1
|
Smith KR, Paul S, Dong Q, Anannya O, Oldenburg DG, Forrest JC, McBride KM, Krug LT. Uracil-DNA glycosylase of murine gammaherpesvirus 68 binds cognate viral replication factors independently of its catalytic residues. mSphere 2023; 8:e0027823. [PMID: 37747202 PMCID: PMC10597349 DOI: 10.1128/msphere.00278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Herpesviruses are large double-stranded DNA viruses that encode core replication proteins and accessory factors involved in nucleotide metabolism and DNA repair. Mammalian uracil-DNA glycosylases (UNG) excise deleterious uracil residues from their genomic DNA. Each herpesvirus UNG studied to date has demonstrated conservation of the enzymatic function to excise uracil residues from DNA. We previously reported that a murine gammaherpesvirus (MHV68) with a stop codon in ORF46 (ORF46.stop) that encodes for vUNG was defective in lytic replication and latency in vivo. However, a mutant virus that expressed a catalytically inactive vUNG (ORF46.CM) had no replication defect unless coupled with additional mutations in the catalytic motif of the viral dUTPase (ORF54.CM). The disparate phenotypes observed in the vUNG mutants led us to explore the non-enzymatic properties of vUNG. Immunoprecipitation of vUNG followed by mass spectrometry in MHV68-infected fibroblasts identified a complex comprising the cognate viral DNA polymerase, vPOL, encoded by ORF9, and the viral DNA polymerase processivity factor, vPPF, encoded by ORF59. MHV68 vUNG co-localized with vPOL and vPPF in subnuclear structures consistent with viral replication compartments. In reciprocal co-immunoprecipitations, the vUNG formed a complex with the vPOL and vPPF upon transfection with either factor alone or in combination. Lastly, we determined that key catalytic residues of vUNG are not required for interactions with vPOL and vPPF upon transfection or in the context of infection. We conclude that the vUNG of MHV68 associates with vPOL and vPPF independently of its catalytic activity. IMPORTANCE Gammaherpesviruses encode a uracil-DNA glycosylase (vUNG) that is presumed to excise uracil residues from viral genomes. We previously identified the vUNG enzymatic activity, but not the protein itself, as dispensable for gammaherpesvirus replication in vivo. In this study, we report a non-enzymatic role for the viral UNG of a murine gammaherpesvirus in forming a complex with two key components of the viral DNA replication machinery. Understanding the role of the vUNG in this viral DNA replication complex may inform the development of antiviral drugs that combat gammaherpesvirus-associated cancers.
Collapse
Affiliation(s)
- Kyle R. Smith
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qiwen Dong
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Orchi Anannya
- Department of Physiology and Biophysics, Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Darby G. Oldenburg
- Gundersen Medical Foundation, Gunderson Health System, La Crosse, Wisconsin, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laurie T. Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Smith KR, Paul S, Dong Q, Anannya O, Oldenburg DG, Forrest JC, McBride KM, Krug LT. Uracil-DNA Glycosylase of Murine Gammaherpesvirus 68 Binds Cognate Viral Replication Factors Independently of its Catalytic Residues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541466. [PMID: 37398059 PMCID: PMC10312458 DOI: 10.1101/2023.05.19.541466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Herpesviruses are large double-stranded DNA viruses that encode core replication proteins and accessory factors involved in nucleotide metabolism and DNA repair. Mammalian Uracil-DNA glycosylases (UNG) excise deleterious uracil residues from their genomic DNA. Each herpesvirus UNG studied to date has demonstrated conservation of the enzymatic function to excise uracil residues from DNA. We previously reported that a murine gammaherpesvirus (MHV68) with a stop codon in ORF46 (ORF46.stop) that encodes for vUNG was defective in lytic replication and latency in vivo. However, a mutant virus that expressed a catalytically inactive vUNG (ORF46.CM) had no replication defect, unless coupled with additional mutations in the catalytic motif of the viral dUTPase (ORF54.CM). The disparate phenotypes observed in the vUNG mutants led us to explore the non-enzymatic properties of vUNG. Immunoprecipitation of vUNG followed by mass spectrometry in MHV68-infected fibroblasts identified a complex comprised of the cognate viral DNA polymerase, vPOL encoded by ORF9 , and the viral DNA polymerase processivity factor, vPPF encoded by ORF59 . MHV68 vUNG colocalized with vPOL and vPPF in subnuclear structures consistent with viral replication compartments. In reciprocal co-immunoprecipitations, the vUNG formed a complex with the vPOL and vPPF upon transfection with either factor alone, or in combination. Last, we determined that key catalytic residues of vUNG are not required for interactions with vPOL and vPPF upon transfection or in the context of infection. We conclude that the vUNG of MHV68 associates with vPOL and vPPF independently of its catalytic activity. IMPORTANCE Gammaherpesviruses encode a uracil-DNA glycosylase (vUNG) that is presumed to excise uracil residues from viral genomes. We previously identified the vUNG enzymatic activity, but not the protein itself, as dispensable for gammaherpesvirus replication in vivo . In this study, we report a non-enzymatic role for the viral UNG of a murine gammaherpesvirus to form a complex with two key components of the viral DNA replication machinery. Understanding the role of the vUNG in this viral DNA replication complex may inform the development of antiviral drugs that combat gammaherpesvirus associated cancers.
Collapse
Affiliation(s)
- Kyle R. Smith
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
- Department of Microbiology & Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qiwen Dong
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, USA
| | - Orchi Anannya
- Department of Physiology and Biophysics, Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, USA
| | - Darby G. Oldenburg
- Gundersen Medical Foundation, Gunderson Health System, LaCrosse, Wisconsin, USA
| | - J. Craig Forrest
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laurie T. Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
- Department of Microbiology & Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
3
|
Combinatorial Loss of the Enzymatic Activities of Viral Uracil-DNA Glycosylase and Viral dUTPase Impairs Murine Gammaherpesvirus Pathogenesis and Leads to Increased Recombination-Based Deletion in the Viral Genome. mBio 2018; 9:mBio.01831-18. [PMID: 30377280 PMCID: PMC6212821 DOI: 10.1128/mbio.01831-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Unrepaired uracils in DNA can lead to mutations and compromise genomic stability. Herpesviruses have hijacked host processes of DNA repair and nucleotide metabolism by encoding a viral UNG that excises uracils and a viral dUTPase that initiates conversion of dUTP to dTTP. To better understand the impact of these processes on gammaherpesvirus pathogenesis, we examined the separate and collaborative roles of vUNG and vDUT upon MHV68 infection of mice. Simultaneous disruption of the enzymatic activities of both vUNG and vDUT led to a severe defect in acute replication and establishment of latency, while also revealing a novel, combinatorial function in promoting viral genomic stability. We propose that herpesviruses require these enzymatic processes to protect the viral genome from damage, possibly triggered by misincorporated uracil. This reveals a novel point of therapeutic intervention to potentially block viral replication and reduce the fitness of multiple herpesviruses. Misincorporation of uracil or spontaneous cytidine deamination is a common mutagenic insult to DNA. Herpesviruses encode a viral uracil-DNA glycosylase (vUNG) and a viral dUTPase (vDUT), each with enzymatic and nonenzymatic functions. However, the coordinated roles of these enzymatic activities in gammaherpesvirus pathogenesis and viral genomic stability have not been defined. In addition, potential compensation by the host UNG has not been examined in vivo. The genetic tractability of the murine gammaherpesvirus 68 (MHV68) system enabled us to delineate the contribution of host and viral factors that prevent uracilated DNA. Recombinant MHV68 lacking vUNG (ORF46.stop) was not further impaired for acute replication in the lungs of UNG−/− mice compared to wild-type (WT) mice, indicating host UNG does not compensate for the absence of vUNG. Next, we investigated the separate and combinatorial consequences of mutating the catalytic residues of the vUNG (ORF46.CM) and vDUT (ORF54.CM). ORF46.CM was not impaired for replication, while ORF54.CM had a slight transient defect in replication in the lungs. However, disabling both vUNG and vDUT led to a significant defect in acute expansion in the lungs, followed by impaired establishment of latency in the splenic reservoir. Upon serial passage of the ORF46.CM/ORF54.CM mutant in either fibroblasts or the lungs of mice, we noted rapid loss of the nonessential yellow fluorescent protein (YFP) reporter gene from the viral genome, due to recombination at repetitive elements. Taken together, our data indicate that the vUNG and vDUT coordinate to promote viral genomic stability and enable viral expansion prior to colonization of latent reservoirs.
Collapse
|
4
|
Burmeister WP, Tarbouriech N, Fender P, Contesto-Richefeu C, Peyrefitte CN, Iseni F. Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA. J Biol Chem 2015; 290:17923-17934. [PMID: 26045555 DOI: 10.1074/jbc.m115.648352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201-50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201-50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 μm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.
Collapse
Affiliation(s)
- Wim P Burmeister
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France.
| | - Nicolas Tarbouriech
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France
| | - Pascal Fender
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France
| | - Céline Contesto-Richefeu
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France
| | - Christophe N Peyrefitte
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France; Emerging Pathogens Laboratory, Fondation Mérieux, F-69007 Lyon, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France.
| |
Collapse
|
5
|
Absence of the uracil DNA glycosylase of murine gammaherpesvirus 68 impairs replication and delays the establishment of latency in vivo. J Virol 2015; 89:3366-79. [PMID: 25589640 DOI: 10.1128/jvi.03111-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Uracil DNA glycosylases (UNG) are highly conserved proteins that preserve DNA fidelity by catalyzing the removal of mutagenic uracils. All herpesviruses encode a viral UNG (vUNG), and yet the role of the vUNG in a pathogenic course of gammaherpesvirus infection is not known. First, we demonstrated that the vUNG of murine gammaherpesvirus 68 (MHV68) retains the enzymatic function of host UNG in an in vitro class switch recombination assay. Next, we generated a recombinant MHV68 with a stop codon in ORF46/UNG (ΔUNG) that led to loss of UNG activity in infected cells and a replication defect in primary fibroblasts. Acute replication of MHV68ΔUNG in the lungs of infected mice was reduced 100-fold and was accompanied by a substantial delay in the establishment of splenic latency. Latency was largely, yet not fully, restored by an increase in virus inoculum or by altering the route of infection. MHV68 reactivation from latent splenocytes was not altered in the absence of the vUNG. A survey of host UNG activity in cells and tissues targeted by MHV68 indicated that the lung tissue has a lower level of enzymatic UNG activity than the spleen. Taken together, these results indicate that the vUNG plays a critical role in the replication of MHV68 in tissues with limited host UNG activity and this vUNG-dependent expansion, in turn, influences the kinetics of latency establishment in distal reservoirs. IMPORTANCE Herpesviruses establish chronic lifelong infections using a strategy of replicative expansion, dissemination to latent reservoirs, and subsequent reactivation for transmission and spread. We examined the role of the viral uracil DNA glycosylase, a protein conserved among all herpesviruses, in replication and latency of murine gammaherpesvirus 68. We report that the viral UNG of this murine pathogen retains catalytic activity and influences replication in culture. The viral UNG was impaired for productive replication in the lung. This defect in expansion at the initial site of acute replication was associated with a substantial delay of latency establishment in the spleen. The levels of host UNG were substantially lower in the lung compared to the spleen, suggesting that herpesviruses encode a viral UNG to compensate for reduced host enzyme levels in some cell types and tissues. These data suggest that intervention at the site of initial replicative expansion can delay the establishment of latency, a hallmark of chronic herpesvirus infection.
Collapse
|
6
|
Hong S, Hashimoto H, Kow YW, Zhang X, Cheng X. The carboxy-terminal domain of ROS1 is essential for 5-methylcytosine DNA glycosylase activity. J Mol Biol 2014; 426:3703-3712. [PMID: 25240767 DOI: 10.1016/j.jmb.2014.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 11/17/2022]
Abstract
Arabidopsis thaliana repressor of silencing 1 (ROS1) is a multi-domain bifunctional DNA glycosylase/lyase, which excises 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) as well as thymine and 5-hydroxymethyluracil (i.e., the deamination products of 5mC and 5hmC) when paired with a guanine, leaving an apyrimidinic (AP) site that is subsequently incised by the lyase activity. ROS1 is slow in base excision and fast in AP lyase activity, indicating that the recognition of pyrimidine modifications might be a rate-limiting step. In the C-terminal half, the enzyme harbors a helix-hairpin-helix DNA glycosylase domain followed by a unique C-terminal domain. We show that the isolated glycosylase domain is inactive for base excision but retains partial AP lyase activity. Addition of the C-terminal domain restores the base excision activity and increases the AP lyase activity as well. Furthermore, the two domains remain tightly associated and can be co-purified by chromatography. We suggest that the C-terminal domain of ROS1 is indispensable for the 5mC DNA glycosylase activity of ROS1.
Collapse
Affiliation(s)
- Samuel Hong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA; Molecular and Systems Pharmacology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - Hideharu Hashimoto
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - Yoke Wah Kow
- Department of Radiation Oncology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex. J Virol 2014; 88:8883-99. [PMID: 24872582 DOI: 10.1128/jvi.00950-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at the right time and the right place in DNA replication forks, complex formation with other components in the DNA replication machinery provides an important regulation for UDG function. In this study, we provide the mechanism for EBV UDG BKRF3 nuclear targeting and the interacting domains of BKRF3 with viral DNA replication proteins. Through knockout and complementation approaches, we further demonstrate that in addition to UDG activity, the interaction of BKRF3 with viral proteins in the replication compartment is crucial for efficient viral DNA replication.
Collapse
|
8
|
Contesto-Richefeu C, Tarbouriech N, Brazzolotto X, Betzi S, Morelli X, Burmeister WP, Iseni F. Crystal structure of the vaccinia virus DNA polymerase holoenzyme subunit D4 in complex with the A20 N-terminal domain. PLoS Pathog 2014; 10:e1003978. [PMID: 24603707 PMCID: PMC3946371 DOI: 10.1371/journal.ppat.1003978] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/21/2014] [Indexed: 12/21/2022] Open
Abstract
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A20₁₋₅₀). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A20₁₋₅₀ clearly behaves as a heterodimer. The crystal structure of D4/A20₁₋₅₀ solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A20₁₋₅₀ binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A20₁₋₅₀ formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A20₁₋₅₀ interaction. Finally, we propose a model of D4/A20₁₋₅₀ in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface.
Collapse
Affiliation(s)
| | - Nicolas Tarbouriech
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, UMI 3265, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risque Chimique, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes & Aix-Marseille Universités, Marseille, France
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes & Aix-Marseille Universités, Marseille, France
| | - Wim P. Burmeister
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, UMI 3265, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- * E-mail:
| |
Collapse
|
9
|
Boyle KA, Stanitsa ES, Greseth MD, Lindgren JK, Traktman P. Evaluation of the role of the vaccinia virus uracil DNA glycosylase and A20 proteins as intrinsic components of the DNA polymerase holoenzyme. J Biol Chem 2011; 286:24702-13. [PMID: 21572084 PMCID: PMC3137046 DOI: 10.1074/jbc.m111.222216] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/09/2011] [Indexed: 01/04/2023] Open
Abstract
The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ∼1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N' terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site.
Collapse
Affiliation(s)
- Kathleen A. Boyle
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Eleni S. Stanitsa
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Matthew D. Greseth
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jill K. Lindgren
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Paula Traktman
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
10
|
Abstract
The varicella-zoster virus (VZV) genome contains at least 70 genes, and all but six have homologs in herpes simplex virus (HSV). Cosmids and BACs corresponding to the VZV parental Oka and vaccine Oka viruses have been used to "knockout" 34 VZV genes. Seven VZV genes (ORF4, 5, 9, 21, 29, 62, and 68) have been shown to be required for growth in vitro. Recombinant viruses expressing several markers (e.g., beta-galactosidase, green fluorescence protein, luciferase) and several foreign viral genes (from herpes simplex, Epstein-Barr virus, hepatitis B, mumps, HIV, and simian immunodeficiency virus) have been constructed. Further studies of the VZV genome, using recombinant viruses, may facilitate the development of safer and more effective VZV vaccines. Furthermore, VZV might be useful as a vaccine vector to immunize against both VZV and other viruses.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Ward TM, Williams MV, Traina-Dorge V, Gray WL. The simian varicella virus uracil DNA glycosylase and dUTPase genes are expressed in vivo, but are non-essential for replication in cell culture. Virus Res 2009; 142:78-84. [PMID: 19200445 DOI: 10.1016/j.virusres.2009.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/15/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Neurotropic herpesviruses express viral deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and uracil DNA glycosylase (UDG) enzymes which may reduce uracil misincorporation into viral DNA, particularly in neurons of infected ganglia. The simian varicella virus (SVV) dUTPase (ORF 8) and UDG (ORF 59) share 37.7% and 53.9% amino acid identity, respectively, with varicella-zoster virus (VZV) homologs. Infectious SVV mutants defective in either dUTPase (SVV-dUTPase(-)) or UDG (SVV-UDG(-)) activity or both (SVV-dUTPase(-)/UDG(-)) were constructed using recA assisted restriction endonuclease cleavage (RARE) and a cosmid recombination system. Loss of viral dUTPase and UDG enzymatic activity was confirmed in CV-1 cells infected with the SVV mutants. The SVV-dUTPase(-), SVV-UDG(-), and SVV-dUTPase(-)/UDG(-) mutants replicated as efficiently as wild-type SVV in cell culture. SVV dUTPase and UDG expression was detected in tissues derived from acutely infected animals, but not in tissues derived from latently infected animals. Further studies will evaluate the pathogenesis of SVV dUTPase and UDG mutants and their potential as varicella vaccines.
Collapse
Affiliation(s)
- Toby M Ward
- Department of Microbiology and Immunology, 4301 West Markham Street, University of Arkansas for Medical Sciences, Slot 511, Little Rock, AR 72205, United States
| | | | | | | |
Collapse
|
12
|
De Silva FS, Moss B. Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice. Virol J 2008; 5:145. [PMID: 19055736 PMCID: PMC2630940 DOI: 10.1186/1743-422x-5-145] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/02/2008] [Indexed: 01/24/2023] Open
Abstract
Background Low levels of uracil in DNA result from misincorporation of dUMP or cytosine deamination. Vaccinia virus (VACV), the prototype poxvirus, encodes two enzymes that can potentially reduce the amount of uracil in DNA. Deoxyuridine triphosphatase (dUTPase) hydrolyzes dUTP, generating dUMP for biosynthesis of thymidine nucleotides while decreasing the availability of dUTP for misincorporation; uracil DNA glycosylase (UNG) cleaves uracil N-glycosylic bonds in DNA initiating base excision repair. Studies with actively dividing cells showed that the VACV UNG protein is required for DNA replication but the UNG catalytic site is not, whereas the dUTPase gene can be deleted without impairing virus replication. Recombinant VACV with an UNG catalytic site mutation was attenuated in vivo, while a dUTPase deletion mutant was not. However, the importance of the two enzymes for replication in quiescent cells, their possible synergy and roles in virulence have not been fully assessed. Results VACV mutants lacking the gene encoding dUTPase or with catalytic site mutations in UNG and double UNG/dUTPase mutants were constructed. Replication of UNG and UNG/dUTPase mutants were slightly reduced compared to wild type or the dUTPase mutant in actively dividing cells. Viral DNA replication was reduced about one-third under these conditions. After high multiplicity infection of quiescent fibroblasts, yields of wild type and mutant viruses were decreased by 2-logs with relative differences similar to those observed in active fibroblasts. However, under low multiplicity multi-step growth conditions in quiescent fibroblasts, replication of the dUTPase/UNG mutant was delayed and 5-fold lower than that of either single mutant or parental virus. This difference was exacerbated by 1-day serial passages on quiescent fibroblasts, resulting in 2- to 3-logs lower titer of the double mutant compared to the parental and single mutant viruses. Each mutant was more attenuated than a revertant virus upon intranasal infection of mice. Conclusion VACV UNG and dUTPase activities are more important for replication in quiescent cells, which have low levels of endogenous UNG and dUTPase, than in more metabolically active cells and the loss of both is more detrimental than either alone. Both UNG and dUTPase activities are required for full virulence in mice.
Collapse
Affiliation(s)
- Frank S De Silva
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3210, USA
| | | |
Collapse
|
13
|
Mercorelli B, Sinigalia E, Loregian A, Palù G. Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 2008; 18:177-210. [PMID: 18027349 DOI: 10.1002/rmv.558] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, in particular transplant recipients and AIDS patients, and is the most frequent congenital viral infection in humans. There are currently five drugs approved for HCMV treatment: ganciclovir and its prodrug valganciclovir, foscarnet, cidofovir and fomivirsen. These drugs have provided a major advance in HCMV disease management, but they suffer from poor bioavailability, significant toxicity and limited effectiveness, mainly due to the development of drug resistance. Fortunately, there are several novel and potentially very effective new compounds which are under pre-clinical and clinical evaluation and may address these limitations. This review focuses on HCMV proteins that are directly or indirectly involved in viral DNA replication and represent already established or potential novel antiviral targets, and describes both currently available drugs and new compounds against such protein targets.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35121 Padua, Italy
| | | | | | | |
Collapse
|
14
|
Sire J, Quérat G, Esnault C, Priet S. Uracil within DNA: an actor of antiviral immunity. Retrovirology 2008; 5:45. [PMID: 18533995 PMCID: PMC2427051 DOI: 10.1186/1742-4690-5-45] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/05/2008] [Indexed: 12/18/2022] Open
Abstract
Uracil is a natural base of RNA but may appear in DNA through two different pathways including cytosine deamination or misincorporation of deoxyuridine 5'-triphosphate nucleotide (dUTP) during DNA replication and constitutes one of the most frequent DNA lesions. In cellular organisms, such lesions are faithfully cleared out through several universal DNA repair mechanisms, thus preventing genome injury. However, several recent studies have brought some pieces of evidence that introduction of uracil bases in viral genomic DNA intermediates during genome replication might be a way of innate immune defence against some viruses. As part of countermeasures, numerous viruses have developed powerful strategies to prevent emergence of uracilated viral genomes and/or to eliminate uracils already incorporated into DNA. This review will present the current knowledge about the cellular and viral countermeasures against uracils in DNA and the implications of these uracils as weapons against viruses.
Collapse
Affiliation(s)
- Joséphine Sire
- UMR IRD-190, Emergence des Pathologies Virales, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France.
| | | | | | | |
Collapse
|
15
|
Géoui T, Buisson M, Tarbouriech N, Burmeister WP. New insights on the role of the gamma-herpesvirus uracil-DNA glycosylase leucine loop revealed by the structure of the Epstein-Barr virus enzyme in complex with an inhibitor protein. J Mol Biol 2006; 366:117-31. [PMID: 17157317 DOI: 10.1016/j.jmb.2006.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/31/2006] [Accepted: 11/02/2006] [Indexed: 11/23/2022]
Abstract
Epstein-Barr virus (EBV) is a human gamma-herpesvirus. Within its 86 open reading frame containing genome, two enzymes avoiding uracil incorporation into DNA can be found: uracil triphosphate hydrolase and uracil-DNA glycosylase (UNG). The latter one excises uracil bases that are due to cytosine deamination or uracil misincorporation from double-stranded DNA substrates. The EBV enzyme belongs to family 1 UNGs. We solved the three-dimensional structure of EBV UNG in complex with the uracil-DNA glycosylase inhibitor protein (Ugi) from bacteriophage PBS-2 at a resolution of 2.3 A by X-ray crystallography. The structure of EBV UNG encoded by the BKRF3 reading frame shows the excellent global structural conservation within the solved examples of family 1 enzymes. Four out of the five catalytic motifs are completely conserved, whereas the fifth one, the leucine loop, carries a seven residue insertion. Despite this insertion, catalytic constants of EBV UNG are similar to those of other UNGs. Modelling of the EBV UNG-DNA complex shows that the longer leucine loop still contacts DNA and is likely to fulfil its role of DNA binding and deformation differently than the enzymes with previously solved structures. We could show that despite the evolutionary distance of EBV UNG from the natural host protein, bacteriophage Ugi binds with an inhibitory constant of 8 nM to UNG. This is due to an excellent specificity of Ugi for conserved elements of UNG, four of them corresponding to catalytic motifs and a fifth one corresponding to an important beta-turn structuring the catalytic site.
Collapse
Affiliation(s)
- Thibault Géoui
- Institut de Virologie Moléculaire et Structurale, FRE 2854 CNRS-UJF, BP 181, F-38042 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
16
|
Studebaker AW, Ariza ME, Williams MV. Depletion of uracil-DNA glycosylase activity is associated with decreased cell proliferation. Biochem Biophys Res Commun 2005; 334:509-15. [PMID: 16005850 DOI: 10.1016/j.bbrc.2005.06.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 06/23/2005] [Indexed: 11/18/2022]
Abstract
Uracil-DNA glycosylase (UNG) is the primary enzyme responsible for removing uracil residues from DNA. Increasing evidence suggests that UNG may be a potential target for the development of novel antiviral and/or anticancer agents. To determine whether the uracil-DNA glycosylase inhibitor protein (UGI) could be used to specifically target UNGs intracellularly, we developed a construct that expresses UGI as a fusion protein with the TAT-protein transduction domain and described a novel method for the purification of recombinant TAT-UGI. Treatment of several cell types with TAT-UGI resulted in a dose- and time-dependent decrease in UNG activity. A somewhat surprising effect of TAT-UGI treatment was the decrease in cell proliferation, but not in cell viability. The results of this study support the premise that UNG can be used as a potential therapeutic target and also demonstrate that protein transduction can be used to modulate UNG activity.
Collapse
Affiliation(s)
- A W Studebaker
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine and Public Health, Columbus, OH 43210, USA
| | | | | |
Collapse
|
17
|
Prichard MN, Lawlor H, Duke GM, Mo C, Wang Z, Dixon M, Kemble G, Kern ER. Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA. Virol J 2005; 2:55. [PMID: 16022730 PMCID: PMC1185570 DOI: 10.1186/1743-422x-2-55] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 07/15/2005] [Indexed: 11/10/2022] Open
Abstract
Background Human cytomegalovirus UL114 encodes a uracil-DNA glycosylase homolog that is highly conserved in all characterized herpesviruses that infect mammals. Previous studies demonstrated that the deletion of this nonessential gene delays significantly the onset of viral DNA synthesis and results in a prolonged replication cycle. The gene product, pUL114, also appears to be important in late phase DNA synthesis presumably by introducing single stranded breaks. Results A series of experiments was performed to formally assign the observed phenotype to pUL114 and to characterize the function of the protein in viral replication. A cell line expressing pUL114 complemented the observed phenotype of a UL114 deletion virus in trans, confirming that the observed defects were the result of a deficiency in this gene product. Stocks of recombinant viruses without elevated levels of uracil were produced in the complementing cells; however they retained the phenotype of poor growth in normal fibroblasts suggesting that poor replication was unrelated to uracil content of input genomes. Recombinant viruses expressing epitope tagged versions of this gene demonstrated that pUL114 was expressed at early times and that it localized to viral replication compartments. This protein also coprecipitated with the DNA polymerase processivity factor, ppUL44 suggesting that these proteins associate in infected cells. This apparent interaction did not appear to require other viral proteins since ppUL44 could recruit pUL114 to the nucleus in uninfected cells. An analysis of DNA replication kinetics revealed that the initial rate of DNA synthesis and the accumulation of progeny viral genomes were significantly reduced compared to the parent virus. Conclusion These data suggest that pUL114 associates with ppUL44 and that it functions as part of the viral DNA replication complex to increase the efficiency of both early and late phase viral DNA synthesis.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham AL, USA
| | - Heather Lawlor
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - Gregory M Duke
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - Chengjun Mo
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - Zhaoti Wang
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - Melissa Dixon
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - George Kemble
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - Earl R Kern
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham AL, USA
| |
Collapse
|
18
|
Sauerbrei A, Rubtcova E, Wutzler P, Schmid DS, Loparev VN. Genetic profile of an Oka varicella vaccine virus variant isolated from an infant with zoster. J Clin Microbiol 2005; 42:5604-8. [PMID: 15583288 PMCID: PMC535228 DOI: 10.1128/jcm.42.12.5604-5608.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella virus vaccine strain Oka (V-Oka) has in rare cases caused zoster in vaccinated people. Despite broad usage of V-Oka, little is known about varicella-zoster virus genomic sequence variation of strains in vaccine and isolates from patients with vaccine adverse events. Direct sequencing of 20 regions of V-Oka-GSK was compared to the sequences of the original V-Oka-Biken, GlaxoSmithKline Oka vaccine (V-Oka-GSK), and Oka-parental (P-Oka) strains. We analyzed single nucleotide polymorphisms (SNP) differentiating the Oka parental and Oka vaccine strains identified in open reading frames (ORFs) 6, 9A, 10, 21, 31, 39, 50, 51, 52, 54, 55, and 59 and eight base substitutions within ORF 62. Sixteen of these SNP impose an amino acid change in the corresponding gene product. The genotypic analysis revealed that (i) both V-Oka-GSK and V-Oka-Biken comprise mixtures of strains represented in variable proportion from lot to lot; (ii) V-Oka-GSK/zoster isolated from the zoster patient had six wild-type SNP in ORF 9A, 10, 21, 52, 55, and 62 (mutation 108838); (iii) none of the six revertant SNP would reliably discriminate Oka vaccine from the wild type; and (iv) the genomic variation found in V-Oka/zoster might be associated with changes in the biological behavior of the virus. Further studies will be needed to identify potential virulence factors in variant vaccine strains.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, Friedrich-Schiller University, Jena, Germany
| | | | | | | | | |
Collapse
|
19
|
Studebaker AW, Lafuse WP, Kloesel R, Williams MV. Modulation of human dUTPase using small interfering RNA. Biochem Biophys Res Commun 2005; 327:306-10. [PMID: 15629463 DOI: 10.1016/j.bbrc.2004.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Indexed: 11/28/2022]
Abstract
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is responsible for maintaining low intracellular levels of dUTP, thus preventing the incorporation of dUTP into DNA. A 21 bp double-stranded RNA molecule (siRNAdUT3) targeted against motif 3 of human dUTPase resulted in a time- and dose-dependent decrease in dUTPase activity in transfected cells. dUTPase activity was reduced approximately 95+/-5% in all cell lines tested 48 h after transfection with 2 microg siRNAdUT3 and it was maintained at this decreased level for at least 72 h. Down-regulation of dUTPase resulted in a significant increase in intracellular dUTP and a decreased proliferation of the transfected cells. Therefore, we conclude that dUTPase activity/expression can be down-regulated using siRNA specifically targeted to dUTPase mRNA and that this approach can be used to elucidate the role of dUTPase in DNA metabolism, as well as, to determine whether dUTPase is a valid target for drug development.
Collapse
Affiliation(s)
- A W Studebaker
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
20
|
Cohrs RJ, Hurley MP, Gilden DH. Array analysis of viral gene transcription during lytic infection of cells in tissue culture with Varicella-Zoster virus. J Virol 2003; 77:11718-32. [PMID: 14557657 PMCID: PMC229365 DOI: 10.1128/jvi.77.21.11718-11732.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Varicella-zoster virus (VZV), a neurotropic alphaherpesvirus, causes childhood chickenpox (varicella), becomes latent in dorsal root and autonomic ganglia, and reactivates decades later to cause shingles (zoster) and other neurologic complications. Although the sequence and configuration of VZV DNA have been determined, relatively little is known about viral gene expression in productively infected cells. This is in part because VZV is highly cell associated, and sufficient titers of cell-free virus for use in synchronizing infection do not develop. PCR-based transcriptional arrays were constructed to simultaneously determine the relative abundance of the approximately 70 predicted VZV open reading frames (ORFs). Fragments (250 to 600 bp) from the 5' and 3' end of each ORF were PCR amplified and inserted into plasmid vectors. The virus DNA inserts were amplified, quantitated, and spotted onto nylon membranes. Probing the arrays with radiolabeled cDNA synthesized from VZV-infected cells revealed an increase in the magnitude of the expressed VZV genes from days 1 to 3 after low-multiplicity virus infection but little change in their relative abundance. The most abundant VZV transcripts mapped to ORFs 9/9A, 64, 33/33A, and 49, of which only ORF 9 corresponded to a previously identified structural gene. Array analysis also mapped transcripts to three large intergenic regions previously thought to be transcriptionally silent, results subsequently confirmed by Northern blot and reverse transcription-PCR analysis. Array analysis provides a formidable tool to analyze transcription of an important ubiquitous human pathogen.
Collapse
Affiliation(s)
- Randall J Cohrs
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
21
|
Scaramozzino N, Sanz G, Crance JM, Saparbaev M, Drillien R, Laval J, Kavli B, Garin D. Characterisation of the substrate specificity of homogeneous vaccinia virus uracil-DNA glycosylase. Nucleic Acids Res 2003; 31:4950-7. [PMID: 12907738 PMCID: PMC169932 DOI: 10.1093/nar/gkg672] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The decision to stop smallpox vaccination and the loss of specific immunity in a large proportion of the population could jeopardise world health due to the possibility of a natural or provoked re-emergence of smallpox. Therefore, it is mandatory to improve the current capability to prevent or treat such infections. The DNA repair protein uracil-DNA glycosylase (UNG) is one of the viral enzymes important for poxvirus pathogenesis. Consequently, the inhibition of UNG could be a rational strategy for the treatment of infections with poxviruses. In order to develop inhibitor assays for UNG, as a first step, we have characterised the recombinant vaccinia virus UNG (vUNG) and compared it with the human nuclear form (hUNG2) and catalytic fragment (hUNG) UNG. In contrast to hUNG2, vUNG is strongly inhibited in the presence of 7.5 mM MgCl(2). We have shown that highly purified vUNG is not inhibited by a specific uracil-DNA glycosylase inhibitor. Interestingly, both viral and human enzymes preferentially excise uracil when it is opposite to cytosine. The present study provides the basis for the design of specific inhibitors for vUNG.
Collapse
Affiliation(s)
- Natale Scaramozzino
- Laboratoire de Virologie, Centre de Recherches du Service de Santé des Armées (CRSSA) Emile Pardé, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Herpesviruses and poxviruses are known to encode the DNA repair enzyme uracil-DNA glycosylase (UNG), an enzyme involved in the base excision repair pathway that specifically removes the RNA base uracil from DNA, while at least one retrovirus (human immunodeficiency virus type 1) packages cellular UNG into virus particles. In these instances, UNG is implicated as being important in virus replication. However, a clear understanding of the role(s) of UNG in virus replication remains elusive. Herpesviruses, poxviruses and some retroviruses encode dUTPase, an enzyme that can minimize the misincorporation of uracil into DNA. The encoding of dUTPase by these viruses also implies their importance in virus replication. An understanding at the molecular level of how these viruses replicate in non-dividing cells should provide clues to the biological relevance of UNG and dUTPase function in virus replication.
Collapse
Affiliation(s)
- Renxiang Chen
- Ohio State University Biochemistry Graduate Program, Ohio State University, USA2
- Department of Molecular Virology, Immunology, and Medical Genetics, Center for Retrovirus Research, and Comprehensive Cancer Center, Ohio State University Medical Center, 2078 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA1
| | - Huating Wang
- Molecular, Cellular, and Developmental Biology Graduate Program, Ohio State University, USA3
- Department of Molecular Virology, Immunology, and Medical Genetics, Center for Retrovirus Research, and Comprehensive Cancer Center, Ohio State University Medical Center, 2078 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA1
| | - Louis M Mansky
- Molecular, Cellular, and Developmental Biology Graduate Program, Ohio State University, USA3
- Ohio State University Biochemistry Graduate Program, Ohio State University, USA2
- Department of Molecular Virology, Immunology, and Medical Genetics, Center for Retrovirus Research, and Comprehensive Cancer Center, Ohio State University Medical Center, 2078 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA1
| |
Collapse
|
23
|
Sekino Y, Bruner SD, Verdine GL. Selective inhibition of herpes simplex virus type-1 uracil-DNA glycosylase by designed substrate analogs. J Biol Chem 2000; 275:36506-8. [PMID: 11084051 DOI: 10.1074/jbc.c000585200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosine deamination and the misincorporation of 2'-dUrd into DNA during replication result in the presence of uracil in DNA. Uracil-DNA glycosylases (UDGs) initiate the excision repair of this aberrant base by catalyzing the hydrolysis of the N-glycosidic bond. UDGs are expressed by nearly all known organisms, including some viruses, in which the functional role of the UDG protein remains unresolved. This issue could in principle be addressed by the availability of designed synthetic inhibitors that target the viral UDG without affecting the endogenous human UDG. Here, we report that double-stranded and single-stranded oligonucleotides incorporating either of two dUrd analogs tightly bind and inhibit the activity of herpes simplex virus type-1 (HSV-1) UDG. Both inhibitors are exquisitely specific for the HSV-1 UDG over the human UDG. These inhibitors should prove useful in structural studies aimed at understanding substrate recognition and catalysis by UDGs, as well as in elucidating the biologic role of UDGs in the life cycle of herpesviruses.
Collapse
Affiliation(s)
- Y Sekino
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
24
|
Radany EH, Dornfeld KJ, Sanderson RJ, Savage MK, Majumdar A, Seidman MM, Mosbaugh DW. Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat Res 2000; 461:41-58. [PMID: 10980411 DOI: 10.1016/s0921-8777(00)00040-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ugi protein inhibitor of uracil-DNA glycosylase encoded by bacteriophage PBS2 inactivates human uracil-DNA glycosylases (UDG) by forming a tight enzyme:inhibitor complex. To create human cells that are impaired for UDG activity, the human glioma U251 cell line was engineered to produce active Ugi protein. In vitro assays of crude cell extracts from several Ugi-expressing clonal lines showed UDG inactivation under standard assay conditions as compared to control cells, and four of these UDG defective cell lines were characterized for their ability to conduct in vivo uracil-DNA repair. Whereas transfected plasmid DNA containing either a U:G mispair or U:A base pairs was efficiently repaired in the control lines, uracil-DNA repair was not evident in the lines producing Ugi. Experiments using a shuttle vector to detect mutations in a target gene showed that Ugi-expressing cells exhibited a 3-fold higher overall spontaneous mutation frequency compared to control cells, due to increased C:G to T:A base pair substitutions. The growth rate and cell cycle distribution of Ugi-expressing cells did not differ appreciably from their parental cell counterpart. Further in vitro examination revealed that a thymine DNA glycosylase (TDG) previously shown to mediate Ugi-insensitive excision of uracil bases from DNA was not detected in the parental U251 cells. However, a Ugi-insensitive UDG activity of unknown origin that recognizes U:G mispairs and to a lesser extent U:A base pairs in duplex DNA, but which was inactive toward uracil residues in single-stranded DNA, was detected under assay conditions previously shown to be efficient for detecting TDG.
Collapse
Affiliation(s)
- E H Radany
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA 92868, USA.
| | | | | | | | | | | | | |
Collapse
|