1
|
Lee M, Vetter J, Eichwald C. The influence of the cytoskeleton on the development and behavior of viral factories in mammalian orthoreovirus. Virology 2025; 604:110423. [PMID: 39889480 DOI: 10.1016/j.virol.2025.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Cytosolic viral factories (VFs) of mammalian orthoreovirus (MRV) are sites for viral genome replication and assembly of virus progeny. Despite advancements in reverse genetics, the formation and dynamics of VFs still need to be clarified. MRV exploits host cytoskeletal components like microtubules (MTs) throughout its life cycle, including cell entry, replication, and release. MRV VFs, membrane-less cytosolic inclusions, rely on the viral proteins μ2 and μNS for formation. Protein μ2 interacts and stabilizes MTs through acetylation, supporting VF formation and viral replication, while scaffold protein μNS influences cellular components to aid VF maturation. The disruption of the MT network reduces viral replication, underscoring its importance. Additionally, μ2 associates with MT-organizing centers, modulating the MT dynamics to favor viral replication. In summary, MRV subverts the cytoskeleton to facilitate VF dynamics and promote viral replication and assembly to promote VF dynamics, replication, and assembly, highlighting the critical role of the cytoskeleton in viral replication.
Collapse
Affiliation(s)
- Melissa Lee
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Janine Vetter
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Lemay G, Boudreault S. The reovirus μ2 protein, an enigmatic multifunctional protein with numerous secrets yet to be uncovered. Virology 2025; 601:110275. [PMID: 39515007 DOI: 10.1016/j.virol.2024.110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Viruses as obligate intracellular parasites are limited by their small genome. They have thus developed various strategies to maximize viral fitness with a limited amount of coding information. Among these strategies is the use of the same viral protein for multiple functions. The μ2 protein of mammalian reovirus is one such example of a multifunctional protein. We will present recent progress in our understanding of some functions and properties of this protein that have been revealed in the last two or three decades, such as its impact on the formation of viral factories or the control of the interferon response. We will also examine the recently established structure of the protein and the most recent data on the protein's enzymatic activities in the context of viral RNA synthesis. Finally, the impact of μ2 in the regulation of host-cell alternative mRNA splicing will be presented and future avenues of research discussed.
Collapse
Affiliation(s)
- Guy Lemay
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal (Qc.) Canada.
| | - Simon Boudreault
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia (PA), United States.
| |
Collapse
|
3
|
Welsh OL, Roth AN, Sutherland DM, Dermody TS. Sequence polymorphisms in the reovirus σ1 attachment protein modulate encapsidation efficiency and replication in mice. J Virol 2024; 98:e0030524. [PMID: 38771042 PMCID: PMC11237452 DOI: 10.1128/jvi.00305-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Many functions of viral attachment proteins are established, but less is known about the biological importance of viral attachment protein encapsidation efficiency. The mammalian orthoreovirus (reovirus) σ1 attachment protein forms filamentous trimers that incorporate into pentamers of the λ2 capsid protein. Reovirus strains vary in the efficiency of σ1 encapsidation onto progeny virions, which influences viral stability during entry into cells and the efficacy of tumor cell lysis. While the role of σ1 encapsidation has been evaluated in studies using cultured cells, the contribution of attachment protein encapsidation efficiency to viral infection in animals is less clear. Polymorphisms in reovirus σ1 at residues 22 and 249 have been implicated in viral dissemination in mice and susceptibility to proteolysis in the murine intestine, respectively. To determine whether these residues contribute to σ1 encapsidation efficiency, we engineered σ1 mutant viruses with single- and double-residue substitutions at sites 22 and 249. We found that substitutions at these sites alter the encapsidation of σ1 and that reoviruses encapsidating higher amounts of σ1 bind cells more avidly and have a modest replication advantage in a cell-type-specific manner relative to low σ1-encapsidating reoviruses. Furthermore, we found that a high σ1-encapsidating reovirus replicates and disseminates more efficiently in mice relative to a low σ1-encapsidating reovirus. These findings provide evidence of a relationship between viral attachment protein encapsidation efficiency and viral replication in cell culture and animal hosts. IMPORTANCE Viral attachment proteins can serve multiple functions during viral replication, including attachment to host cells, cell entry and disassembly, and modulation of host immune responses. The relationship between viral attachment protein encapsidation efficiency and viral replication in cells and animals is poorly understood. We engineered and characterized a panel of reoviruses that differ in the capacity to encapsidate the σ1 attachment protein. We found that strains encapsidating σ1 with higher efficiency bind cells more avidly and replicate and spread more efficiently in mice relative to those encapsidating σ1 with lower efficiency. These results highlight a function for σ1 attachment protein capsid abundance in viral replication in cells and animals, which may inform future use of reovirus as an oncolytic therapeutic.
Collapse
Affiliation(s)
- Olivia L. Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexa N. Roth
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Danica M. Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Lin QF, Wong CXL, Eaton HE, Pang X, Shmulevitz M. Reovirus genomic diversity confers plasticity for protease utility during adaptation to intracellular uncoating. J Virol 2023; 97:e0082823. [PMID: 37747236 PMCID: PMC10617468 DOI: 10.1128/jvi.00828-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/27/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE Reoviruses infect many mammals and are widely studied as a model system for enteric viruses. However, most of our reovirus knowledge comes from laboratory strains maintained on immortalized L929 cells. Herein, we asked whether naturally circulating reoviruses possess the same genetic and phenotypic characteristics as laboratory strains. Naturally circulating reoviruses obtained from sewage were extremely diverse genetically. Moreover, sewage reoviruses exhibited poor fitness on L929 cells and relied heavily on gut proteases for viral uncoating and productive infection compared to laboratory strains. We then examined how naturally circulating reoviruses might adapt to cell culture conditions. Within three passages, virus isolates from the parental sewage population were selected, displaying improved fitness and intracellular uncoating in L929 cells. Remarkably, selected progeny clones were present at 0.01% of the parental population. Altogether, using reovirus as a model, our study demonstrates how the high genetic diversity of naturally circulating viruses results in rapid adaptation to new environments.
Collapse
Affiliation(s)
- Qi Feng Lin
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Casey X. L. Wong
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Heather E. Eaton
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratories (ProvLab), Alberta Precision Laboratories (APL), Edmonton, Alberta, Canada
| | - Maya Shmulevitz
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Garcia ML, Danthi P. The Reovirus σ1 Attachment Protein Influences the Stability of Its Entry Intermediate. J Virol 2023; 97:e0058523. [PMID: 37167564 PMCID: PMC10231251 DOI: 10.1128/jvi.00585-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Structural metastability of viral capsids is pivotal for viruses to survive in harsh environments and to undergo timely conformational changes required for cell entry. Mammalian orthoreovirus (reovirus) is a model to study capsid metastability. Following initial disassembly of the reovirus particle mediated by proteases, a metastable intermediate called the infectious subvirion particle (ISVP) is generated. Using a σ1 monoreassortant virus, we recently showed that σ1 properties affect its encapsidation on particles and the metastability of ISVPs. How metastability is impacted by σ1 and whether the lower encapsidation level of σ1 is connected to this property is unknown. To define a correlation between encapsidation of σ1 and ISVP stability, we generated mutant viruses with single amino acid polymorphisms in σ1 or those that contain chimeric σ1 molecules composed of σ1 portions from type 1 and type 3 reovirus strains. We found that under most conditions where σ1 encapsidation on the particle was lower, ISVPs displayed lower stability. Characterization of mutant viruses selected for enhanced stability via a forward genetic approach also revealed that in some cases, σ1 properties influence stability without influencing σ1 encapsidation. These data indicate that σ1 can also influence ISVP stability independent of its level of incorporation. Together, our work reveals an underappreciated effect of the σ1 attachment protein on the properties of the reovirus capsid. IMPORTANCE Reovirus particles are comprised of eight proteins. Among them, the reovirus σ1 protein functions engages cellular receptors. σ1 also influences the stability of an entry intermediate called ISVP. Here, we sought to define the basis of the link between σ1 properties and stability of ISVPs. Using variety of mutant strains, we determined that when virus preparations contain particles with a high amount of encapsidated σ1, ISVP stability is higher. Additionally, we identified portions of σ1 that impact its encapsidation and consequently the stability of ISVPs. We also determined that in some cases, σ1 properties alter stability of ISVPs without affecting encapsidation. This work highlights that proteins of these complex particles are arranged in an intricate, interconnected manner such that changing the properties of these proteins has a profound impact on the remainder of the particle.
Collapse
Affiliation(s)
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Reovirus uses temporospatial compartmentalization to orchestrate core versus outercapsid assembly. PLoS Pathog 2022; 18:e1010641. [PMID: 36099325 PMCID: PMC9514668 DOI: 10.1371/journal.ppat.1010641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/27/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Reoviridae virus family members, such as mammalian orthoreovirus (reovirus), encounter a unique challenge during replication. To hide the dsRNA from host recognition, the genome remains encapsidated in transcriptionally active proteinaceous core capsids that transcribe and release +RNA. De novo +RNAs and core proteins must repeatedly assemble into new progeny cores in order to logarithmically amplify replication. Reoviruses also produce outercapsid (OC) proteins μ1, σ3 and σ1 that assemble onto cores to create highly stable infectious full virions. Current models of reovirus replication position amplification of transcriptionally-active cores and assembly of infectious virions in shared factories, but we hypothesized that since assembly of OC proteins would halt core amplification, OC assembly is somehow regulated. Kinetic analysis of virus +RNA production, core versus OC protein expression, and core particles versus whole virus particle accumulation, indicated that assembly of OC proteins onto core particles was temporally delayed. All viral RNAs and proteins were made simultaneously, eliminating the possibility that delayed OC RNAs or proteins account for delayed OC assembly. High resolution fluorescence and electron microscopy revealed that core amplification occurred early during infection at peripheral core-only factories, while all OC proteins associated with lipid droplets (LDs) that coalesced near the nucleus in a μ1–dependent manner. Core-only factories transitioned towards the nucleus despite cycloheximide-mediated halting of new protein expression, while new core-only factories developed in the periphery. As infection progressed, OC assembly occurred at LD-and nuclear-proximal factories. Silencing of OC μ1 expression with siRNAs led to large factories that remained further from the nucleus, implicating μ1 in the transition to perinuclear factories. Moreover, late during infection, +RNA pools largely contributed to the production of de-novo viral proteins and fully-assembled infectious viruses. Altogether the results suggest an advanced model of reovirus replication with spatiotemporal segregation of core amplification, OC complexes and fully assembled virions. It is important to understand how viruses replicate and assemble to discover antiviral therapies and to modify viruses for applications like gene therapy or cancer therapy. Reovirus is a harmless virus being tested as a cancer therapy. Reovirus has two coats of proteins, an inner coat and an outer coat. To replicate, reovirus particles need only the inner coat, but to become infectious they require the outer coat. Strangely, inner and outer coat proteins are all made by the virus at once, so it was unknown what determines whether newly made viruses will contain just the inner coat to continue to replicate, or both coats to transmit to new hosts. Our experiments reveal that the inner coat proteins are located in a different area of an infected cell versus the outer coat proteins. The location therefore determines if the newly made viruses contain just the inner coat versus both coats. Reoviruses have evolved extravagant mechanisms to be able to efficiently take on the best composition required for replication and transmission.
Collapse
|
7
|
Boudreault S, Durand M, Martineau CA, Perreault JP, Lemay G, Bisaillon M. Reovirus μ2 protein modulates host cell alternative splicing by reducing protein levels of U5 snRNP core components. Nucleic Acids Res 2022; 50:5263-5281. [PMID: 35489070 PMCID: PMC9122528 DOI: 10.1093/nar/gkac272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family presenting a promising activity as an oncolytic virus. Recent studies have underlined MRV’s ability to alter cellular alternative splicing (AS) during infection, with a limited understanding of the mechanisms at play. In this study, we investigated how MRV modulates AS. Using a combination of cell biology and reverse genetics experiments, we demonstrated that the M1 gene segment, encoding the μ2 protein, is the primary determinant of MRV’s ability to alter AS, and that the amino acid at position 208 in μ2 is critical to induce these changes. Moreover, we showed that the expression of μ2 by itself is sufficient to trigger AS changes, and its ability to enter the nucleus is not required for all these changes. Moreover, we identified core components of the U5 snRNP (i.e. EFTUD2, PRPF8, and SNRNP200) as interactors of μ2 that are required for MRV modulation of AS. Finally, these U5 snRNP components are reduced at the protein level by both MRV infection and μ2 expression. Our findings identify the reduction of U5 snRNP components levels as a new mechanism by which viruses alter cellular AS.
Collapse
Affiliation(s)
- Simon Boudreault
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Mathieu Durand
- Plateforme de RNomique, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Carole-Anne Martineau
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Martin Bisaillon
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
8
|
Thoner TW, Ye X, Karijolich J, Ogden KM. Reovirus Low-Density Particles Package Cellular RNA. Viruses 2021; 13:v13061096. [PMID: 34201386 PMCID: PMC8228547 DOI: 10.3390/v13061096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 12/02/2022] Open
Abstract
Packaging of segmented, double-stranded RNA viral genomes requires coordination of viral proteins and RNA segments. For mammalian orthoreovirus (reovirus), evidence suggests either all ten or zero viral RNA segments are simultaneously packaged in a highly coordinated process hypothesized to exclude host RNA. Accordingly, reovirus generates genome-containing virions and “genomeless” top component particles. Whether reovirus virions or top component particles package host RNA is unknown. To gain insight into reovirus packaging potential and mechanisms, we employed next-generation RNA-sequencing to define the RNA content of enriched reovirus particles. Reovirus virions exclusively packaged viral double-stranded RNA. In contrast, reovirus top component particles contained similar proportions but reduced amounts of viral double-stranded RNA and were selectively enriched for numerous host RNA species, especially short, non-polyadenylated transcripts. Host RNA selection was not dependent on RNA abundance in the cell, and specifically enriched host RNAs varied for two reovirus strains and were not selected solely by the viral RNA polymerase. Collectively, these findings indicate that genome packaging into reovirus virions is exquisitely selective, while incorporation of host RNAs into top component particles is differentially selective and may contribute to or result from inefficient viral RNA packaging.
Collapse
Affiliation(s)
- Timothy W. Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
9
|
Glover KKM, Sutherland DM, Dermody TS, Coombs KM. A Single Point Mutation, Asn 16→Lys, Dictates the Temperature-Sensitivity of the Reovirus tsG453 Mutant. Viruses 2021; 13:v13020289. [PMID: 33673179 PMCID: PMC7917769 DOI: 10.3390/v13020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Studies of conditionally lethal mutants can help delineate the structure-function relationships of biomolecules. Temperature-sensitive (ts) mammalian reovirus (MRV) mutants were isolated and characterized many years ago. Two of the most well-defined MRV ts mutants are tsC447, which contains mutations in the S2 gene encoding viral core protein σ2, and tsG453, which contains mutations in the S4 gene encoding major outer-capsid protein σ3. Because many MRV ts mutants, including both tsC447 and tsG453, encode multiple amino acid substitutions, the specific amino acid substitutions responsible for the ts phenotype are unknown. We used reverse genetics to recover recombinant reoviruses containing the single amino acid polymorphisms present in ts mutants tsC447 and tsG453 and assessed the recombinant viruses for temperature-sensitivity by efficiency-of-plating assays. Of the three amino acid substitutions in the tsG453 S4 gene, Asn16-Lys was solely responsible for the tsG453ts phenotype. Additionally, the mutant tsC447 Ala188-Val mutation did not induce a temperature-sensitive phenotype. This study is the first to employ reverse genetics to identify the dominant amino acid substitutions responsible for the tsC447 and tsG453 mutations and relate these substitutions to respective phenotypes. Further studies of other MRV ts mutants are warranted to define the sequence polymorphisms responsible for temperature sensitivity.
Collapse
Affiliation(s)
- Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, University of Manitoba, Winnipeg, MB R3E OJ9, Canada;
| | - Danica M. Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; (D.M.S.); (T.S.D.)
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; (D.M.S.); (T.S.D.)
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, University of Manitoba, Winnipeg, MB R3E OJ9, Canada;
- Manitoba Centre for Proteomics and Systems Biology, 715 McDermot Avenue, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-789-3976
| |
Collapse
|
10
|
Single Amino Acid Differences between Closely Related Reovirus T3D Lab Strains Alter Oncolytic Potency In Vitro and In Vivo. J Virol 2020; 94:JVI.01688-19. [PMID: 31748391 DOI: 10.1128/jvi.01688-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Little is known about how genetic variations in viruses affect their success as therapeutic agents. The type 3 Dearing strain of Mammalian orthoreovirus (T3D) is undergoing clinical trials as an oncolytic virotherapy. Worldwide, studies on reovirus oncolysis use T3D stocks propagated in different laboratories. Here, we report that genetic diversification among T3D stocks from various sources extensively impacts oncolytic activity. The T3D strain from the Patrick Lee laboratory strain (TD3PL) showed significantly stronger oncolytic activities in a murine model of melanoma than the strain from the Terence Dermody laboratory (T3DTD). Overall in vitro replication and cytolytic properties of T3D laboratory strains were assessed by measuring virus plaque size on a panel of human and mouse tumor cells, and results were found to correlate with in vivo oncolytic potency in a melanoma model. T3DPL produced larger plaques than T3DTD and than the T3D strain from the ATCC (T3DATCC) and from the Kevin Coombs laboratory (T3DKC). Reassortant and reverse genetics analyses were used to decipher key genes and polymorphisms that govern enhanced plaque size of T3DPL Five single amino acid changes in the S4, M1, and L3 genome segments of reovirus were each partially correlated with plaque size and when combined were able to fully account for differences between T3DPL and T3DTD Moreover, polymorphisms were discovered in T3DTD that promoted virus replication and spread in tumors, and a new T3DPL/T3DTD hybrid was generated with enhanced plaque size compared to that of T3DPL Altogether, single amino acid changes acquired during laboratory virus propagation can have a large impact on reovirus therapeutic potency and warrant consideration as possible confounding variables between studies.IMPORTANCE The reovirus serotype 3 Dearing (T3D) strain is in clinical trials for cancer therapy. We find that closely related laboratory strains of T3D exhibit large differences in their abilities to replicate in cancer cells in vitro, which correlates with oncolytic activity in a in a murine model of melanoma. The study reveals that five single amino acid changes among three reovirus genes strongly impact reovirus therapeutic potency. In general, the findings suggest that attention should be given to genomic divergence of virus strains during research and optimization for cancer therapy.
Collapse
|
11
|
Polymorphisms in the Most Oncolytic Reovirus Strain Confer Enhanced Cell Attachment, Transcription, and Single-Step Replication Kinetics. J Virol 2020; 94:JVI.01937-19. [PMID: 31776267 DOI: 10.1128/jvi.01937-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Reovirus serotype 3 Dearing (T3D) replicates preferentially in transformed cells and is in clinical trials as a cancer therapy. Laboratory strains of T3D, however, exhibit differences in plaque size on cancer cells and differences in oncolytic activity in vivo This study aimed to determine why the most oncolytic T3D reovirus lab strain, the Patrick Lee laboratory strain (T3DPL), replicates more efficiently in cancer cells than other commonly used laboratory strains, the Kevin Coombs laboratory strain (T3DKC) and Terence Dermody laboratory (T3DTD) strain. In single-step growth curves, T3DPL titers increased at higher rates and produced ∼9-fold higher burst size. Furthermore, the number of reovirus antigen-positive cells increased more rapidly for T3DPL than for T3DTD In conclusion, the most oncolytic T3DPL possesses replication advantages in a single round of infection. Two specific mechanisms for enhanced infection by T3DPL were identified. First, T3DPL exhibited higher cell attachment, which was attributed to a higher proportion of virus particles with insufficient (≤3) σ1 cell attachment proteins. Second, T3DPL transcribed RNA at rates superior to those of the less oncolytic T3D strains, which is attributed to polymorphisms in M1-encoding μ2 protein, as confirmed in an in vitro transcription assay, and which thus demonstrates that T3DPL has an inherent transcription advantage that is cell type independent. Accordingly, T3DPL established rapid onset of viral RNA and protein synthesis, leading to more rapid kinetics of progeny virus production, larger virus burst size, and higher levels of cell death. Together, these results emphasize the importance of paying close attention to genomic divergence between virus laboratory strains and, mechanistically, reveal the importance of the rapid onset of infection for reovirus oncolysis.IMPORTANCE Reovirus serotype 3 Dearing (T3D) is in clinical trials for cancer therapy. Recently, it was discovered that highly related laboratory strains of T3D exhibit large differences in their abilities to replicate in cancer cells in vitro, which correlates with oncolytic activity in a murine model of melanoma. The current study reveals two mechanisms for the enhanced efficiency of T3DPL in cancer cells. Due to polymorphisms in two viral genes, within the first round of reovirus infection, T3DPL binds to cells more efficiency and more rapidly produces viral RNAs; this increased rate of infection relative to that of the less oncolytic strains gives T3DPL a strong inherent advantage that culminates in higher virus production, more cell death, and higher virus spread.
Collapse
|
12
|
Selection and Characterization of a Reovirus Mutant with Increased Thermostability. J Virol 2019; 93:JVI.00247-19. [PMID: 30787157 DOI: 10.1128/jvi.00247-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
The environment represents a significant barrier to infection. Physical stressors (heat) or chemical agents (ethanol) can render virions noninfectious. As such, discrete proteins are necessary to stabilize the dual-layered structure of mammalian orthoreovirus (reovirus). The outer capsid participates in cell entry: (i) σ3 is degraded to generate the infectious subviral particle, and (ii) μ1 facilitates membrane penetration and subsequent core delivery. μ1-σ3 interactions also prevent inactivation; however, this activity is not fully characterized. Using forward and reverse genetic approaches, we identified two mutations (μ1 M258I and σ3 S344P) within heat-resistant strains. σ3 S344P was sufficient to enhance capsid integrity and to reduce protease sensitivity. Moreover, these changes impaired replicative fitness in a reassortant background. This work reveals new details regarding the determinants of reovirus stability.IMPORTANCE Nonenveloped viruses rely on protein-protein interactions to shield their genomes from the environment. The capsid, or protective shell, must also disassemble during cell entry. In this work, we identified a determinant within mammalian orthoreovirus that regulates heat resistance, disassembly kinetics, and replicative fitness. Together, these findings show capsid function is balanced for optimal replication and for spread to a new host.
Collapse
|
13
|
Components of the Reovirus Capsid Differentially Contribute to Stability. J Virol 2019; 93:JVI.01894-18. [PMID: 30381491 DOI: 10.1128/jvi.01894-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian orthoreovirus (reovirus) outer capsid is composed of 200 μ1-σ3 heterohexamers and a maximum of 12 σ1 trimers. During cell entry, σ3 is degraded by luminal or intracellular proteases to generate the infectious subviral particle (ISVP). When ISVP formation is prevented, reovirus fails to establish a productive infection, suggesting proteolytic priming is required for entry. ISVPs are then converted to ISVP*s, which is accompanied by μ1 rearrangements. The μ1 and σ3 proteins confer resistance to inactivating agents; however, neither the impact on capsid properties nor the mechanism (or basis) of inactivation is fully understood. Here, we utilized T1L/T3D M2 and T3D/T1L S4 to investigate the determinants of reovirus stability. Both reassortants encode mismatched subunits. When μ1-σ3 were derived from different strains, virions resembled wild-type particles in structure and protease sensitivity. T1L/T3D M2 and T3D/T1L S4 ISVPs were less thermostable than wild-type ISVPs. In contrast, virions were equally susceptible to heating. Virion associated μ1 adopted an ISVP*-like conformation concurrent with inactivation; σ3 preserves infectivity by preventing μ1 rearrangements. Moreover, thermostability was enhanced by a hyperstable variant of μ1. Unlike the outer capsid, the inner capsid (core) was highly resistant to elevated temperatures. The dual layered architecture allowed for differential sensitivity to inactivating agents.IMPORTANCE Nonenveloped and enveloped viruses are exposed to the environment during transmission to a new host. Protein-protein and/or protein-lipid interactions stabilize the particle and protect the viral genome. Mammalian orthoreovirus (reovirus) is composed of two concentric, protein shells. The μ1 and σ3 proteins form the outer capsid; contacts between neighboring subunits are thought to confer resistance to inactivating agents. We further investigated the determinants of reovirus stability. The outer capsid was disrupted concurrent with the loss of infectivity; virion associated μ1 rearranged into an altered conformation. Heat sensitivity was controlled by σ3; however, particle integrity was enhanced by a single μ1 mutation. In contrast, the inner capsid (core) displayed superior resistance to heating. These findings reveal structural components that differentially contribute to reovirus stability.
Collapse
|
14
|
Protein Mismatches Caused by Reassortment Influence Functions of the Reovirus Capsid. J Virol 2018; 92:JVI.00858-18. [PMID: 30068646 DOI: 10.1128/jvi.00858-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Following attachment to host receptors via σ1, reovirus particles are endocytosed and disassembled to generate infectious subvirion particles (ISVPs). ISVPs undergo conformational changes to form ISVP*, releasing σ1 and membrane-targeting peptides from the viral μ1 protein. ISVP* formation is required for delivery of the viral core into the cytoplasm for replication. We characterized the properties of T3DF/T3DCS1, an S1 gene monoreassortant between two laboratory isolates of prototype reovirus strain T3D: T3DF and T3DC T3DF/T3DCS1 is poorly infectious. This deficiency is a consequence of inefficient encapsidation of S1-encoded σ1 on T3DF/T3DCS1 virions. Additionally, compared to T3DF, T3DF/T3DCS1 undergoes ISVP-to-ISVP* conversion more readily, revealing an unexpected role for σ1 in regulating ISVP* formation. The σ1 protein is held within turrets formed by the λ2 protein. To test if the altered properties of T3DF/T3DCS1 are due to a mismatch between σ1 and λ2 proteins from T3DF and T3DC, properties of T3DF/T3DCL2 and T3DF/T3DCS1L2, which express a T3DC-derived λ2, were compared. The presence of T3DC λ2 allowed more efficient σ1 incorporation, producing particles that exhibit T3DF-like infectivity. Compared to T3DF, T3DF/T3DCL2 prematurely converts to ISVP*, uncovering a role for λ2 in regulating ISVP* formation. Importantly, a virus with matching σ1 and λ2 displayed a more regulated conversion to ISVP* than either T3DF/T3DCS1 or T3DF/T3DCL2. In addition to identifying new regulators of ISVP* formation, our results highlight that protein mismatches produced by reassortment can alter virus assembly and thereby influence subsequent functions of the virus capsid.IMPORTANCE Cells coinfected with viruses that possess a multipartite or segmented genome reassort to produce progeny viruses that contain a combination of gene segments from each parent. Reassortment places new pairs of genes together, generating viruses in which mismatched proteins must function together. To test if such forced pairing of proteins that form the virus shell or capsid alters the function of the particle, we investigated properties of reovirus variants in which the σ1 attachment protein and the λ2 protein that anchors σ1 on the particle are mismatched. Our studies demonstrate that a σ1-λ2 mismatch produces particles with lower levels of encapsidated σ1, consequently decreasing virus attachment and infectivity. The mismatch between σ1 and λ2 also altered the capacity of the viral capsid to undergo conformational changes required for cell entry. These studies reveal new functions of reovirus capsid proteins and illuminate both predictable and novel implications of reassortment.
Collapse
|
15
|
Sutherland DM, Aravamudhan P, Dermody TS. An Orchestra of Reovirus Receptors: Still Searching for the Conductor. Adv Virus Res 2017; 100:223-246. [PMID: 29551138 DOI: 10.1016/bs.aivir.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viruses are constantly engaged in a molecular arms race with the host, where efficient and tactical use of cellular receptors benefits critical steps in infection. Receptor use dictates initiation, establishment, and spread of viral infection to new tissues and hosts. Mammalian orthoreoviruses (reoviruses) are pervasive pathogens that use multiple receptors to overcome protective host barriers to disseminate from sites of initial infection and cause disease in young mammals. In particular, reovirus invades the central nervous system (CNS) with serotype-dependent tropism and disease. A single viral gene, encoding the attachment protein σ1, segregates with distinct patterns of CNS injury. Despite the identification and characterization of several reovirus receptors, host factors that dictate tropism via interaction with σ1 remain undefined. Here, we summarize the state of the reovirus receptor field and discuss open questions toward understanding how the reovirus attachment protein dictates CNS tropism.
Collapse
Affiliation(s)
| | | | - Terence S Dermody
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
16
|
Eichwald C, Kim J, Nibert ML. Dissection of mammalian orthoreovirus µ2 reveals a self-associative domain required for binding to microtubules but not to factory matrix protein µNS. PLoS One 2017; 12:e0184356. [PMID: 28880890 PMCID: PMC5589220 DOI: 10.1371/journal.pone.0184356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/22/2017] [Indexed: 12/25/2022] Open
Abstract
Mammalian orthoreovirus protein μ2 is a component of the viral core particle. Its activities include RNA binding and hydrolysis of the γ-phosphate from NTPs and RNA 5´-termini, suggesting roles as a cofactor for the viral RNA-dependent RNA polymerase, λ3, first enzyme in 5´-capping of viral plus-strand RNAs, and/or prohibitory of RNA-5´-triphosphate-activated antiviral signaling. Within infected cells, μ2 also contributes to viral factories, cytoplasmic structures in which genome replication and particle assembly occur. By associating with both microtubules (MTs) and viral factory matrix protein μNS, μ2 can anchor the factories to MTs, the full effects of which remain unknown. In this study, a protease-hypersensitive region allowed μ2 to be dissected into two large fragments corresponding to residues 1-282 and 283-736. Fusions with enhanced green fluorescent protein revealed that these amino- and carboxyl-terminal regions of μ2 associate in cells with either MTs or μNS, respectively. More exhaustive deletion analysis defined μ2 residues 1-325 as the minimal contiguous region that associates with MTs in the absence of the self-associating tag. A region involved in μ2 self-association was mapped to residues 283-325, and self-association involving this region was essential for MT-association as well. Likewise, we mapped that μNS-binding site in μ2 relates to residues 290-453 which is independent of μ2 self-association. These findings suggest that μ2 monomers or oligomers can bind to MTs and μNS, but that self-association involving μ2 residues 283-325 is specifically relevant for MT-association during viral factories formation.
Collapse
Affiliation(s)
- Catherine Eichwald
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Institute of Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Jonghwa Kim
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Gastroenterology, Samsung Medical Center, Seoul, Republic of Korea
| | - Max L. Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
17
|
Simon EJ, Howells MA, Stuart JD, Boehme KW. Serotype-Specific Killing of Large Cell Carcinoma Cells by Reovirus. Viruses 2017; 9:v9060140. [PMID: 28587298 PMCID: PMC5490817 DOI: 10.3390/v9060140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/30/2022] Open
Abstract
Reovirus is under development as a therapeutic for numerous types of cancer. In contrast to other oncolytic viruses, the safety and efficacy of reovirus have not been improved through genetic manipulation. Here, we tested the oncolytic capacity of recombinant strains (rs) of prototype reovirus laboratory strains T1L and T3D (rsT1L and rsT3D, respectively) in a panel of non-small cell lung cancer (NSCLC) cell lines. We found that rsT1L was markedly more cytolytic than rsT3D in the large cell carcinoma cell lines tested, whereas killing of adenocarcinoma cell lines was comparable between rsT1L and rsT3D. Importantly, non-recombinant T1L and T3D phenocopied the kinetics and magnitude of cell death induced by recombinant strains. We identified gene segments L2, L3, and M1 as viral determinants of strain-specific differences cell killing of the large cell carcinoma cell lines. Together, these results indicate that recombinant reoviruses recapitulate the cell killing properties of non-recombinant, tissue culture-passaged strains. These studies provide a baseline for the use of reverse genetics with the specific objective of engineering more effective reovirus oncolytics. This work raises the possibility that type 1 reoviruses may have the capacity to serve as more effective oncolytics than type 3 reoviruses in some tumor types.
Collapse
Affiliation(s)
- Emily J Simon
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Response, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Morgan A Howells
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Response, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Johnasha D Stuart
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Response, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Karl W Boehme
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Response, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
18
|
Reduction of virion-associated σ1 fibers on oncolytic reovirus variants promotes adaptation toward tumorigenic cells. J Virol 2015; 89:4319-34. [PMID: 25653434 DOI: 10.1128/jvi.03651-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Wild-type mammalian orthoreovirus serotype 3 Dearing (T3wt) is nonpathogenic in humans but preferentially infects and kills cancer cells in culture and demonstrates promising antitumor activity in vivo. Using forward genetics, we previously isolated two variants of reovirus, T3v1 and T3v2, with increased infectivity toward a panel of cancer cell lines and improved in vivo oncolysis in a murine melanoma model relative to that of T3wt. Our current study explored how mutations in T3v1 and T3v2 promote infectivity. Reovirions contain trimers of σ1, the reovirus cell attachment protein, at icosahedral capsid vertices. Quantitative Western blot analysis showed that purified T3v1 and T3v2 virions had ∼ 2- and 4-fold-lower levels of σ1 fiber than did T3wt virions. Importantly, using RNA interference to reduce σ1 levels during T3wt production, we were able to generate wild-type reovirus with reduced levels of σ1 per virion. As σ1 levels were reduced, virion infectivity increased by 2- to 5-fold per cell-bound particle, demonstrating a causal relationship between virion σ1 levels and the infectivity of incoming virions. During infection of tumorigenic L929 cells, T3wt, T3v1, and T3v2 uncoated the outer capsid proteins σ3 and μ1C at similar rates. However, having started with fewer σ1 molecules, a complete loss of σ1 was achieved sooner for T3v1 and T3v2. Distinct from intracellular uncoating, chymotrypsin digestion, as a mimic of natural enteric infection, resulted in more rapid σ3 and μ1C removal, unique disassembly intermediates, and a rapid loss of infectivity for T3v1 and T3v2 compared to T3wt. Optimal infectivity toward natural versus therapeutic niches may therefore require distinct reovirus structures and σ1 levels. IMPORTANCE Wild-type reovirus is currently in clinical trials as a potential cancer therapy. Our molecular studies on variants of reovirus with enhanced oncolytic activity in vitro and in vivo now show that distinct reovirus structures promote adaptation toward cancer cells and away from conditions that mimic natural routes of infection. Specifically, we found that reovirus particles with fewer molecules of the cell attachment protein σ1 became more infectious toward transformed cells. Reduced σ1 levels conferred a benefit to incoming particles only, resulting in an earlier depletion of σ1 and a higher probability of establishing productive infection. Conversely, reovirus variants with fewer σ1 molecules showed reduced stability and infectivity and distinct disassembly when exposed to conditions that mimic natural intestinal proteolysis. These findings support a model where the mode of infection dictates the precise optimum of reovirus structure and provide a molecular rationale for considering alternative reovirus structures during oncolytic therapy.
Collapse
|
19
|
Amino acids substitutions in σ1 and μ1 outer capsid proteins of a Vero cell-adapted mammalian orthoreovirus are required for optimal virus binding and disassembly. Virus Res 2014; 196:20-9. [PMID: 25445342 DOI: 10.1016/j.virusres.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/07/2023]
Abstract
In a recent study, the serotype 3 Dearing strain of mammalian orthoreovirus was adapted to Vero cells; cells that exhibit a limited ability to support the early steps of reovirus uncoating and are unable to produce interferon as an antiviral response upon infection. The Vero cell-adapted virus (VeroAV) exhibits amino acids substitutions in both the σ1 and μ1 outer capsid proteins but no changes in the σ3 protein. Accordingly, the virus was shown not to behave as a classical uncoating mutant. In the present study, an increased ability of the virus to bind at the Vero cell surface was observed and is likely associated with an increased ability to bind onto cell-surface sialic acid residues. In addition, the kinetics of μ1 disassembly from the virions appears to be altered. The plasmid-based reverse genetics approach confirmed the importance of σ1 amino acids substitutions in VeroAV's ability to efficiently infect Vero cells, although μ1 co-adaptation appears necessary to optimize viral infection. This approach of combining in vitro selection of reoviruses with reverse genetics to identify pertinent amino acids substitutions appears promising in the context of eventual reovirus modification to increase its potential as an oncolytic virus.
Collapse
|
20
|
Abstract
Members of the genus Orthoreovirus in the family Reoviridae are nonenveloped, icosahedral viruses. Their genomes contain 10 segments of double-stranded RNA (dsRNA). The orthoreoviruses are divided into two subgroups, the fusogenic and nonfusogenic reoviruses, based on the ability of the virus to induce cell-to-cell fusion. The fusogenic subgroup consists of the avian reovirus, baboon reovirus, pteropine reovirus, and reptilian reovirus, whereas the nonfusogenic subgroup consists of the prototypical mammalian reovirus (MRV) species. MRVs are highly tractable experimental models for studies of segmented dsRNA virus replication and pathogenesis. Moreover, MRVs can selectively kill tumor cells and have been evaluated as oncolytic agents in clinical trials. This review provides a brief overview of current knowledge on the virological features of MRVs.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| |
Collapse
|
21
|
Markussen T, Dahle MK, Tengs T, Løvoll M, Finstad ØW, Wiik-Nielsen CR, Grove S, Lauksund S, Robertsen B, Rimstad E. Sequence analysis of the genome of piscine orthoreovirus (PRV) associated with heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar). PLoS One 2013; 8:e70075. [PMID: 23922911 PMCID: PMC3726481 DOI: 10.1371/journal.pone.0070075] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/16/2013] [Indexed: 12/20/2022] Open
Abstract
Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation (HSMI) of farmed Atlantic salmon (Salmo salar). We have performed detailed sequence analysis of the PRV genome with focus on putative encoded proteins, compared with prototype strains from mammalian (MRV T3D)- and avian orthoreoviruses (ARV-138), and aquareovirus (GCRV-873). Amino acid identities were low for most gene segments but detailed sequence analysis showed that many protein motifs or key amino acid residues known to be central to protein function are conserved for most PRV proteins. For M-class proteins this included a proline residue in μ2 which, for MRV, has been shown to play a key role in both the formation and structural organization of virus inclusion bodies, and affect interferon-β signaling and induction of myocarditis. Predicted structural similarities in the inner core-forming proteins λ1 and σ2 suggest a conserved core structure. In contrast, low amino acid identities in the predicted PRV surface proteins μ1, σ1 and σ3 suggested differences regarding cellular interactions between the reovirus genera. However, for σ1, amino acid residues central for MRV binding to sialic acids, and cleavage- and myristoylation sites in μ1 required for endosomal membrane penetration during infection are partially or wholly conserved in the homologous PRV proteins. In PRV σ3 the only conserved element found was a zinc finger motif. We provide evidence that the S1 segment encoding σ3 also encodes a 124 aa (p13) protein, which appears to be localized to intracellular Golgi-like structures. The S2 and L2 gene segments are also potentially polycistronic, predicted to encode a 71 aa- (p8) and a 98 aa (p11) protein, respectively. It is concluded that PRV has more properties in common with orthoreoviruses than with aquareoviruses.
Collapse
Affiliation(s)
- Turhan Markussen
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Maria K. Dahle
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Torstein Tengs
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Marie Løvoll
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Øystein W. Finstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | | | - Søren Grove
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Silje Lauksund
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Børre Robertsen
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
- * E-mail:
| |
Collapse
|
22
|
Lemay G, Bisaillon M. Further characterization and determination of the single amino acid change in the tsI138 reovirus thermosensitive mutant. Can J Microbiol 2012; 58:589-95. [PMID: 22510042 DOI: 10.1139/w2012-033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many temperature-sensitive mutants have been isolated in early studies of mammalian reovirus. However, the biological properties and nature of the genetic alterations remain incompletely explored for most of these mutants. The mutation harbored by the tsI138 mutant was already assigned to the L3 gene encoding the λ1 protein. In the present study, this mutant was further studied as a possible tool to establish the role of the putative λ1 enzymatic activities in viral multiplication. It was observed that synthesis of viral proteins is only marginally reduced, while it was difficult to recover viral particles at the nonpermissive temperature. A single nucleotide substitution resulting in an amino acid change was found; the position of this amino acid is consistent with a probable defect in assembly of the inner capsid at the nonpermissive temperature.
Collapse
Affiliation(s)
- Guy Lemay
- Département de microbiologie et immunologie, Université de Montréal, P.O. Box 6128, Station centre-ville, Montréal, QC H3C 3J7, Canada.
| | | |
Collapse
|
23
|
A single-amino-acid polymorphism in reovirus protein μ2 determines repression of interferon signaling and modulates myocarditis. J Virol 2011; 86:2302-11. [PMID: 22156521 DOI: 10.1128/jvi.06236-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Myocarditis is indicated as the second leading cause of sudden death in young adults. Reovirus induces myocarditis in neonatal mice, providing a tractable model system for investigation of this important disease. Alpha/beta-interferon (IFN-α/β) treatment improves cardiac function and inhibits viral replication in patients with chronic myocarditis, and the host IFN-α/β response is a determinant of reovirus strain-specific differences in induction of myocarditis. Virus-induced IFN-β stimulates a signaling cascade that establishes an antiviral state and further induces IFN-α/β through an amplification loop. Reovirus strain-specific differences in induction of and sensitivity to IFN-α/β are associated with the viral M1, L2, and S2 genes. The reovirus M1 gene-encoded μ2 protein is a strain-specific repressor of IFN-β signaling, providing one possible mechanism for the variation in resistance to IFN and induction of myocarditis between different reovirus strains. We report here that μ2 amino acid 208 determines repression of IFN-β signaling and modulates reovirus induction of IFN-β in cardiac myocytes. Moreover, μ2 amino acid 208 determines reovirus replication, both in initially infected cardiac myocytes and after viral spread, by regulating the IFN-β response. Amino acid 208 of μ2 also influences the cytopathic effect in cardiac myocytes after spread. Finally, μ2 amino acid 208 modulates myocarditis in neonatal mice. Thus, repression of IFN-β signaling mediated by reovirus μ2 amino acid 208 is a determinant of the IFN-β response, viral replication and damage in cardiac myocytes, and myocarditis. These results demonstrate that a single amino acid difference between viruses can dictate virus strain-specific differences in suppression of the host IFN-β response and, consequently, damage to the heart.
Collapse
|
24
|
Danthi P, Guglielmi KM, Kirchner E, Mainou B, Stehle T, Dermody TS. From touchdown to transcription: the reovirus cell entry pathway. Curr Top Microbiol Immunol 2011; 343:91-119. [PMID: 20397070 PMCID: PMC4714703 DOI: 10.1007/82_2010_32] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Mammalian orthoreoviruses (reoviruses) are prototype members of the Reoviridae family of nonenveloped viruses. Reoviruses contain ten double-stranded RNA gene segments enclosed in two concentric protein shells, outer capsid and core. These viruses serve as a versatile experimental system for studies of virus cell entry, innate immunity, and organ-specific disease. Reoviruses engage cells by binding to cell-surface carbohydrates and the immunoglobulin superfamily member, junctional adhesion molecule-A (JAM-A). JAM-A is a homodimer formed by extensive contacts between its N-terminal immunoglobulin-like domains. Reovirus attachment protein σ1 disrupts the JAM-A dimer, engaging a single JAM-A molecule by virtually the same interface used for JAM-A homodimerization. Following attachment to JAM-A and carbohydrate, reovirus internalization is promoted by β1 integrins, most likely via clathrin-dependent endocytosis. In the endocytic compartment, reovirus outer-capsid protein σ3 is removed by cathepsin proteases, which exposes the viral membrane-penetration protein, μ1. Proteolytic processing and conformational rearrangements of μ1 mediate endosomal membrane rupture and delivery of transcriptionally active reovirus core particles into the host cell cytoplasm. These events also allow the φ cleavage fragment of μ1 to escape into the cytoplasm where it activates NF-κB and elicits apoptosis. This review will focus on mechanisms of reovirus cell entry and activation of innate immune response signaling pathways.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | | | | | | | |
Collapse
|
25
|
Ooms LS, Kobayashi T, Dermody TS, Chappell JD. A post-entry step in the mammalian orthoreovirus replication cycle is a determinant of cell tropism. J Biol Chem 2010; 285:41604-13. [PMID: 20978124 DOI: 10.1074/jbc.m110.176255] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian reoviruses replicate in a broad range of hosts, cells, and tissues. These viruses display strain-dependent variation in tropism for different types of cells in vivo and ex vivo. Early steps in the reovirus life cycle, attachment, entry, and disassembly, have been identified as pivotal points of virus-cell interaction that determine the fate of infection, either productive or abortive. However, in studies of the differential capacity of reovirus strains type 1 Lang and type 3 Dearing to replicate in Madin-Darby canine kidney (MDCK) cells, we found that replication efficiency is regulated at a late point in the viral life cycle following primary transcription and translation. Results of genetic studies using recombinant virus strains show that reovirus tropism for MDCK cells is primarily regulated by replication protein μ2 and further influenced by the viral RNA-dependent RNA polymerase protein, λ3, depending on the viral genetic background. Furthermore, μ2 residue 347 is a critical determinant of replication efficiency in MDCK cells. These findings indicate that components of the reovirus replication complex are mediators of cell-selective viral replication capacity at a post-entry step. Thus, reovirus cell tropism may be determined at early and late points in the viral replication program.
Collapse
Affiliation(s)
- Laura S Ooms
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
26
|
Broome virus, a new fusogenic Orthoreovirus species isolated from an Australian fruit bat. Virology 2010; 402:26-40. [PMID: 20350736 DOI: 10.1016/j.virol.2009.11.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 11/26/2009] [Indexed: 11/22/2022]
Abstract
This report describes the discovery and characterization of a new fusogenic orthoreovirus, Broome virus (BroV), isolated from a little red flying-fox (Pteropus scapulatus). The BroV genome consists of 10 dsRNA segments, each having a 3' terminal pentanucleotide sequence conserved amongst all members of the genus Orthoreovirus, and a unique 5' terminal pentanucleotide sequence. The smallest genome segment is bicistronic and encodes two small nonstructural proteins, one of which is a novel fusion associated small transmembrane (FAST) protein responsible for syncytium formation, but no cell attachment protein. The low amino acid sequence identity between BroV proteins and those of other orthoreoviruses (13-50%), combined with phylogenetic analyses of structural and nonstructural proteins provide evidence to support the classification of BroV in a new sixth species group within the genus Orthoreovirus.
Collapse
|
27
|
Berard A, Coombs KM. Mammalian reoviruses: propagation, quantification, and storage. ACTA ACUST UNITED AC 2009; Chapter 15:Unit15C.1. [PMID: 19653214 DOI: 10.1002/9780471729259.mc15c01s14] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mammalian reoviruses are pathogens that cause gastrointestinal and respiratory infections. In humans, the mammalian reoviruses usually cause mild or subclinical disease, and they are ubiquitous, with most people mounting immunity at a young age. Reoviruses are prototypic representations of the Reoviridae family, which contains many highly pathogenic viruses. This unit describes techniques for culturing mouse fibroblast L929 cell lines, the preferred cell line in which most mammalian reovirus studies take place. In addition, mammalian reovirus propagation, quantification, purification, and storage are described.
Collapse
Affiliation(s)
- Alicia Berard
- University of Manitoba and Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
28
|
Identification of functional domains in reovirus replication proteins muNS and mu2. J Virol 2009; 83:2892-906. [PMID: 19176625 DOI: 10.1128/jvi.01495-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian reoviruses are nonenveloped particles containing a genome of 10 double-stranded RNA (dsRNA) gene segments. Reovirus replication occurs within viral inclusions, which are specialized nonmembranous cytoplasmic organelles formed by viral nonstructural and structural proteins. Although these structures serve as sites for several major events in the reovirus life cycle, including dsRNA synthesis, gene segment assortment, and genome encapsidation, biochemical mechanisms of virion morphogenesis within inclusions have not been elucidated because much remains unknown about inclusion anatomy and functional organization. To better understand how inclusions support viral replication, we have used RNA interference (RNAi) and reverse genetics to define functional domains in two inclusion-associated proteins, muNS and mu2, which are interacting partners essential for inclusion development and viral replication. Removal of muNS N-terminal sequences required for association with mu2 or another muNS-binding protein, sigmaNS, prevented the capacity of muNS to support viral replication without affecting inclusion formation, indicating that muNS-mu2 and muNS-sigmaNS interactions are necessary for inclusion function but not establishment. In contrast, introduction of changes into the muNS C-terminal region, including sequences that form a putative oligomerization domain, precluded inclusion formation as well as viral replication. Mutational analysis of mu2 revealed a critical dependence of viral replication on an intact nucleotide/RNA triphosphatase domain and an N-terminal cluster of basic amino acid residues conforming to a nuclear localization motif. Another domain in mu2 governs the capacity of viral inclusions to affiliate with microtubules and thereby modulates inclusion morphology, either globular or filamentous. However, viral variants altered in inclusion morphology displayed equivalent replication efficiency. These studies reveal a modular functional organization of inclusion proteins muNS and mu2, define the importance of specific amino acid sequences and motifs in these proteins for viral replication, and demonstrate the utility of complementary RNAi-based and reverse genetic approaches for studies of reovirus replication proteins.
Collapse
|
29
|
Transfiguracion J, Bernier A, Voyer R, Coelho H, Coffey M, Kamen A. Rapid and reliable quantification of reovirus type 3 by high performance liquid chromatography during manufacturing of Reolysin. J Pharm Biomed Anal 2008; 48:598-605. [PMID: 18632239 DOI: 10.1016/j.jpba.2008.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 11/25/2022]
Abstract
Reolysin, a human reovirus type 3, is being evaluated in the clinic as an oncolytic therapy for various types of cancer. To facilitate the optimization and scale-up of the current process, a high performance liquid chromatography (HPLC) method has been developed that is rapid, specific and reliable for the quantification of reovirus type 3 particles. Using an anion-exchange column, the intact virus eluted from the contaminants in 9.78 min at 350 mM NaCl in 50mM HEPES, pH 7.10 in a total analysis time of 25 min. The virus demonstrated a homogenous peak with no co-elution of other compounds as analyzed by photodiode array analysis. The HPLC method facilitated the optimization of the purification process which resulted in the improvement of both total and infectious particle recovery and contributed to the successful scale-up of the process at the 20 L, 40 L and 100 L production scale. The method is suitable for the analysis of crude virus supernatants, crude lysates, semi-purified and purified preparations and therefore is an ideal monitoring tool during process development and scale-up.
Collapse
Affiliation(s)
- Julia Transfiguracion
- Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2
| | | | | | | | | | | |
Collapse
|
30
|
Chavali VRM, Madhurantakam C, Ghorai S, Roy S, Das AK, Ghosh AK. Genome segment 6 of Antheraea mylitta cypovirus encodes a structural protein with ATPase activity. Virology 2008; 377:7-18. [PMID: 18486179 DOI: 10.1016/j.virol.2008.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/11/2008] [Accepted: 03/31/2008] [Indexed: 11/30/2022]
Abstract
The genome segment 6 (S6) of the 11 double stranded RNA genomes from Antheraea mylitta cypovirus was converted into cDNA, cloned and sequenced. S6 consisted of 1944 nucleotides with an ORF of 607 amino acids and could encode a protein of 68 kDa, termed P68. Motif scan and molecular docking analysis of P68 showed the presence of two cystathionine beta synthase (CBS) domains and ATP binding sites. The ORF of AmCPV S6 was expressed in E. coli as His-tag fusion protein and polyclonal antibody was raised. Immunoblot analysis of virus infected gut cells and purified polyhedra using raised anti-p68 polyclonal antibody showed that S6 encodes a viral structural protein. Fluorescence and ATPase assay of soluble P68 produced in Sf-9 cells via baculovirus expression system showed its ability to bind and cleave ATP. These results suggest that P68 may bind viral RNA through CBS domains and help in replication and transcription through ATP binding and hydrolysis.
Collapse
Affiliation(s)
- Venkata R M Chavali
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, Kharagpur 721302, West Bengal, India
| | | | | | | | | | | |
Collapse
|
31
|
Conformational changes accompany activation of reovirus RNA-dependent RNA transcription. J Struct Biol 2008; 162:277-89. [PMID: 18321727 DOI: 10.1016/j.jsb.2008.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/07/2007] [Accepted: 01/17/2008] [Indexed: 12/28/2022]
Abstract
Many critical biologic processes involve dynamic interactions between proteins and nucleic acids. Such dynamic processes are often difficult to delineate by conventional static methods. For example, while a variety of nucleic acid polymerase structures have been determined at atomic resolution, the details of how some multi-protein transcriptase complexes actively produce mRNA, as well as conformational changes associated with activation of such complexes, remain poorly understood. The mammalian reovirus innermost capsid (core) manifests all enzymatic activities necessary to produce mRNA from each of the 10 encased double-stranded RNA genes. We used rapid freezing and electron cryo-microscopy to trap and visualize transcriptionally active reovirus core particles and compared them to inactive core images. Rod-like density centered within actively transcribing core spike channels was attributed to exiting nascent mRNA. Comparative radial density plots of active and inactive core particles identified several structural changes in both internal and external regions of the icosahedral core capsid. Inactive and transcriptionally active cores were partially digested with trypsin and identities of initial tryptic peptides determined by mass spectrometry. Differentially-digested peptides, which also suggest transcription-associated conformational changes, were placed within the known three-dimensional structures of major core proteins.
Collapse
|
32
|
Chahal PS, Transfiguracion J, Bernier A, Voyer R, Coffey M, Kamen A. Validation of a high-performance liquid chromatographic assay for the quantification of Reovirus particles type 3. J Pharm Biomed Anal 2007; 45:417-21. [PMID: 17692493 DOI: 10.1016/j.jpba.2007.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/20/2007] [Accepted: 06/29/2007] [Indexed: 11/18/2022]
Abstract
An anion exchange high-performance liquid chromatography (HPLC) method for the quantification of human Reovirus type 3 particles was validated according to the performance criteria of precision, specificity, linearity of calibration and working range, limits of detection and quantification, accuracy and recovery. Samples taken at various stages of Reovirus purification were used for the validation of the method. The method was specific for Reovirus which eluted around 9.8min without interference from any other component in the sample. Reovirus can be detected between 0.32E+12 and 2.10E12VP/mL by the proposed method that has the correlation coefficient of linearity equal to 0.9974 and the slope of linearity equal to 5.74E-07 area units/(VPmL).
Collapse
Affiliation(s)
- Parminder Singh Chahal
- Animal Cell Technology, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P2R2, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Agosto MA, Middleton JK, Freimont EC, Yin J, Nibert ML. Thermolabilizing pseudoreversions in reovirus outer-capsid protein micro 1 rescue the entry defect conferred by a thermostabilizing mutation. J Virol 2007; 81:7400-9. [PMID: 17507494 PMCID: PMC1933377 DOI: 10.1128/jvi.02720-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heat-resistant mutants selected from infectious subvirion particles of mammalian reoviruses have determinative mutations in the major outer-capsid protein micro 1. Here we report the isolation and characterization of intragenic pseudoreversions of one such thermostabilizing mutation. From a plaque that had survived heat selection, a number of viruses with one shared mutation but different second-site mutations were isolated. The effect of the shared mutation alone or in combination with second-site mutations was examined using recoating genetics. The shared mutation, D371A, was found to confer (i) substantial thermostability, (ii) an infectivity defect that followed attachment but preceded viral protein synthesis, and (iii) resistance to micro 1 rearrangement in vitro, with an associated failure to lyse red blood cells. Three different second-site mutations were individually tested in combination with D371A and found to wholly or partially revert these phenotypes. Furthermore, when tested alone in recoated particles, each of these three second-site mutations conferred demonstrable thermolability. This and other evidence suggest that pseudoreversion of micro 1-based thermostabilization can occur by a general mechanism of micro 1-based thermolabilization, not requiring a specific compensatory mutation. The thermostabilizing mutation D371A as well as 9 of the 10 identified second-site mutations are located near contact regions between micro 1 trimers in the reovirus outer capsid. The availability of both thermostabilizing and thermolabilizing mutations in micro 1 should aid in defining the conformational rearrangements and mechanisms involved in membrane penetration during cell entry by this structurally complex nonenveloped animal virus.
Collapse
Affiliation(s)
- Melina A Agosto
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
34
|
Carvalho J, Arnold MM, Nibert ML. Silencing and complementation of reovirus core protein mu2: functional correlations with mu2-microtubule association and differences between virus- and plasmid-derived mu2. Virology 2007; 364:301-16. [PMID: 17451769 PMCID: PMC2486448 DOI: 10.1016/j.virol.2007.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/28/2006] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
A low-copy component of mammalian reovirus particles is mu2, an 83-kDa protein encoded by the M1 viral genome segment and packaged within the viral core. Previous studies have identified mu2 as a nucleoside triphosphate phosphohydrolase (NTPase) as well as an RNA 5'-triphosphate phosphohydrolase (RTPase), putatively involved in reovirus RNA synthesis and/or 5'-capping. Other studies have identified mu2 as a microtubule-binding protein, which also associates with the viral factory matrix protein muNS and thereby anchors the factories to cellular microtubules during infections by most reovirus strains. To extend studies of mu2 functions during infection, we tested a small interfering RNA (siRNA) directed against the M1 plus-strand RNAs of reovirus strains Type 1 Lang (T1L) and Type 3 Dearing (T3D). The siRNA strongly suppressed mu2 expression by either strain and reduced infectious yields in a strain-dependent manner. This first strain difference was genetically mapped to the M1 genome segment and tentatively assigned to a single mu2 sequence polymorphism, Pro/Ser208, which also determines a T1L-T3D strain difference in microtubule association. The siRNA-based defect in mu2 expression was rescued by plasmids, containing silent mutations in the siRNA-targeted sequence, which encoded either T1L or T3D mu2, but the growth defect was rescued only by T1L mu2. This second strain difference was also mapped to Pro/Ser208, in that swapping this one residue between T1L and T3D mu2 reversed the rescue phenotypes. Thus, the T1L-T3D strain difference in mu2-microtubule association was correlated not only with the extent of reduction in infectious yields by the siRNA but also with the extent of rescue by plasmid-derived mu2. In addition, the rescue capacity of T1L mu2 was abrogated by nocodazole treatment, providing independent evidence for the importance of mu2-microtubule association in plasmid-based rescue. In two separate cases, the results revealed functional differences between virus- and plasmid-derived mu2. Ala substitutions within the NTP-binding motif of T1L mu2 also abrogated its rescue capacity, suggesting that the NTPase or RTPase activity of mu2 is additionally required for effective viral growth.
Collapse
Affiliation(s)
- John Carvalho
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115 USA
| | - Michelle M. Arnold
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115 USA
- Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts 02115 USA
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115 USA
- Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts 02115 USA
- * Corresponding author. Dept. of Microbiology and Molecular Genetics, 200 Longwood Ave., Boston, MA 02115, USA., Fax: +1 617 738-7664. E-mail address: (M.L. Nibert)
| |
Collapse
|
35
|
Middleton JK, Agosto MA, Severson TF, Yin J, Nibert ML. Thermostabilizing mutations in reovirus outer-capsid protein mu1 selected by heat inactivation of infectious subvirion particles. Virology 2007; 361:412-25. [PMID: 17208266 PMCID: PMC1913285 DOI: 10.1016/j.virol.2006.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/31/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The 76-kDa mu1 protein of nonfusogenic mammalian reovirus is a major component of the virion outer capsid, which contains 200 mu1 trimers arranged in an incomplete T=13 lattice. In virions, mu1 is largely covered by a second major outer-capsid protein, sigma3, which limits mu1 conformational mobility. In infectious subvirion particles, from which sigma3 has been removed, mu1 is broadly exposed on the surface and can be promoted to rearrange into a protease-sensitive and hydrophobic conformer, leading to membrane perforation or penetration. In this study, mutants that resisted loss of infectivity upon heat inactivation (heat-resistant mutants) were selected from infectious subvirion particles of reovirus strains Type 1 Lang and Type 3 Dearing. All of the mutants were found to have mutations in mu1, and the heat-resistance phenotype was mapped to mu1 by both recoating and reassortant genetics. Heat-resistant mutants were also resistant to rearrangement to the protease-sensitive conformer of mu1, suggesting that heat inactivation is associated with mu1 rearrangement, consistent with published results. Rate constants of heat inactivation were determined, and the dependence of inactivation rate on temperature was consistent with the Arrhenius relationship. The Gibbs free energy of activation was calculated with reference to transition-state theory and was found to be correlated with the degree of heat resistance in each of the analyzed mutants. The mutations are located in upper portions of the mu1 trimer, near intersubunit contacts either within or between trimers in the viral outer capsid. We propose that the mutants stabilize the outer capsid by interfering with unwinding of the mu1 trimer.
Collapse
Affiliation(s)
- Jason K Middleton
- Department of Chemical and Biological Engineering, College of Engineering, The Graduate School, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
36
|
Kobayashi T, Chappell JD, Danthi P, Dermody TS. Gene-specific inhibition of reovirus replication by RNA interference. J Virol 2006; 80:9053-63. [PMID: 16940517 PMCID: PMC1563907 DOI: 10.1128/jvi.00276-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/03/2006] [Indexed: 01/26/2023] Open
Abstract
Mammalian reoviruses contain a genome of 10 segments of double-stranded RNA (dsRNA). Reovirus replication and assembly occur within distinct structures called viral inclusions, which form in the cytoplasm of infected cells. Viral nonstructural proteins muNS and sigmaNS and core protein mu2 play key roles in forming viral inclusions and recruiting other viral proteins and RNA to these structures for replication and assembly. However, the precise functions of these proteins in viral replication are poorly defined. Therefore, to better understand the functions of reovirus proteins associated with formation of viral inclusions, we used plasmid-based vectors to establish 293T cell lines stably expressing small interfering RNAs (siRNAs) specific for transcripts encoding the mu2, muNS, and sigmaNS proteins of strain type 3 Dearing (T3D). Infectivity assays revealed that yields of T3D, but not those of strain type 1 Lang, were significantly decreased in 293T cells stably expressing mu2, muNS, or sigmaNS siRNA. Stable expression of siRNAs specific for any one of these proteins substantially diminished viral dsRNA, protein synthesis, and inclusion formation, indicating that each is a critical component of the viral replication machinery. Using cell lines stably expressing muNS siRNA, we developed a complementation system to rescue viral replication by transient transfection with recombinant T3D muNS in which silent mutations were introduced into the sequence targeted by the muNS siRNA. Furthermore, we demonstrated that muNSC, which lacks the first 40 amino residues of muNS, is incapable of restoring reovirus growth in the complementation system. These results reveal interdependent functions for viral inclusion proteins and indicate that cell lines stably expressing reovirus siRNAs are useful tools for the study of viral protein structure-function relationships.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Pediatrics, and Lamb Center for Pediatric Research (D7235 MCN), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
37
|
Noad L, Shou J, Coombs KM, Duncan R. Sequences of avian reovirus M1, M2 and M3 genes and predicted structure/function of the encoded mu proteins. Virus Res 2006; 116:45-57. [PMID: 16297481 PMCID: PMC5123877 DOI: 10.1016/j.virusres.2005.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 12/29/2022]
Abstract
We report the first sequence analysis of the entire complement of M-class genome segments of an avian reovirus (ARV). We analyzed the M1, M2 and M3 genome segment sequences, and sequences of the corresponding muA, muB and muNS proteins, of two virus strains, ARV138 and ARV176. The ARV M1 genes were 2,283 nucleotides in length and predicted to encode muA proteins of 732 residues. Alignment of the homologous mammalian reovirus (MRV) mu2 and ARV muA proteins revealed a relatively low overall amino acid identity ( approximately 30%), although several highly conserved regions were identified that may contribute to conserved structural and/or functional properties of this minor core protein (i.e. the MRV mu2 protein is an NTPase and a putative RNA-dependent RNA polymerase cofactor). The ARV M2 genes were 2158 nucleotides in length, encoding predicted muB major outer capsid proteins of 676 amino acids, more than 30 amino acids shorter than the homologous MRV mu1 proteins. In spite of the difference in size, the ARV/MRV muB/mu1 proteins were more conserved than any of the homologous proteins encoded by other M- or S-class genome segments, exhibiting percent amino acid identities of approximately 45%. The conserved regions included the residues involved in the maturation- and entry- specific proteolytic cleavages that occur in the MRV mu1 protein. Notably missing was a region recently implicated in MRV mu1 stabilization and in forming "hub and spokes" complexes in the MRV outer capsid. The ARV M3 genes were 1996 nucleotides in length and predicted to encode a muNS non-structural protein of 635 amino acids, significantly shorter than the homologous MRV muNS protein, which is attributed to several substantial deletions in the aligned ARV muNS proteins. Alignments of the ARV and MRV muNS proteins revealed a low overall amino acid identity ( approximately 25%), although several regions were relatively conserved.
Collapse
Affiliation(s)
- Lindsay Noad
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Jingyun Shou
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| |
Collapse
|
38
|
Zhang X, Tang J, Walker SB, O’Hara D, Nibert ML, Duncan R, Baker TS. Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology 2005; 343:25-35. [PMID: 16153672 PMCID: PMC4152769 DOI: 10.1016/j.virol.2005.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/06/2005] [Accepted: 08/04/2005] [Indexed: 12/30/2022]
Abstract
Among members of the genus Orthoreovirus, family Reoviridae, a group of non-enveloped viruses with genomes comprising ten segments of double-stranded RNA, only the "non-fusogenic" mammalian orthoreoviruses (MRVs) have been studied to date by electron cryomicroscopy and three-dimensional image reconstruction. In addition to MRVs, this genus comprises other species that induce syncytium formation in cultured cells, a property shared with members of the related genus Aquareovirus. To augment studies of these "fusogenic" orthoreoviruses, we used electron cryomicroscopy and image reconstruction to analyze the virions of a fusogenic avian orthoreovirus (ARV). The structure of the ARV virion, determined from data at an effective resolution of 14.6 A, showed strong similarities to that of MRVs. Of particular note, the ARV virion has its pentameric lambda-class core turret protein in a closed conformation as in MRVs, not in a more open conformation as reported for aquareovirus. Similarly, the ARV virion contains 150 copies of its monomeric sigma-class core-nodule protein as in MRVs, not 120 copies as reported for aquareovirus. On the other hand, unlike that of MRVs, the ARV virion lacks "hub-and-spokes" complexes within the solvent channels at sites of local sixfold symmetry in the incomplete T=13l outer capsid. In MRVs, these complexes are formed by C-terminal sequences in the trimeric mu-class outer-capsid protein, sequences that are genetically missing from the homologous protein of ARVs. The channel structures and C-terminal sequences of the homologous outer-capsid protein are also genetically missing from aquareoviruses. Overall, the results place ARVs between MRVs and aquareoviruses with respect to the highlighted features.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jinghua Tang
- Department of Chemistry and Biochemistry and Department of Molecular Biology, University of California-San Diego, La Jolla, CA 92093, USA
| | - Stephen B. Walker
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - David O’Hara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H4H7
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H4H7
| | - Timothy S. Baker
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry and Biochemistry and Department of Molecular Biology, University of California-San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
39
|
Jiang J, Coombs KM. Infectious entry of reovirus cores into mammalian cells enhanced by transfection. J Virol Methods 2005; 128:88-92. [PMID: 15904980 DOI: 10.1016/j.jviromet.2005.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 04/04/2005] [Accepted: 04/05/2005] [Indexed: 11/28/2022]
Abstract
The reovirus virion is a moderately complex structure that contains eight structural proteins organized in multiple concentric capsid layers. Mammalian orthoreovirus virions undergo partial uncoating to produce infectious subvirion particles (ISVPs) and cores. Virions and ISVPs are infectious, whereas cores are transcriptionally active, but non-infectious, presumably because cores lack entry signals present in outer capsid proteins. We generated and purified reovirus cores and exposed them to cells with and without transfection reagents to directly test whether punfied cores can establish productive infections. Cores added directly to cells were essentially non-infectious. Specific infectivity of core/lipofectamine mixtures was increased more than 10,000-fold. Similar results were found with two reovirus serotypes (T1L and T3D) and in different cell types. These experiments indicated transfection reagents enhance core particle entry into cells and that cores contain all necessary components to replicate. This method may pave the way to improved genetic manipulations and to improved usage of reovirus as an anti-cancer agent.
Collapse
Affiliation(s)
- Jieyuan Jiang
- Department of Medical Microbiology, University of Manitoba, 511 Basic Medical Sciences, 730 William Avenue, Winnipeg, Man., Canada R3N 0W3
| | | |
Collapse
|
40
|
Nibert ML, Odegard AL, Agosto MA, Chandran K, Schiff LA. Putative autocleavage of reovirus mu1 protein in concert with outer-capsid disassembly and activation for membrane permeabilization. J Mol Biol 2005; 345:461-74. [PMID: 15581891 DOI: 10.1016/j.jmb.2004.10.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 10/04/2004] [Accepted: 10/11/2004] [Indexed: 11/20/2022]
Abstract
Capsid proteins of several different families of non-enveloped animal viruses with single-stranded RNA genomes undergo autocatalytic cleavage (autocleavage) as a maturation step in assembly. Similarly, the 76 kDa major outer-capsid protein mu1 of mammalian orthoreoviruses (reoviruses), which are non-enveloped and have double-stranded RNA genomes, undergoes putative autocleavage between residues 42 and 43, yielding N-terminal N-myristoylated fragment mu1N and C-terminal fragment mu1C. Cleavage at this site allows release of mu1N, which is thought to be critical for penetration of the host-cell membrane during cell entry. Most previous studies have suggested that cleavage at the mu1N/mu1C junction precedes addition to the outer capsid during virion assembly, such that only a small number of the mu1 subunits in mature virions remain uncleaved at that site (approximately 5%). In this study, we varied the conditions for disruption of virions before running the proteins on denaturing gels and in several circumstances recovered much higher levels of uncleaved mu1 (up to approximately 60%). Elements of the disruption conditions that allowed greater recovery of uncleaved protein were increased pH, absence of reducing agent, and decreased temperature. These same elements allowed comparably higher levels of the mu1delta protein, in which cleavage at the mu1N/delta junction has not occurred, to be recovered from particle uncoating intermediates in which mu1 had been previously cleaved by chymotrypsin in a distinct protease-sensitive region near residue 580. The capacity to recover higher levels of mu1delta following disruption of these particles for electrophoresis was lost, however, in concert with a series of structural changes that activate the particles for membrane permeabilization, suggesting that the putative autocleavage is itself one of these changes.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
41
|
Miller CL, Parker JSL, Dinoso JB, Piggott CDS, Perron MJ, Nibert ML. Increased ubiquitination and other covariant phenotypes attributed to a strain- and temperature-dependent defect of reovirus core protein mu2. J Virol 2004; 78:10291-302. [PMID: 15367595 PMCID: PMC516405 DOI: 10.1128/jvi.78.19.10291-10302.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reovirus replication and assembly are thought to occur within cytoplasmic inclusion bodies, which we call viral factories. A strain-dependent difference in the morphology of these structures reflects more effective microtubule association by the mu2 core proteins of some viral strains, which form filamentous factories, than by those of others, which form globular factories. For this report, we identified and characterized another strain-dependent attribute of the factories, namely, the extent to which they colocalized with conjugated ubiquitin (cUb). Among 16 laboratory strains and field isolates, the extent of factory costaining for cUb paralleled factory morphology, with globular strains exhibiting higher levels by far. In reassortant viruses, factory costaining for cUb mapped primarily to the mu2-encoding M1 genome segment, although contributions by the lambda3- and lambda2-encoding L1 and L2 genome segments were also evident. Immunoprecipitations revealed that cells infected with globular strains contained higher levels of ubiquitinated mu2 (Ub-mu2). In M1-transfected cells, cUb commonly colocalized with aggregates formed by mu2 from globular strains but not with microtubules coated by mu2 from filamentous strains, and immunoprecipitations revealed that mu2 from globular strains displayed higher levels of Ub-mu2. Allelic changes at mu2 residue 208 determined these differences. Nocodazole treatment of cells infected with filamentous strains resulted in globular factories that still showed low levels of costaining for cUb, indicating that higher levels of costaining were not a direct result of decreased microtubule association. The factories of globular strains, or their mu2 proteins expressed in transfected cells, were furthermore shown to gain microtubule association and to lose colocalization with cUb when cells were grown at reduced temperature. From the sum of these findings, we propose that mu2 from globular strains is more prone to temperature-dependent misfolding and as a result displays increased aggregation, increased levels of Ub-mu2, and decreased association with microtubules. Because so few of the viral strains formed factories that were regularly associated with ubiquitinated proteins, we conclude that reovirus factories are generally distinct from cellular aggresomes.
Collapse
Affiliation(s)
- Cathy L Miller
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
42
|
Yin P, Keirstead ND, Broering TJ, Arnold MM, Parker JSL, Nibert ML, Coombs KM. Comparisons of the M1 genome segments and encoded mu2 proteins of different reovirus isolates. Virol J 2004; 1:6. [PMID: 15507160 PMCID: PMC524354 DOI: 10.1186/1743-422x-1-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 09/23/2004] [Indexed: 12/03/2022] Open
Abstract
Background The reovirus M1 genome segment encodes the μ2 protein, a structurally minor component of the viral core, which has been identified as a transcriptase cofactor, nucleoside and RNA triphosphatase, and microtubule-binding protein. The μ2 protein is the most poorly understood of the reovirus structural proteins. Genome segment sequences have been reported for 9 of the 10 genome segments for the 3 prototypic reoviruses type 1 Lang (T1L), type 2 Jones (T2J), and type 3 Dearing (T3D), but the M1 genome segment sequences for only T1L and T3D have been previously reported. For this study, we determined the M1 nucleotide and deduced μ2 amino acid sequences for T2J, nine other reovirus field isolates, and various T3D plaque-isolated clones from different laboratories. Results Determination of the T2J M1 sequence completes the analysis of all ten genome segments of that prototype. The T2J M1 sequence contained a 1 base pair deletion in the 3' non-translated region, compared to the T1L and T3D M1 sequences. The T2J M1 gene showed ~80% nucleotide homology, and the encoded μ2 protein showed ~71% amino acid identity, with the T1L and T3D M1 and μ2 sequences, respectively, making the T2J M1 gene and μ2 proteins amongst the most divergent of all reovirus genes and proteins. Comparisons of these newly determined M1 and μ2 sequences with newly determined M1 and μ2 sequences from nine additional field isolates and a variety of laboratory T3D clones identified conserved features and/or regions that provide clues about μ2 structure and function. Conclusions The findings suggest a model for the domain organization of μ2 and provide further evidence for a role of μ2 in viral RNA synthesis. The new sequences were also used to explore the basis for M1/μ2-determined differences in the morphology of viral factories in infected cells. The findings confirm the key role of Ser/Pro208 as a prevalent determinant of differences in factory morphology among reovirus isolates and trace the divergence of this residue and its associated phenotype among the different laboratory-specific clones of type 3 Dearing.
Collapse
Affiliation(s)
- Peng Yin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0W3 Canada
- Thrasos Therapeutics, Hopkinton, MA 01748 USA
| | - Natalie D Keirstead
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0W3 Canada
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, N1G 2W1 Canada
| | - Teresa J Broering
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, 02115 USA
- Massachusetts Biologic Laboratories, Jamaica Plain, MA 02130-3597 USA
| | - Michelle M Arnold
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, 02115 USA
- Virology Training Program, Division of Medical Sciences, Harvard University, Cambridge, MA 02138 USA
| | - John SL Parker
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, 02115 USA
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Max L Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, 02115 USA
- Virology Training Program, Division of Medical Sciences, Harvard University, Cambridge, MA 02138 USA
| | - Kevin M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0W3 Canada
| |
Collapse
|
43
|
Hermann LL, Coombs KM. Inhibition of reovirus by mycophenolic acid is associated with the M1 genome segment. J Virol 2004; 78:6171-9. [PMID: 15163710 PMCID: PMC416527 DOI: 10.1128/jvi.78.12.6171-6179.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycophenolic acid (MPA), an inhibitor of IMP dehydrogenase, inhibits reovirus replication and viral RNA and protein production. In mouse L929 cells, antiviral effects were greatest at 30 microg of MPA/ml. At this dosage, MPA inhibited replication of reovirus strain T3D more than 1,000-fold and inhibited replication of reovirus strain T1L nearly 100-fold, compared to non-drug-treated controls. Genetic reassortant analysis indicated the primary determinant of strain-specific differences in sensitivity to MPA mapped to the viral M1 genome segment, which encodes the minor core protein mu2. MPA also inhibited replication of both strains of reovirus in a variety of other cell lines, including Vero monkey kidney and U373 human astrocytoma cells. Addition of exogenous guanosine to MPA-treated reovirus-infected cells restored viral replicative capacity to nearly normal levels. These results suggest the mu2 protein is involved in the uptake and processing of GTP in viral transcription in infected cells and strengthens the evidence that the mu2 protein can function as an NTPase and is likely a transcriptase cofactor.
Collapse
Affiliation(s)
- Laura L Hermann
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 0W3
| | | |
Collapse
|
44
|
Kim J, Tao Y, Reinisch KM, Harrison SC, Nibert ML. Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein-protein interfaces. Virus Res 2004; 101:15-28. [PMID: 15010214 DOI: 10.1016/j.virusres.2003.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Orthoreoviruses and Aquareoviruses constitute two respective genera in the family Reoviridae of double-stranded RNA viruses. Orthoreoviruses infect mammals, birds, and reptiles and have a genome comprising 10 RNA segments. Aquareoviruses infect fish and have a genome comprising 11 RNA segments. Despite these differences, recent structural and nucleotide sequence evidence indicate that the proteins of Orthoreoviruses and Aquareoviruses share many similarities. The focus of this review is on the structure and function of the Orthoreovirus core proteins lambda1, lambda2, lambda3, and sigma2, for which X-ray crystal structures have been recently reported. The homologous core proteins in Aquareoviruses are VP3, VP1, VP2, and VP6, respectively. By mapping the locations of conserved residues onto the Orthoreovirus crystal structures, we have found that enzymatic surfaces involved in mRNA synthesis are well conserved between these two groups of viruses, whereas several surfaces involved in protein-protein interactions are not well conserved. Other evidence indicates that the Orthoreovirus mu2 and Aquareovirus VP5 proteins are homologous, suggesting that VP5 is a core protein as mu2 is known to be. These findings provide further evidence that Orthoreoviruses and Aquareoviruses have diverged from a common ancestor and contribute to a growing understanding of the functions of the core proteins in viral mRNA synthesis.
Collapse
Affiliation(s)
- Jonghwa Kim
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02115, USA
| | | | | | | | | |
Collapse
|
45
|
Nibert ML, Kim J. Conserved sequence motifs for nucleoside triphosphate binding unique to turreted reoviridae members and coltiviruses. J Virol 2004; 78:5528-30. [PMID: 15113934 PMCID: PMC400372 DOI: 10.1128/jvi.78.10.5528-5530.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Chandran K, Parker JSL, Ehrlich M, Kirchhausen T, Nibert ML. The delta region of outer-capsid protein micro 1 undergoes conformational change and release from reovirus particles during cell entry. J Virol 2004; 77:13361-75. [PMID: 14645591 PMCID: PMC296072 DOI: 10.1128/jvi.77.24.13361-13375.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell entry by reoviruses requires a large, transcriptionally active subvirion particle to gain access to the cytoplasm. The features of this particle have been the subject of debate, but three primary candidates-the infectious subvirion particle (ISVP), ISVP*, and core particle forms-that differ in whether putative membrane penetration protein micro 1 and adhesin sigma1 remain particle bound have been identified. Experiments with antibody reagents in this study yielded new information about the steps in particle disassembly during cell entry. Monoclonal antibodies specific for the delta region of micro 1 provided evidence for a conformational change in micro 1 and for release of the delta proteolytic fragment from entering particles. Antiserum raised against cores provided evidence for entry-related changes in particle structure and identified entering particles that largely lack the delta fragment inside cells. Antibodies specific for sigma1 showed that it is also largely shed from entering particles. Limited coimmunostaining with markers for late endosomes and lysosomes indicated the particles lacking delta and sigma1 did not localize to those subcellular compartments, and other observations suggested that both the particles and free delta were released into the cytoplasm. Essentially equivalent findings were obtained with native ISVPs and highly infectious recoated particles containing wild-type proteins. Poorly infectious recoated particles containing a hyperstable mutant form of micro 1, however, showed no evidence for the in vitro and intracellular changes in particle structure normally detected by antibodies, and these particles instead accumulated in late endosomes or lysosomes. Recoated particles with hyperstable micro 1 were also ineffective at mediating erythrocyte lysis in vitro and promoting alpha-sarcin coentry and intoxication of cells in cultures. Based on these and other findings, we propose that ISVP* is a transient intermediate in cell entry which mediates membrane penetration and is then further uncoated in the cytoplasm to yield particles, resembling cores, that largely lack the delta fragment of micro 1.
Collapse
Affiliation(s)
- Kartik Chandran
- Departments of Microbiology and Molecular Genetics. Cell Biology. Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
47
|
Golden JW, Bahe JA, Lucas WT, Nibert ML, Schiff LA. Cathepsin S supports acid-independent infection by some reoviruses. J Biol Chem 2003; 279:8547-57. [PMID: 14670972 DOI: 10.1074/jbc.m309758200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In murine fibroblasts, efficient proteolysis of reovirus outer capsid protein sigma3 during cell entry by virions requires the acid-dependent lysosomal cysteine protease cathepsin L. The importance of cathepsin L for infection of other cell types is unknown. Here we report that the acid-independent lysosomal cysteine protease cathepsin S mediates outer capsid processing in macrophage-like P388D cells. P388D cells supported infection by virions of strain Lang, but not strain c43. Genetic studies revealed that this difference is determined by S4, the viral gene segment that encodes sigma3. c43-derived subvirion particles that lack sigma3 replicated normally in P388D cells, suggesting that the difference in infectivity of Lang and c43 virions is at the level of sigma3 processing. Infection of P388D cells with Lang virions was inhibited by the broad spectrum cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane but not by NH(4)Cl, which raises the endocytic pH and thereby inhibits acid-dependent proteases such as cathepsins L and B. Outer capsid processing and infection of P388D cells with Lang virions were also inhibited by a cathepsin S-specific inhibitor. Furthermore, in the presence of NH(4)Cl, cell lines engineered to express cathepsin S supported infection by Lang, but not c43, virions. Our results thus indicate that differences in susceptibility to cathepsin S-mediated sigma3 processing are responsible for strain differences in reovirus infection of macrophage-like P388D cells and other cathepsin S-expressing cells. Additionally, our data suggest that the acid dependence of reovirus infections of most other cell types may reflect the low pH requirement for the activities of most other lysosomal proteases rather, than some other acid-dependent aspect of cell entry.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
48
|
Zhang X, Walker SB, Chipman PR, Nibert ML, Baker TS. Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Nat Struct Mol Biol 2003; 10:1011-8. [PMID: 14608373 PMCID: PMC4152824 DOI: 10.1038/nsb1009] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Accepted: 09/18/2003] [Indexed: 01/13/2023]
Abstract
Reovirus is an icosahedral, double-stranded (ds) RNA virus that uses viral polymerases packaged within the viral core to transcribe its ten distinct plus-strand RNAs. To localize these polymerases, the structure of the reovirion was refined to a resolution of 7.6 A by cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image reconstruction. X-ray crystal models of reovirus proteins, including polymerase lambda 3, were then fitted into the density map. Each copy of lambda 3 was found anchored to the inner surface of the icosahedral core shell, making major contacts with three molecules of shell protein lambda 1 and overlapping, but not centering on, a five-fold axis. The overlap explains why only one copy of lambda 3 is bound per vertex. lambda 3 is furthermore oriented with its transcript exit channel facing a small channel through the lambda 1 shell, suggesting how the nascent RNA is passed into the large external cavity of the pentameric capping enzyme complex formed by protein lambda 2.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
49
|
O'Donnell SM, Hansberger MW, Dermody TS. Viral and cellular determinants of apoptosis induced by mammalian reovirus. Int Rev Immunol 2003; 22:477-503. [PMID: 12959755 DOI: 10.1080/08830180305212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mammalian reoviruses serve as important models for studies of viral replication and pathogenesis. These viruses have been isolated from many mammalian species, including humans, and cause disease primarily in the very young. Reoviruses induce apoptosis by a novel mechanism that requires engagement of cell-surface receptors, intracellular signal transduction, and activation of NF-kappaB. Reovirus binding to both cell-surface sialic acid and junctional adhesion molecule 1 is required for NF-kappaB activation and apoptosis. However, receptor binding alone is not sufficient to evoke these events. Viral disassembly acts in concert with receptor binding to induce NF-kappaB activation and apoptosis. Nuclear translocation of NF-kappaB is followed by activation of both extrinsic and intrinsic cell-death pathways. Importantly, potently apoptotic reovirus strains are highly virulent in newborn mice, suggesting that NF-kappaB-dependent apoptosis is essential for reovirus-induced disease.
Collapse
Affiliation(s)
- Sean M O'Donnell
- Department of Pediatrics and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
50
|
Mendez II, She YM, Ens W, Coombs KM. Digestion pattern of reovirus outer capsid protein sigma3 determined by mass spectrometry. Virology 2003; 311:289-304. [PMID: 12842619 PMCID: PMC7202455 DOI: 10.1016/s0042-6822(03)00154-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reovirus is an enteric virus comprising eight structural proteins that form a double-layered capsid. During reovirus entry into cells, the outermost capsid layer (composed of proteins sigma3 and mu1C) is proteolytically processed to generate an infectious subviral particle (ISVP) that is subsequently uncoated to produce the transcriptionally active core particle. Kinetic studies suggest that protein sigma3 is rapidly removed from virus particles and then protein mu1C is cleaved. Initial cleavage of mu1C has been well described and generates an amino (N)-terminal delta peptide and a carboxyl (C)-terminal phi peptide. However, cleavage and removal of sigma3 is an extremely rapid event that has not been well defined. We have treated purified reovirus serotype 1 Lang virions with a variety of endoproteases. Time-course digestions with chymotrypsin, Glu-C, pepsin, and trypsin resulted in the initial generation of two peptides that were resolved in SDS-PAGE and analyzed by in-gel tryptic digestion and MALDI-Qq-TOFMS. Most tested proteases cut sigma3 within a "hypersensitive" region between amino acids 217 and 238. In addition, to gain a better understanding of the sequence of subsequent proteolytic events that result in generation of reovirus subviral particles, time-course digestions of purified particles were performed under physiologic salt conditions and released peptide fragments ranging from 500 to 5000 Da were directly analyzed by MALDI-Qq-TOFMS. Trypsin digestion initially released a peptide that corresponded to the C-terminus of mu1C, followed by a peptide that corresponded to amino acids 214-236 of the sigma3 protein. Other regions of mu1C were not observed until protein sigma3 was completely digested. Similar experiments with Glu-C indicated the hypersensitive region of sigma3 was cut first when virions were treated at pH values of 4.5 or 7.4, but treatment of virions with pepsin at pH 3.0 released different sigma3 peptides, suggesting acid-induced conformational changes in this outer capsid protein. These studies also revealed that the N-terminus of sigma3 is acetylated.
Collapse
Affiliation(s)
- Israel I Mendez
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3
| | - Yi-Min She
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Werner Ens
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Kevin M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3
- Corresponding author. Fax: +204-789-3926.
| |
Collapse
|