1
|
Vahedi SM, Salek Ardestani S, Banabazi MH, Clark F. Epidemiology, pathogenesis, and diagnosis of Aleutian disease caused by Aleutian mink disease virus: A literature review with a perspective of genomic breeding for disease control in American mink (Neogale vison). Virus Res 2023; 336:199208. [PMID: 37633597 PMCID: PMC10474236 DOI: 10.1016/j.virusres.2023.199208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Aleutian disease (AD) is a multi-systemic infectious disease in American mink (Neogale vison) caused by the Aleutian mink disease virus (AMDV). Commonly referred to as mink plasmacytosis, AD is an economically significant disease in mink-breeding countries. Aleutian disease mainly induces weight loss, lower fertility, and dropped pelt quality in adults and can result in acute interstitial pneumonia with high mortality rates in kits. In this review, we employed the scientific literature on AD over the last 70 years to discuss the historical and contemporary status of AD outbreaks and seroprevalence in mink farming countries. We also explained different forms of AD and the differences between the pathogenicity of the virus in kits and adults. The application of the available AD serological tests in AD control strategies was argued. We explained how selection programs could help AD control and proposed different approaches to selecting animals for building AD-tolerant herds. The advantages of genomic selection for AD tolerance over traditional breeding strategies were discussed in detail. We also explained how genomic selection could help AD control by selecting tolerant animals for the next generation based on genome-wide single nucleotide polymorphisms (SNP) data and the challenges of implementing genomic selection for AD tolerance in the mink industry. This review collected the information required for designing successful breeding programs for AD tolerance. Examples of the application of information are presented, and data gaps are highlighted. We showed that AD tolerance is necessary to be among the traits that animals are selected for in the mink industry.
Collapse
Affiliation(s)
- Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Bible Hill, NS B2N5E3, Canada
| | | | - Mohammad Hossein Banabazi
- Department of animal breeding and genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden; Department of Biotechnology, Animal Science Research Institute of IRAN (ASRI), Agricultural Research, Education & Extension Organization (AREEO), Karaj 3146618361, Iran.
| | - Fraser Clark
- Department of Animal Science and Aquaculture, Dalhousie University, Bible Hill, NS B2N5E3, Canada.
| |
Collapse
|
2
|
Leng X, Liu D, Li J, Shi K, Zeng F, Zong Y, Liu Y, Sun Z, Zhang S, Liu Y, Du R. Genetic diversity and phylogenetic analysis of Aleutian mink disease virus isolates in north-east China. Arch Virol 2018; 163:1241-1251. [DOI: 10.1007/s00705-018-3754-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/06/2018] [Indexed: 02/02/2023]
|
3
|
Xi J, Zhang Y, Wang J, Yu Y, Zhang X, Li Z, Cui S, Liu W. Generation of an infectious clone of AMDV and identification of capsid residues essential for infectivity in cell culture. Virus Res 2017; 242:58-65. [DOI: 10.1016/j.virusres.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
4
|
Hagberg EE, Krarup A, Fahnøe U, Larsen LE, Dam-Tuxen R, Pedersen AG. A fast and robust method for whole genome sequencing of the Aleutian Mink Disease Virus (AMDV) genome. J Virol Methods 2016; 234:43-51. [PMID: 27060623 DOI: 10.1016/j.jviromet.2016.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 01/07/2023]
Abstract
Aleutian Mink Disease Virus (AMDV) is a frequently encountered pathogen associated with commercial mink breeding. AMDV infection leads to increased mortality and compromised animal health and welfare. Currently little is known about the molecular evolution of the virus, and the few existing studies have focused on limited regions of the viral genome. This paper describes a robust, reliable, and fast protocol for amplification of the full AMDV genome using long-range PCR. The method was used to generate next generation sequencing data for the non-virulent cell-culture adapted AMDV-G strain as well as for the virulent AMDV-Utah strain. Comparisons at nucleotide- and amino acid level showed that, in agreement with existing literature, the highest variability between the two virus strains was found in the left open reading frame, which encodes the non-structural (NS1-3) genes. This paper also reports a number of differences that potentially can be linked to virulence and host range. To the authors' knowledge, this is the first study to apply next generation sequencing on the entire AMDV genome. The results from the study will facilitate the development of new diagnostic tools and can form the basis for more detailed molecular epidemiological analyses of the virus.
Collapse
Affiliation(s)
- Emma E Hagberg
- Kopenhagen Diagnostics, Kopenhagen Fur, Glostrup, Denmark; Department of Systems biology, Technical University of Denmark, Lyngby, Denmark.
| | - Anders Krarup
- Kopenhagen Diagnostics, Kopenhagen Fur, Glostrup, Denmark
| | - Ulrik Fahnøe
- National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Lars E Larsen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | | | - Anders G Pedersen
- Department of Systems biology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
5
|
Xi J, Wang J, Yu Y, Zhang X, Mao Y, Hou Q, Liu W. Genetic characterization of the complete genome of an Aleutian mink disease virus isolated in north China. Virus Genes 2016; 52:463-73. [PMID: 27007772 DOI: 10.1007/s11262-016-1320-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/12/2016] [Indexed: 12/16/2022]
Abstract
The genome of a highly pathogenic strain of Aleutian disease mink virus (AMDV-BJ) isolated from a domestic farm in North China has been determined and compared with other strains. Alignment analysis of the major structural protein VP2 revealed that AMDV-BJ is unique among 17 other AMDV strains. Compared with the nonpathogenic strain ADV-G, the 3' end Y-shaped hairpin was highly conserved, while a 4-base deletion in the 5' U-shaped terminal palindrome resulted in a different unpaired "bubble" group near the NS1-binding region of the 5' end hairpin which may affect replication efficiency in vivo. We also performed a protein analysis of the NS1, NS2, and new-confirmed NS3 of AMDV-BJ with some related AMDV DNA sequence published, providing information on evolution of AMDV genes. This study shows a useful method to obtain the full-length genome of AMDV and some other parvoviruses.
Collapse
Affiliation(s)
- Ji Xi
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yongle Yu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaomei Zhang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yaping Mao
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qiang Hou
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
6
|
The DNA replication, virogenesis and infection of canine minute virus in non-permissive and permissive cells. Virus Res 2013; 179:147-52. [PMID: 24239972 DOI: 10.1016/j.virusres.2013.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 11/22/2022]
Abstract
Canine minute virus (CnMV), a kind of autonomous parvovirus, is a member of genus bocavirus in parvovirdae family. In our previous study, we constructed and obtained infectious clones of CnMV, analyzed genome characteristics, RNA transcription profile, and revealed some molecular mechanisms of cytopathic effect of target cells. The purpose of this study was to investigate DNA replication, virogenesis and infectious tropism of CnMV in non-permissive and permissive cells. We demonstrated that the genomic DNA of CnMV, besides WRD cells, could replicate significantly in some non-permissive cells (CrFK, EBtR and COS-7) following transfection with infectious clone of CnMV, pI-MVC. Moreover, by using Western blotting and immunofluorescence, we found that the NS1 protein of CnMV was obviously expressed in both 293, CrFK, EBtR and COS-7 cells transfected with pI-MVC. Meanwhile, two-rounds of reinfection on WRD cells (blind passage) of the transfected cell lysates in CrFK, EBtR and COS-7 cells tranfected with pI-MVC showed that pI-MVC could produce infectious virions in these types of non-permissive cells. Furthermore, it is confirmed that CnMV only infected WRD cells (permissive cells for CnMV), could not infect any non-permissive cells including CrFK, EBtR, COS-7, HK293, A549 and A9 cells. Taken together, for the first time, we have demonstrated that bocavirus CnMV DNA could replicate and form infectious progeny virus in some non-permissive cells. And what is more, unlike other parvoviruses, CnMV did not infect some non-permissive cells, although the DNA replication of CnMV occurred in these cells.
Collapse
|
7
|
Park GS, Best SM, Bloom ME. Two mink parvoviruses use different cellular receptors for entry into CRFK cells. Virology 2005; 340:1-9. [PMID: 16040076 DOI: 10.1016/j.virol.2005.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 05/02/2005] [Accepted: 06/16/2005] [Indexed: 12/01/2022]
Abstract
Mink enteritis virus (MEV) and Aleutian mink disease parvovirus (ADV) are two mink parvoviruses that replicate permissively in Crandell feline kidney (CRFK) cells. We have used this cell model to examine if these two mink parvoviruses use the same cellular receptor. Whereas the cellular receptor for MEV is expected to be the transferrin receptor (TfR), the cellular receptor for ADV has not been clearly identified. We used short hairpin RNAs (shRNAs) produced from plasmids to trigger RNA interference (RNAi), specifically and effectively reducing TfR expression in CRFK cells. TfR expression was reduced to levels undetectable by immunofluorescence in the majority of cells. In viral infection assays, we show that TfR expression was necessary for MEV infection but was not required for ADV infection. Thus, our results demonstrate that TfR is the cellular receptor for MEV, but not the cellular receptor for ADV. The use of two different receptors by MEV and ADV to infect the same cell line is yet another difference between these two parvoviruses that may contribute to their unique pathogenesis in mink.
Collapse
Affiliation(s)
- Gregory S Park
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
8
|
Kontou M, Govindasamy L, Nam HJ, Bryant N, Llamas-Saiz AL, Foces-Foces C, Hernando E, Rubio MP, McKenna R, Almendral JM, Agbandje-McKenna M. Structural determinants of tissue tropism and in vivo pathogenicity for the parvovirus minute virus of mice. J Virol 2005; 79:10931-43. [PMID: 16103145 PMCID: PMC1193591 DOI: 10.1128/jvi.79.17.10931-10943.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two strains of the parvovirus minute virus of mice (MVM), the immunosuppressive (MVMi) and the prototype (MVMp) strains, display disparate in vitro tropism and in vivo pathogenicity. We report the crystal structures of MVMp virus-like particles (MVMp(b)) and native wild-type (wt) empty capsids (MVMp(e)), determined and refined to 3.25 and 3.75 A resolution, respectively, and their comparison to the structure of MVMi, also refined to 3.5 A resolution in this study. A comparison of the MVMp(b) and MVMp(e) capsids showed their structures to be the same, providing structural verification that some heterologously expressed parvovirus capsids are indistinguishable from wt capsids produced in host cells. The structures of MVMi and MVMp capsids were almost identical, but local surface conformational differences clustered from symmetry-related capsid proteins at three specific domains: (i) the icosahedral fivefold axis, (ii) the "shoulder" of the protrusion at the icosahedral threefold axis, and (iii) the area surrounding the depression at the icosahedral twofold axis. The latter two domains contain important determinants of MVM in vitro tropism (residues 317 and 321) and forward mutation residues (residues 399, 460, 553, and 558) conferring fibrotropism on MVMi. Furthermore, these structural differences between the MVM strains colocalize with tropism and pathogenicity determinants mapped for other autonomous parvovirus capsids, highlighting the importance of common parvovirus capsid regions in the control of virus-host interactions.
Collapse
Affiliation(s)
- Maria Kontou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, 32610-0245, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McDonald RA, Lariviere S. Diseases and pathogens ofMustelaspp, with special reference to the biological control of introduced stoatMustela ermineapopulations in New Zealand. J R Soc N Z 2001. [DOI: 10.1080/03014223.2001.9517671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Bloom ME, Best SM, Hayes SF, Wells RD, Wolfinbarger JB, McKenna R, Agbandje-McKenna M. Identification of aleutian mink disease parvovirus capsid sequences mediating antibody-dependent enhancement of infection, virus neutralization, and immune complex formation. J Virol 2001; 75:11116-27. [PMID: 11602751 PMCID: PMC114691 DOI: 10.1128/jvi.75.22.11116-11127.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 07/30/2001] [Indexed: 11/20/2022] Open
Abstract
Aleutian mink disease parvovirus (ADV) causes a persistent infection associated with circulating immune complexes, immune complex disease, hypergammaglobulinemia, and high levels of antiviral antibody. Although antibody can neutralize ADV infectivity in Crandell feline kidney cells in vitro, virus is not cleared in vivo, and capsid-based vaccines have proven uniformly ineffective. Antiviral antibody also enables ADV to infect macrophages, the target cells for persistent infection, by Fc-receptor-mediated antibody-dependent enhancement (ADE). The antibodies involved in these unique aspects of ADV pathogenesis may have specific targets on the ADV capsid. Prominent differences exist between the structure of ADV and other, more-typical parvoviruses, which can be accounted for by short peptide sequences in the flexible loop regions of the capsid proteins. In order to determine whether these short sequences are targets for antibodies involved in ADV pathogenesis, we studied heterologous antibodies against several peptides present in the major capsid protein, VP2. Of these antibodies, a polyclonal rabbit antibody to peptide VP2:428-446 was the most interesting. The anti-VP2:428-446 antibody aggregated virus particles into immune complexes, mediated ADE, and neutralized virus infectivity in vitro. Thus, antibody against this short peptide can be implicated in key facets of ADV pathogenesis. Structural modeling suggested that surface-exposed residues of VP2:428-446 are readily accessible for antibody binding. The observation that antibodies against a single target peptide in the ADV capsid can mediate both neutralization and ADE may explain the failure of capsid-based vaccines.
Collapse
Affiliation(s)
- M E Bloom
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Stevenson MA, Fox JM, Wolfinbarger JB, Bloom ME. Effect of a valine residue at codon 352 of the VP2 capsid protein on in vivo replication and pathogenesis of Aleutian disease parvovirus in mink. Am J Vet Res 2001; 62:1658-63. [PMID: 11592336 DOI: 10.2460/ajvr.2001.62.1658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether a group of 3 genetic differences in the nonstructural protein (NS1) or 1 genetic difference in the structural protein (VP2) of Aleutian disease parvovirus (ADV) is responsible for an increase in the in vivo replication and pathogenicity of G/U-8, a chimera of ADV-G (nonpathogenic) and ADV-Utah (pathogenic), compared with G/U-10. ANIMALS 32 eight-month-old female sapphire mink (Mustela vison). PROCEDURE Chimeric viruses were constructed, propagated in vitro, and used to inoculate mink. Antiviral antibody responses, presence of serum viral nucleic acid, and serum gamma globulin concentrations were monitored for 120 days following inoculation. Histologic examination of the liver, kidneys, spleen, and mesenteric lymph nodes was performed after necropsy. RESULTS A chimera containing only the 3 amino acid substitutions in NS1 did not elicit measurable responses indicative of replication or pathogenicity in inoculated mink. Serum antiviral antibody responses, frequency of detection of viral nucleic acid in serum, gamma globulin response, and histologic changes in mink inoculated with chimeras containing a valine residue at codon 352 (352V) of VP2 capsid were increased, compared with values from mink inoculated with chimeric viruses that did not contain 352V. CONCLUSIONS AND CLINICAL RELEVANCE A valine residue at codon 352 in the VP2 capsid protein of ADV affects in vivo viral replication and pathogenicity. This amino acid may be part of an incompletely defined pathogenic determinant of ADV. Further characterization of the pathogenic determinant may allow future development of focused preventive and therapeutic interventions for Aleutian disease of mink.
Collapse
Affiliation(s)
- M A Stevenson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIH, NIAID, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
12
|
Dyer NW, Ching B, Bloom ME. Nonsuppurative meningoencephalitis associated with Aleutian mink disease parvovirus infection in ranch mink. J Vet Diagn Invest 2000; 12:159-62. [PMID: 10730948 DOI: 10.1177/104063870001200212] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Severe nonsuppurative meningoencephalitis associated with Aleutian mink disease parvovirus (ADV) infection was observed in adult ranch mink. Brain lesions included severe, locally extensive to coalescing lymphoplasmacytic meningoencephalitis with accompanying gliosis, satellitosis, and mild extension of inflammation into the leptomeninges. ADV was identified in mesenteric lymph node, spleen, brain, and liver of affected mink by polymerase chain reaction techniques. Sequences of the ADV isolate (TH5) revealed 2 unique residues in the region of the viral genome that determines pathogenicity. These findings suggest that certain strains of ADV may preferentially cause disease in the nervous system. ADV infection should be considered in the differential diagnosis of neurologic disorders in mink.
Collapse
Affiliation(s)
- N W Dyer
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo 58105, USA
| | | | | |
Collapse
|
13
|
Fox JM, McCrackin Stevenson MA, Bloom ME. Replication of Aleutian mink disease parvovirus in vivo is influenced by residues in the VP2 protein. J Virol 1999; 73:8713-9. [PMID: 10482625 PMCID: PMC112892 DOI: 10.1128/jvi.73.10.8713-8719.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aleutian mink disease parvovirus (ADV) is the etiological agent of Aleutian disease of mink. Several ADV isolates have been identified which vary in the severity of the disease they elicit. The isolate ADV-Utah replicates to high levels in mink, causing severe Aleutian disease that results in death within 6 to 8 weeks, but does not replicate in Crandell feline kidney (CrFK) cells. In contrast, ADV-G replicates in CrFK cells but does not replicate in mink. The ability of the virus to replicate in vivo is determined by virally encoded determinants contained within a defined region of the VP2 gene (M. E. Bloom, J. M. Fox, B. D. Berry, K. L. Oie, and J. B. Wolfinbarger. Virology 251:288-296, 1998). Within this region, ADV-G and ADV-Utah differ at only five amino acid residues. To determine which of these five amino acid residues comprise the in vivo replication determinant, site-directed mutagenesis was performed to individually convert the amino acid residues of ADV-G to those of ADV-Utah. A virus in which the ADV-G VP2 residue at 534, histidine (H), was converted to an aspartic acid (D) of ADV-Utah replicated in CrFK cells as efficiently as ADV-G. H534D also replicated in mink, causing transient viremia at 30 days postinfection and a strong antibody response. Animals infected with this virus developed diffuse hepatocellular microvesicular steatosis, an abnormal accumulation of intracellular fat, but did not develop classical Aleutian disease. Thus, the substitution of an aspartic acid at residue 534 for a histidine allowed replication of ADV-G in mink, but the ability to replicate was not sufficient to cause classical Aleutian disease.
Collapse
Affiliation(s)
- J M Fox
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
14
|
Abstract
Parvoviruses have small genomes and, consequently, are highly dependent on their host for various functions in their reproduction. Since these viruses generally use ubiquitous receptors, restrictions are usually intracellularly regulated. A lack of mitosis, and hence absence of enzymes required for DNA replication, is a powerful block of virus infection. Allotropic determinants have been identified for several parvoviruses: porcine parvovirus, canine parvovirus (CPV), feline parvovirus (feline panleukopenia virus), minute virus of mice, Aleutian disease virus, and GmDNV (an insect parvovirus). Invariably, these identifications involved the use of infectious clones of these viruses and the exchange of restriction fragments to create chimeric viruses, of which the resulting phenotype was then established by transfection in appropriate cell lines. The tropism of these viruses was found to be governed by minimal changes in the sequence of the capsid proteins and, often, only 2 or 3 critical amino acids are responsible for a given tropism. These amino acids are usually located on the outside of the capsid near or on the spike of the threefold axis for the vertebrate parvoviruses and on loops 2 or 3 for the insect parvoviruses. This tropism is not mediated via specific cellular receptors but by interactions with intracellular factors. The nature of these factors is unknown but most data point to a stage beyond the conversion of the single-stranded DNA genome by host cell DNA polymerase into monomeric duplex intermediates of the replicative form. The sudden and devastating emergence of mink enteritis virus (MEV) and CPV in the last 50 years, and the possibility of more future outbreaks, demonstrates the importance of understanding parvovirus tropism.
Collapse
Affiliation(s)
- P Tijssen
- Laboratory of Structural and Molecular Virology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada.
| |
Collapse
|
15
|
McKenna R, Olson NH, Chipman PR, Baker TS, Booth TF, Christensen J, Aasted B, Fox JM, Bloom ME, Wolfinbarger JB, Agbandje-McKenna M. Three-dimensional structure of Aleutian mink disease parvovirus: implications for disease pathogenicity. J Virol 1999; 73:6882-91. [PMID: 10400786 PMCID: PMC112773 DOI: 10.1128/jvi.73.8.6882-6891.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1998] [Accepted: 04/15/1999] [Indexed: 11/20/2022] Open
Abstract
The three-dimensional structure of expressed VP2 capsids of Aleutian mink disease parvovirus strain G (ADVG-VP2) has been determined to 22 A resolution by cryo-electron microscopy and image reconstruction techniques. A structure-based sequence alignment of the VP2 capsid protein of canine parvovirus (CPV) provided a means to construct an atomic model of the ADVG-VP2 capsid. The ADVG-VP2 reconstruction reveals a capsid structure with a mean external radius of 128 A and several surface features similar to those found in human parvovirus B19 (B19), CPV, feline panleukopenia virus (FPV), and minute virus of mice (MVM). Dimple-like depressions occur at the icosahedral twofold axes, canyon-like regions encircle the fivefold axes, and spike-like protrusions decorate the threefold axes. These spikes are not present in B19, and they are more prominent in ADV compared to the other parvoviruses owing to the presence of loop insertions which create mounds near the threefold axes. Cylindrical channels along the fivefold axes of CPV, FPV, and MVM, which are surrounded by five symmetry-related beta-ribbons, are closed in ADVG-VP2 and B19. Immunoreactive peptides made from segments of the ADVG-VP2 capsid protein map to residues in the mound structures. In vitro tissue tropism and in vivo pathogenic properties of ADV map to residues at the threefold axes and to the wall of the dimples.
Collapse
Affiliation(s)
- R McKenna
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|