PMID: 10933687 PMCID: PMC112310 DOI: 10.1128/jvi.74.17.7803-7813.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized a temperate phage (MM1) from a clinical isolate of the multiply antibiotic-resistant Spanish/American 23F Streptococcus pneumoniae clone (Spain(23F)-1 strain). The 40-kb double-stranded genome of MM1 has been isolated as a DNA-protein complex. The use of MM1 DNA as a probe revealed that the phage genome is integrated in the host chromosome. The host and phage attachment sites, attB and attP, respectively, have been determined. Nucleotide sequencing of the attachment sites identified a 15-bp core site (5'-TTATAATTCATCCGC-3') that has not been found in any bacterial genome described so far. Sequence information revealed the presence of an integrase gene (int), which represents the first identification of an integrase in the pneumococcal system. A 1.5-kb DNA fragment embracing attP and the int gene contained all of the genetic information needed for stable integration of a nonreplicative plasmid into the attB site of a pneumococcal strain. This vector will facilitate the introduction of foreign genes into the pneumococcal chromosome. Interestingly, DNAs highly similar to that of MM1 have been detected in several clinical pneumococcal isolates of different capsular types, suggesting a widespread distribution of these phages in relevant pathogenic strains.
Collapse
Affiliation(s)
- E Gindreau
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006 Madrid, Spain
| | | | | |
Collapse
|
25
|
Auvray F, Coddeville M, Ordonez RC, Ritzenthaler P. Unusual structure of the attB site of the site-specific recombination system of Lactobacillus delbrueckii bacteriophage mv4. J Bacteriol 1999; 181:7385-9. [PMID: 10572145 PMCID: PMC103704 DOI: 10.1128/jb.181.23.7385-7389.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3' end of a tRNA(Ser) gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNA(Ser) gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model.
Collapse
Affiliation(s)
- F Auvray
- Laboratoire de Microbiologie et de Génétique Moléculaire du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | |
Collapse
|
26
|
Petersen A, Josephsen J, Johnsen MG. TPW22, a lactococcal temperate phage with a site-specific integrase closely related to Streptococcus thermophilus phage integrases. J Bacteriol 1999; 181:7034-42. [PMID: 10559170 PMCID: PMC94179 DOI: 10.1128/jb.181.22.7034-7042.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate phage TPW22, induced from Lactococcus lactis subsp. cremoris W22, and the evolutionarily interesting integrase of this phage were characterized. Phage TPW22 was propagated lytically on L. lactis subsp. cremoris 3107, which could also be lysogenized by site-specific integration. The attachment site (attP), 5'-TAAGGCGACGGTCG-3', of phage TPW22 was present on a 7.5-kb EcoRI fragment, a 3.4-kb EcoRI-HindIII fragment of which was sequenced. Sequence information revealed the presence of an integrase gene (int). The deduced amino acid sequence showed 42 and 28% identity with integrases of streptococcal and lactococcal phages, respectively. The identities with these integrase-encoding genes were 52 and 45%, respectively, at the nucleotide level. This could indicate horizontal gene transfer. A stable integration vector containing attP and int was constructed, and integration in L. lactis subsp. cremoris MG1363 was obtained. The existence of an exchangeable lactococcal phage integration module was suggested. The proposed module covers the phage attachment site, the integrase gene, and surrounding factor-independent terminator structures. The phages phiLC3, TP901-1, and TPW22 all have different versions of this module. Phylogenetically, the TPW22 Int links the phiLC3 lactococcal integrase with known Streptococcus thermophilus integrases.
Collapse
Affiliation(s)
- A Petersen
- Department of Dairy, The Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark
| | | | | |
Collapse
|
27
|
Lucchini S, Desiere F, Brüssow H. Similarly organized lysogeny modules in temperate Siphoviridae from low GC content gram-positive bacteria. Virology 1999; 263:427-35. [PMID: 10544115 DOI: 10.1006/viro.1999.9959] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Temperate Siphoviridae from an evolutionarily related branch of low GC content gram-positive bacteria share a common genetic organization of lysogeny-related genes and the predicted proteins are linked by many sequence similarities. Their compact lysogeny modules [integrase/1-2 orfs (phage exclusion? and metalloproteinase motif proteins)/cI-like repressor/cro-like repressor/antirepressor (optional)] differ clearly from that of lambda-like and L5-like viruses, the two currently established genera of temperate Siphoviridae, while they resemble those of the P2-like genus of Myoviridae. In all known temperate Siphoviridae from low GC content gram-positive bacteria the lysogeny module is flanked by the lysis module and the DNA replication module. This modular organization is again distinct from that of the known genera of temperate Siphoviridae. On the basis of comparative sequence analysis we propose a new genus of Siphoviridae: "Sfi21-like" phages. With a larger database of phage sequences it might be possible to establish a genomics-based phage taxonomy and to retrace the evolutionary history of selected phage modules or individual phage genes. The antirepressor of Sfi21-like phages has an unusual widespread distribution since proteins with high aa similarity (40%) were found not only in phages from gram-negative bacteria, but also in insect viruses.
Collapse
Affiliation(s)
- S Lucchini
- Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | | | | |
Collapse
|
28
|
Kropinski AM, Sibbald MJ. Transfer RNA genes and their significance to codon usage in the Pseudomonas aeruginosa lamboid bacteriophage D3. Can J Microbiol 1999. [DOI: 10.1139/w99-078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using tRNAscan-SE and FAStRNA we have identified four tRNA genes in the delayed early region of the bacteriophage D3 genome (GenBank accession No. AF077308). These are specific for methionine (AUG), glycine (GGA), asparagine (AAC), and threonine (ACA). The D3 Thr- and Gly-tRNAs recognize codons, which are rarely used in Pseudomonas aeruginosa and presumably, influence the rate of translation of phage proteins. BLASTN searches revealed that the D3 tRNA genes have homology to tRNA genes from Gram-positive bacteria. Analysis of codon usage in the 91 ORFs discovered in D3 indicates patterns of codon usage reminiscent of Escherichia coli or P. aeruginosa.Key words: bacteriophage, Pseudomonas, D3, tRNA, codon usage.
Collapse
|
29
|
Lucchini S, Desiere F, Brüssow H. The genetic relationship between virulent and temperate Streptococcus thermophilus bacteriophages: whole genome comparison of cos-site phages Sfi19 and Sfi21. Virology 1999; 260:232-43. [PMID: 10417258 DOI: 10.1006/viro.1999.9814] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The virulent cos-site Streptococcus thermophilus bacteriophage Sfi19 has a 37,392-bp-long genome consisting of 44 open reading frames all encoded on the same DNA strand. The genome of the temperate cos-site S. thermophilus phage Sfi21 is 3.3 kb longer (40,740 bp, 53 orfs). Both genomes are very similarly organized and differed mainly by gene deletion and DNA rearrangement events in the lysogeny module; gene replacement, duplication, and deletion events in the DNA replication module, and numerous point mutations. The level of point mutations varied from <1% (lysis and DNA replication modules) to >15% (DNA packaging and head morphogenesis modules). A dotplot analysis showed nearly a straight line over the left 25 kb of their genomes. Over the right genome half, a more variable dotplot pattern was observed. The entire lysogeny module from Sfi21 comprising 12 genes was replaced by 7 orfs in Sfi19, six showed similarity with genes from temperate pac-site S. thermophilus phages. None of the genes implicated in the establishment of the lysogenic state (integrase, superinfection immunity, repressor) or remnants of it were conserved in Sfi19, while a Cro-like repressor was detected. Downstream of the highly conserved DNA replication module 11 and 13 orfs were found in Sfi19 and phiSfi21, respectively: Two orfs from Sfi21 were replaced by a different gene and a duplication of the phage origin of replication in Sfi19; a further orf was only found in Sfi21. All other orfs from this region, which included a second putative phage repressor, were closely related between both phages. Two noncoding regions of Sfi19 showed sequence similarity to pST1, a small cryptic plasmid of S. thermophilus.
Collapse
Affiliation(s)
- S Lucchini
- Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | | | | |
Collapse
|
30
|
Tremblay DM, Moineau S. Complete genomic sequence of the lytic bacteriophage DT1 of Streptococcus thermophilus. Virology 1999; 255:63-76. [PMID: 10049822 DOI: 10.1006/viro.1998.9525] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptococcus thermophilus lytic bacteriophage DT1, isolated from a mozzarella whey, was characterized at the microbiological and molecular levels. Phage DT1 had an isometric head of 60 nm and a noncontractile tail of 260 x 8 nm, two major structural proteins of 26 and 32 kDa, and a linear double-stranded DNA genome with cohesive ends at its extremities. The host range of phage DT1 was limited to 5 of the 21 S. thermophilus strains tested. Using S. thermophilus SMQ-301 as a host, phage DT1 had a burst size of 276 +/- 36 and a latent period of 25 min. The genome of phage DT1 contained 34,820 bp with a GC content of 39.1%. Forty-six open reading frames (ORFs) of more than 40 codons were found and putative functions were assigned to 20 ORFs, mostly in the late region of phage DT1. Comparative genomic analysis of DT1 with the completely sequenced S. thermophilus temperate phage O1205 revealed two large homologous regions interspersed by two heterologous segments. The homologous regions consisted of the early replication genes, the late morphogenesis genes, and the lysis cassette. The divergent segments contained the DNA packaging machinery, the major structural proteins, and remnants of a lysogeny module.
Collapse
Affiliation(s)
- D M Tremblay
- Faculté de Médecine Dentaire, Université Laval, Québec, G1K 7P4, Canada
| | | |
Collapse
|
31
|
Smith MCM, Rees CED. 3 Exploitation of Bacteriophages and their Components. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70114-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Foley S, Lucchini S, Zwahlen MC, Brüssow H. A short noncoding viral DNA element showing characteristics of a replication origin confers bacteriophage resistance to Streptococcus thermophilus. Virology 1998; 250:377-87. [PMID: 9792848 DOI: 10.1006/viro.1998.9387] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 302-bp noncoding DNA fragment from the DNA replication module of phage phiSfi21 was shown to protect the Streptococcus thermophilus strain Sfi1 from infection by 17 of 25 phages. The phage-inhibitory DNA possesses two determinants, each of which individually mediated phage resistance. The phage-inhibitory activity was copy number dependent and operates by blocking the accumulation of phage DNA. Furthermore, when cloned on a plasmid, the phiSfi21 DNA acts as an origin of replication driven by phage infection. Protein or proteins in the phiSfi21-infected cells were shown to interact with this phage-inhibitory DNA fragment, forming a retarded protein-DNA complex in gel retardation assays. A model in which phage proteins interact with the inhibitory DNA such that they are no longer available for phage propagation can be used to explain the observed bacteriophage resistance. Genome analysis of phiSfi19, a phage that is insensitive to the inhibitory activity of the phiSfi21-derived DNA, led to the characterisation of a variant putative phage replication origin that differed in 14 of 302 nucleotides from that of phiSfi21. The variant origin was cloned and exhibited an inhibitory activity toward phages that were insensitive to the phiSfi21-derived DNA.
Collapse
Affiliation(s)
- S Foley
- Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000, Lausanne, 26, Switzerland
| | | | | | | |
Collapse
|
33
|
Alvarez MA, Herrero M, Suárez JE. The site-specific recombination system of the Lactobacillus species bacteriophage A2 integrates in gram-positive and gram-negative bacteria. Virology 1998; 250:185-93. [PMID: 9770432 DOI: 10.1006/viro.1998.9353] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The region of the bacteriophage A2 genome involved in site-specific recombination with the DNA of Lactobacillus spp. has been identified. Two orfs, transcribed from the same strand, have been found immediately upstream of the phage attachment site (attP). The orf adjacent to attP predicts a 385-amino-acid protein that presents significant similarity with site-specific recombinases of the integrase family. The other orf encodes a basic polypeptide of 76 amino acid residues. The junctions of the prophage with the genomes of its hosts have been determined, allowing the identification of the host attachment site (attB), which has a common 19-nucleotide core region with attP. The attB site is located at the 3' end of the transfer RNALeu gene (anticodon CAA). Nonreplicative plasmids containing the A2-specific recombination cassette integrate into different lactobacilli but also into unrelated Gram-positive bacteria such as Lactococcus lactis and even into Escherichia coli. In Lc. lactis, integration occurs in a previously unknown intergenic region, whereas in E. coli, it maps within the rrnD operon, 5' of rrsD gene. Comparison of the integration sites in the different hosts indicates that some flexibility is permitted in the attB sequence, since Lc. lactis and E. coli only share 13 and 11 nucleotides, respectively, with the 19-nucleotide core sequence of the lactobacilli.
Collapse
Affiliation(s)
- M A Alvarez
- Area de Microbiología, Universidad de Oviedo, Oviedo, E-33006, Spain
| | | | | |
Collapse
|
34
|
Brüssow H, Bruttin A, Desiere F, Lucchini S, Foley S. Molecular ecology and evolution of Streptococcus thermophilus bacteriophages--a review. Virus Genes 1998; 16:95-109. [PMID: 9562894 DOI: 10.1023/a:1007957911848] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteriophages attacking Streptococcus thermophilus, a lactic acid bacterium used in milk fermentation, are a threat to the dairy industry. These small isometric-headed phages possess double-stranded DNA genomes of 31 to 45 kb. Yoghurt-derived phages exhibit a limited degree of variability, as defined by restriction pattern and host range, while a large diversity of phage types have been isolated from cheese factories. Despite this diversity all S. thermophilus phages, virulent and temperate, belong to a single DNA homology group. Several mechanisms appear to create genetic variability in this phage group. Site-specific deletions, one type possibly mediated by a viral recombinase/integrase, which transformed a temperate into a virulent phage, were observed. Recombination as a result of superinfection of a lysogenic host has been reported. Comparative DNA sequencing identified up to 10% sequence diversity due to point mutations. Genome sequencing of the prototype temperate phage phi Sfi21 revealed many predicted proteins which showed homology with phages from Lactococcus lactis suggesting horizontal gene transfer. Homology with phages from evolutionary unrelated bacteria like E. coli (e.g. lambdoid phage 434 and P1) and Mycobacterium phi L5 was also found. Due to their industrial importance, the existence of large phage collections, and the whole phage genome sequencing projects which are currently underway, the S. thermophilus phages may present an interesting experimental system to study bacteriophage evolution.
Collapse
Affiliation(s)
- H Brüssow
- Nestlê Research Center, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Desiere F, Lucchini S, Brüssow H. Evolution of Streptococcus thermophilus bacteriophage genomes by modular exchanges followed by point mutations and small deletions and insertions. Virology 1998; 241:345-56. [PMID: 9499809 DOI: 10.1006/viro.1997.8959] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative sequence analysis of 40% of the genomes from two prototype Streptococcus thermophilus bacteriophages (lytic group I phage phi Sfi19 and the cos site containing temperate phage phi Sfi21) suggested two processes in the evolution of their genomes. In a first evolutionarily distant phase the basic genome structure was apparently constituted by modular exchanges. Over the 17-kb-long DNA segment analyzed in the present report, we observed clusters of genes with similarity to genes from Leuconostoc oenos phage L10, Lactococcus lactis phage BK5-T, and Streptococcus pneumoniae phage Dp-1. A chimeric protein was predicted for orf 1291 which showed similarity to both phage BK5-T and phage Dp-1 proteins. The very large orf 1626 gene product showed similarity to two adjacent genes from the Lactobacillus delbrueckii phage LL-H and further phage proteins (Lactococcus lactis, Bacillus subtills). The similarities were localized to distinct parts of this apparently multifunctional protein. The putative phi Sfi19 lysin showed similarity to both lysins of phages and cellular enzymes. In a second, evolutionarily more recent, phase the S, thermophilus phage genomes apparently diversified by point mutations and small deletions/insertions. Over the investigated 17-kb DNA region phi Sfi19 differed from phi Sfi21 by 10% base pair changes, the majority of which were point mutations (mainly at the third codon position), while a third of the base pair differences were contributed by small deletions/insertions. The base pair changes were unevenly distributed. Over the Leuconostoc phage-related DNA the change rate was high, while over the Lactococcus and S. pneumoniae phage-related DNA the change rate was low. We speculate that the degree of base pair change could provide relative time scales for the modular exchange reactions observed in S. thermophilus phages.
Collapse
Affiliation(s)
- F Desiere
- Nestlé Research Center, Nestec Ltd., Lausanne, Switzerland
| | | | | |
Collapse
|
36
|
Neve H, Zenz KI, Desiere F, Koch A, Heller KJ, Brüssow H. Comparison of the lysogeny modules from the temperate Streptococcus thermophilus bacteriophages TP-J34 and Sfi21: implications for the modular theory of phage evolution. Virology 1998; 241:61-72. [PMID: 9454717 DOI: 10.1006/viro.1997.8960] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 7.6-kb DNA segment covering the putative lysogeny module of the pac-site-containing temperate Streptococcus thermophilus bacteriophage TP-J34 was sequenced. Sequence alignment with the lysogeny module from the cos-site-containing S. thermophilus bacteriophage phiSfi21 revealed areas of high sequence conservation (e.g., over the int gene), interspersed with regions of low or no sequence similarity (e.g., over the cro gene). Four of the six sharp transition zones from high to low sequence conservation were found within open reading frames coding for the CI repressor, the Anti-repressor, the Immunity protein, and a protein of unknown function. The transition points in the cI and ant genes appear to separate gene segments coding for distinct functional domains of these proteins. In addition, these two transition points were located at or near the deletion sites observed in spontaneous phage phiSfi21 deletion mutants, thus suggesting these transition points as recombinational hotspots. Furthermore, the sequence at the transition point in the cI gene resembles the attachment site of the phage, suggesting the involvement of the phage integrase in at least some of the exchange reactions. Contrary to the initial formulation of the modular theory of phage evolution the unit of the evolutionary exchange in streptococcal phages is not a group of functional genes, but can be as small as a single gene. Exchange reactions can also occur within genes, possibly between gene segments encoding distinct protein domains.
Collapse
Affiliation(s)
- H Neve
- Institut für Mikrobiologie, Bundesanstalt für Milchforschung, Hermann-Weigmann-Strasse 1, Kiel, D-24103, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Nunes-Düby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 1998; 26:391-406. [PMID: 9421491 PMCID: PMC147275 DOI: 10.1093/nar/26.2.391] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alignments of 105 site-specific recombinases belonging to the Int family of proteins identified extended areas of similarity and three types of structural differences. In addition to the previously recognized conservation of the tetrad R-H-R-Y, located in boxes I and II, several newly identified sequence patches include charged amino acids that are highly conserved and a specific pattern of buried residues contributing to the overall protein fold. With some notable exceptions, unconserved regions correspond to loops in the crystal structures of the catalytic domains of lambda Int (Int c170) and HP1 Int (HPC) and of the recombinases XerD and Cre. Two structured regions also harbor some pronounced differences. The first comprises beta-sheets 4 and 5, alpha-helix D and the adjacent loop connecting it to alpha-helix E: two Ints of phages infecting thermophilic bacteria are missing this region altogether; the crystal structures of HPC, XerD and Cre reveal a lack of beta-sheets 4 and 5; Cre displays two additional beta-sheets following alpha-helix D; five recombinases carry large insertions. The second involves the catalytic tyrosine and is seen in a comparison of the four crystal structures. The yeast recombinases can theoretically be fitted to the Int fold, but the overall differences, involving changes in spacing as well as in motif structure, are more substantial than seen in most other proteins. The phenotypes of mutations compiled from several proteins are correlated with the available structural information and structure-function relationships are discussed. In addition, a few prokaryotic and eukaryotic enzymes with partial homology with the Int family of recombinases may be distantly related, either through divergent or convergent evolution. These include a restriction enzyme and a subgroup of eukaryotic RNA helicases (D-E-A-D proteins).
Collapse
Affiliation(s)
- S E Nunes-Düby
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|