1
|
Antonio-Véjar V, Ortiz-Sánchez E, Rosendo-Chalma P, Patiño-Morales CC, Guido-Jiménez MC, Alvarado-Ortiz E, Hernández G, García-Carrancá A. New insights into the interactions of HPV-16 E6*I and E6*II with p53 isoforms and induction of apoptosis in cancer-derived cell lines. Pathol Res Pract 2022; 234:153890. [PMID: 35487028 DOI: 10.1016/j.prp.2022.153890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
An important characteristic of cancers associated with high-risk human papillomaviruses (HR-HPV) is the inability of p53 to activate apoptosis due to the effect of the oncoprotein E6. However, the effect of HPV-16 E6 splice variant isoforms (namely E6*I and E6*II), their interaction with the existing p53 isoforms, and their influence on apoptosis is unclear. Here, we report the outcome of ectopic expression of HPV-16 E6, E6*I, and E6*II on the relative levels of p53 and p53 isoforms Δ40p53 and Δ133p53 and their interactions with these proteins. Additionally, we evaluated the effect of ectopic expression of p53, Δ40p53, and Δ133p53 on apoptosis in a p53 null pulmonary cell line (H1299) co-transfected with E6 isoforms and p53+/+ cell lines with HR-HPV (SiHa and HeLa), transfected with p53 isoforms and treated with cisplatin, a conventional drug used to treat cervical cancer. Our results show that E6 and E6*II induced a significant decrease in p53, but only E6 triggered a Δ40p53 decrease and that E6*II interacts with p53 but not with Δ40p53 and Δ133p53. On the other hand, E6*I did not show any effect or interaction with the p53 isoforms. We found that apoptosis was elevated in H1299 cells transfected with p53 (p = 0.0001) and Δ40p53 (p = 0.0001). A weak apoptotic effect was observed when Δ133p53 was ectopically expressed (p = 0.0195). We observed that both p53 (p = 0.0006) and Δ40p53 (p = 0.0014) induced apoptosis in cisplatin-treated SiHa cells; however in cisplatin-treated HeLa cells, only p53 induced apoptosis (p = 0.0029). No significant differences in apoptosis were observed upon ectopic expression of p53, Δ40p53, and Δ133p53 in SiHa and HeLa cells. Our findings suggest a possible therapeutic application for the combining of p53 or Δ40p53 with cisplatin to induce an increased apoptosis of cancer cells expressing E6 isoforms from HPV-16.
Collapse
Affiliation(s)
- Verónica Antonio-Véjar
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 10450, Mexico; Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, 39090, Guerrero, Mexico; Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Pedro Rosendo-Chalma
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 10450, Mexico; Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Carlos C Patiño-Morales
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Miriam C Guido-Jiménez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas. Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico; Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Greco Hernández
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| |
Collapse
|
2
|
Raudenská M, Balvan J, Masařík M. Cell death in head and neck cancer pathogenesis and treatment. Cell Death Dis 2021; 12:192. [PMID: 33602906 PMCID: PMC7893032 DOI: 10.1038/s41419-021-03474-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Many cancer therapies aim to trigger apoptosis in cancer cells. Nevertheless, the presence of oncogenic alterations in these cells and distorted composition of tumour microenvironment largely limit the clinical efficacy of this type of therapy. Luckily, scientific consensus describes about 10 different cell death subroutines with different regulatory pathways and cancer cells are probably not able to avoid all of cell death types at once. Therefore, a focused and individualised therapy is needed to address the specific advantages and disadvantages of individual tumours. Although much is known about apoptosis, therapeutic opportunities of other cell death pathways are often neglected. Molecular heterogeneity of head and neck squamous cell carcinomas (HNSCC) causing unpredictability of the clinical response represents a grave challenge for oncologists and seems to be a critical component of treatment response. The large proportion of this clinical heterogeneity probably lies in alterations of cell death pathways. How exactly cells die is very important because the predominant type of cell death can have multiple impacts on the therapeutic response as cell death itself acts as a second messenger. In this review, we discuss the different types of programmed cell death (PCD), their connection with HNSCC pathogenesis and possible therapeutic windows that result from specific sensitivity to some form of PCD in some clinically relevant subgroups of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic. .,Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
3
|
He X, He X, Xu P, Yang L, Ma X, Li W, Zhang H. Treatment with Radix Euphorbiae Ebracteolatae Significantly Decreases the Expression of E6 and L1, and Increases the Expression of p53 and Rb in HPV18-infected Human Foreskin Keratinocytes. Curr Mol Med 2020; 19:20-31. [PMID: 30813877 DOI: 10.2174/1566524019666190226102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radix Euphorbiae Ebracteolatae (REE) was recently reported to be significantly superior to vitamin A acid ointment in treating multiple plantar warts. However, the effects of REE on HPV18 remain unclear. Therefore, the current study aimed to investigate the effects of REE on the proliferation of HPV18, and explore possible molecular mechanisms underlying the effects. METHODS HFK and HFK-HPV18 were treated with water-extracted single or compound REE, ethanol-extracted single or compound REE, TNF-α and IFN for 3 days, respectively. In addition, the organotypic rafts containing HFK-HPV18 and HFK were treated with REE, IFN and TNF-α for 7 days, respectively. Cell proliferation rates were measured with Brdu. mRNA expression of E6, L1, p53 and Rb was detected by qPCR. Protein expression of p53, Rb and L1 was detected by Western blot. RESULTS Compared to HFK group, HFK-HPV18 group had significantly higher expression of E6 and L1. Compared to the control group, HFK-HPV18 treated with REE, TNF-α and IFN displayed significantly lower proliferation rates. The mRNA expression of E6 was markedly lower, and mRNA expression of p53 and Rb was significantly higher after treatment of REE in HFK-HPV18 or in organotypic rafts containing HFK-HPV18. Treatment with REE markedly increased the protein expression of p53 and Rb, and decreased the protein expression of L1 in HFK-HPV18 or in organotypic rafts containing HFK-HPV18. Among all formula of REE, the inhibition of proliferation rates and expression of E6 and L1, and the increase in expression of p53 and Rb in HFK-HPV18 was highest in ethanol-extracted compound REE group. CONCLUSIONS The proliferation rates are significantly lower in HFK-HPV18 treated with REE. The expression of E6 and L1 is markedly lower, and expression of p53 and Rb is significantly higher after REE treatment in HFK-HPV18 or organotypic rafts containing HFK-HPV18. Among all formula of REE, ethanol-extracted compound REE displays the highest protection against HPV18.
Collapse
Affiliation(s)
- Xiang He
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Xufeng He
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Ping Xu
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Lili Yang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Xin Ma
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Wen Li
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| | - Huimin Zhang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New Area District, Shanghai 201203, China
| |
Collapse
|
4
|
TNFR1 single nucleotide polymorphisms are not associated with cervical HPV-induced pre-malignant lesion but regulate in situ cervical TNFR1 expression. Oncotarget 2019; 10:953-965. [PMID: 30847024 PMCID: PMC6398171 DOI: 10.18632/oncotarget.26627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022] Open
Abstract
TNF-α is involved in HPV infection control by triggering cell signaling through binding in specific receptors TNFR1 and TNFR2. Genetic polymorphisms in these receptors may influence TNF-α signaling. Herein, we investigated TNFR1 rs767455 and rs2234649 single nucleotide polymorphisms, and TNFR1 protein expression in cervical squamous intraepithelial lesions (SIL) to identify their role in cervical pre-malignant development. SIL patients (n = 179) and healthy volunteers (n = 227) were enrolled for TNFR1 genotyping analysis by PCR-RFLP in blood samples and TNFR1 protein expression in cervical tissue by immunohistochemistry. No statistical differences regard genotypes and allelic frequencies for both polymorphisms were observed. Cervical TNFR1-expressing cells were rare in epithelium and basal layer regardless the groups. However, a progressive increase in infiltrating cells was observed in the stromal area, mainly in high SIL (HSIL) group compared to low SIL (LSIL, p < 0.001) and control (p < 0.001) groups. TNFR1-expressing cells frequency was higher in TNFR1 rs767455AG/GG (p < 0.001), and in rs2234649AA (p < 0.001) genotypes carries in HSIL subgroup. These data indicated that TNFR1-expression is abrogated in cervical epithelium, where HPV-induced pre-malignant lesion occurs, increasing its frequency in inflammatory cells in stroma, and is genetically controlled by TNFR1 rs767455AG/GG and rs234649AA genotypes. These biomarkers may be useful to identify cervical precancerous lesions progression.
Collapse
|
5
|
HPV-Mediated Resistance to TNF and TRAIL Is Characterized by Global Alterations in Apoptosis Regulatory Factors, Dysregulation of Death Receptors, and Induction of ROS/RNS. Int J Mol Sci 2019; 20:ijms20010198. [PMID: 30625987 PMCID: PMC6337392 DOI: 10.3390/ijms20010198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/23/2018] [Accepted: 12/29/2018] [Indexed: 02/07/2023] Open
Abstract
Persistent infection with high-risk human papilloma virus (HR-HPV) is the main risk factor for the development of invasive cervical cancer although is not sufficient to cause cervical cancer. Several host and environmental factors play a key role in cancer initiation/progression, including cytokines and other immune-response mediators. Here, we characterized the response to the individual and combined action of the pro-inflammatory cytokines tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL) on HPV-transformed cells and human keratinocytes ectopically expressing E6 and E7 early proteins from different HPV types. We showed that keratinocytes expressing HPV early proteins exhibited global alterations in the expression of proteins involved in apoptosis regulation/execution, including TNF and TRAIL receptors. Besides, we provided evidence that TNF receptor 1 (TNFR1) was down-regulated and may be retained in the cytoplasm of keratinocytes expressing HPV16 oncoproteins. Finally, fluorescence analysis demonstrated that cytokine treatment induced the production and release of reactive oxygen and nitrogen species (ROS/RNS) in cells expressing HPV oncogenes. Alterations in ROS/RNS production and apoptosis regulatory factors expression in response to inflammatory mediators may favor the accumulation of genetic alterations in HPV-infected cells. Altogether, our results suggested that these events may contribute to lesion progression and cancer onset.
Collapse
|
6
|
Das CR, Tiwari D, Dongre A, Khan MA, Husain SA, Sarma A, Bose S, Bose PD. Deregulated TNF-Alpha Levels Along with HPV Genotype 16 Infection Are Associated with Pathogenesis of Cervical Neoplasia in Northeast Indian Patients. Viral Immunol 2018; 31:282-291. [DOI: 10.1089/vim.2017.0151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Chandana Ray Das
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
- Department of Obstetrics & Gynecology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Diptika Tiwari
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Anita Dongre
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | | | - Anirudha Sarma
- Department of Biotechnology, Pandu College, Guwahati, Assam, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| |
Collapse
|
7
|
Virus Infection and Death Receptor-Mediated Apoptosis. Viruses 2017; 9:v9110316. [PMID: 29077026 PMCID: PMC5707523 DOI: 10.3390/v9110316] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.
Collapse
|
8
|
Santos C, Vilanova M, Medeiros R, Gil da Costa RM. HPV-transgenic mouse models: Tools for studying the cancer-associated immune response. Virus Res 2017; 235:49-57. [DOI: 10.1016/j.virusres.2017.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/01/2017] [Accepted: 04/01/2017] [Indexed: 12/29/2022]
|
9
|
Abstract
Human papillomaviruses (HPVs) infect the epidermis as well as mucous membranes of humans. They are the causative agents of anogenital tract and some oropharyngeal cancers. Infections begin in the basal epithelia, where the viral genome replicates slowly along with its host cell. As infected cells begin to differentiate and progress toward the periphery, the virus drives proliferation in cells that would otherwise be quiescent. To uncouple differentiation from continued cellular propagation, HPVs express two oncoproteins, HPV E6 and E7. This review focuses on high-risk α-HPV E6, which in addition to supporting viral replication has transforming properties. HPV E6 promotes p53 degradation and activates telomerase, but the multifaceted oncoprotein has numerous other functions that are highlighted here.
Collapse
Affiliation(s)
- Nicholas A Wallace
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109;
| | - Denise A Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109;
| |
Collapse
|
10
|
Re-expression of HPV16 E2 in SiHa (human cervical cancer) cells potentiates NF-κB activation induced by TNF-α concurrently increasing senescence and survival. Biosci Rep 2015; 35:BSR20140160. [PMID: 25572145 PMCID: PMC4340273 DOI: 10.1042/bsr20140160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Re-expression of E2 in human papillomavirus (HPV) transformed tumour cells can induce apoptosis; however, some evidences also attribute an important role to E2 in sustaining tumorigenesis. In the present paper, we studied the effects of tumour necrosis factor (TNF)-α-mediated NF-κB (nuclear factor kappa-light-chain-enhancer of activated B-cells) activation on E2-induced senescence in HPV16-integrated SiHa cells. The results show that E2 inhibits endogenous E6 gene expression and sensitizes SiHa cells to TNF-α-induced NF-κB activation. Under this condition there was an increase in the expression of senescent proteins p53, p21, p27 and p16 and senescence-associated (SA)-β-galactosidase activity indicating that TNF-α augments E2-mediated senescence. Re-expression of E2 expression with TNF-α treatment resulted in an increase in the expression of anti-apoptotic Bcl2 (B-cell lymphoma 2) protein and other pro-survival genes like cyclin D1 (cyc D1), survivin and hTERT (human telomerase reverse transcriptase). Concomitantly, E2 + TNF-α combination increased the survival of SiHa cells by positive changes in viability, proliferation and colony formation. E2-induced apoptotic tendency shifted towards senescence in presence of TNF-α by arresting the cells at both G0/G1 and G2/M phases, thus enhancing cell survival. Another observation in the present study is the significant up-regulation of key senescence messaging factors regulated by NF-κB namely interleukin (IL)-6, IL-8, high-mobility group protein A (HMGA)1 and B (HMGB)1 in E2-transfected cells treated with TNF-α. Our data provide a mechanistic basis and a new insight for the role of TNF-α and E2 in linking cellular senescence, tumorigenesis and HPV re-infection. Human papillomavirus (HPV)16 E2 potentiates NF-κB (nuclear factor kappa-light-chain-enhancer of activated B-cells) activation induced by tumour necrosis factor (TNF)-α in SiHa (human cervical cancer) cells and significantly influences cell viability, apoptosis and expression of pro-survival genes regulated by NF-κB.
Collapse
|
11
|
Read SA, Douglas MW. Virus induced inflammation and cancer development. Cancer Lett 2013; 345:174-81. [PMID: 23941825 DOI: 10.1016/j.canlet.2013.07.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/19/2013] [Accepted: 07/28/2013] [Indexed: 12/12/2022]
Abstract
Chronic inflammation as a result of viral infection significantly increases the likelihood of cancer development. A handful of diverse viruses have confirmed roles in cancer development and progression, but the list of suspected oncogenic viruses is continually growing. Viruses induce cancer directly and indirectly, by activating inflammatory signalling pathways and cytokines, stimulating growth of infected cells and inhibiting apoptosis. Although oncogenic viruses induce inflammation by various mechanisms, it is generally mediated by the MAPK, NFκB and STAT3 signalling pathways. This review will explore the unique mechanisms by which different oncogenic viruses induce inflammation to promote cancer initiation and progression.
Collapse
Affiliation(s)
- Scott A Read
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, Australia
| | - Mark W Douglas
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, Australia; Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity University of Sydney at Westmead Hospital, Sydney, Australia.
| |
Collapse
|
12
|
Pang CL, Thierry F. Human papillomavirus proteins as prospective therapeutic targets. Microb Pathog 2012; 58:55-65. [PMID: 23164805 DOI: 10.1016/j.micpath.2012.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Abstract
Human papillomaviruses (HPV) are the causative agents of a subset of cervical cancers that are associated with persistent viral infection. The HPV genome is an ∼8 kb circle of double-stranded DNA that encodes eight viral proteins, among which the products of the E6 and E7 open reading frames are recognized as being the primary HPV oncogenes. E6 and E7 are expressed in pre-malignant lesions as well as in cervical cancers; hence these proteins have been extensively studied as potential targets for HPV therapies and novel vaccines. Here we review the expression and functions of E6 and E7 in the viral vegetative cycle and in oncogenesis. We also explore the expression and functions of other HPV proteins, including those with oncogenic properties, and discuss the potential of these molecules as alternative therapeutic targets.
Collapse
Affiliation(s)
- Chai Ling Pang
- Singapore Immunology Network, 8A Biomedical Grove, #4-06 Immunos, A*STAR, Singapore 138648, Singapore
| | | |
Collapse
|
13
|
RXRα deletion and E6E7 oncogene expression are sufficient to induce cervical malignant lesions in vivo. Cancer Lett 2012; 317:226-36. [DOI: 10.1016/j.canlet.2011.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 01/01/2023]
|
14
|
Boccardo E, Lepique AP, Villa LL. The role of inflammation in HPV carcinogenesis. Carcinogenesis 2010; 31:1905-12. [PMID: 20819779 DOI: 10.1093/carcin/bgq176] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The role of inflammation in human papillomavirus (HPV) infection and disease is complex since it involves responses capable of preventing initial infections, clearing those ongoing as well as promoting persistence and progression of associated lesions. Avoiding the immune response has been considered a key aspect of HPV persistence which is the main factor leading to HPV-related neoplasia. HPVs have evolved different ways of targeting immune signaling pathways. Moreover, host inflammatory response may promote lesion progression and affect tumor fate by diverse mechanisms including the direct participation of inflammatory cells. In this review, we discuss the interplay between HPV oncogenic proteins and an array of inflammatory responses that ultimately may lead to cancer.
Collapse
Affiliation(s)
- Enrique Boccardo
- Virology Group, Ludwig Institute for Cancer Research, Rua João Julião 245, São Paulo, Brazil
| | | | | |
Collapse
|
15
|
NFX1 plays a role in human papillomavirus type 16 E6 activation of NFkappaB activity. J Virol 2010; 84:11461-9. [PMID: 20739528 DOI: 10.1128/jvi.00538-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
High-risk human papillomavirus (HR HPV) requires differentiating epithelial cells to continue to divide in order to replicate the viral DNA. To achieve this, HPV perturbs several regulatory pathways, including cellular apoptosis and senescence signals. HPV E6 has been identified as a regulator of the NFκB signaling pathway, a pathway important in many cellular processes, as well as regulation of virus-host cell interactions. We report here that NFX1-91, an endogenously expressed transcriptional regulator of human telomerase reverse transcriptase (hTERT) that is targeted by HPV type 16 (HPV16) E6/E6-associated protein (E6AP) for degradation, is also critical for regulation of the NFκB pathway by HPV16 E6. Microarray analysis revealed induction of NFκB-responsive genes and reduction of NFκB inhibitors with knockdown of NFX1-91. Knockdown of NFX1-91 induced downregulation of p105, an NFκB inhibitor in both primary human foreskin keratinocytes (HFKs) and HCT116 cells. Chromatin immunoprecipitation assays further confirmed that NFX1-91 bound to the p105 promoter and upregulated its expression. Similarly, in HPV16 E6-positive cells, reduction of p105 expression was observed, paralleling knockdown of NFX1-91 expression. Overall, our data suggest a mechanism for HPV16 E6 activation of the NFκB pathway through NFX1-91. Also, it provides evidence that NFX1-91 can function as a dual regulator, not only a transcriptional repressor, but also a transcriptional activator, when bound to DNA.
Collapse
|
16
|
|
17
|
Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology 2008; 384:324-34. [PMID: 19081593 DOI: 10.1016/j.virol.2008.11.017] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/03/2008] [Indexed: 02/07/2023]
Abstract
The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition.
Collapse
Affiliation(s)
- Heather L Howie
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | |
Collapse
|
18
|
Complexes of human papillomavirus type 16 E6 proteins form pseudo-death-inducing signaling complex structures during tumor necrosis factor-mediated apoptosis. J Virol 2008; 83:210-27. [PMID: 18842714 DOI: 10.1128/jvi.01365-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
High-risk strains of human papillomavirus (HPV) such as HPV type 16 (HPV16) and HPV18 are causative agents of most human cervical carcinomas. E6, one of the oncogenes encoded by HPV16, possesses a number of biological and transforming functions. We have previously shown that the binding of E6 to host apoptotic proteins such as tumor necrosis factor (TNF) R1, the adaptor protein FADD, and procaspase 8 results in a significant modification of the normal flow of apoptotic events. For example, E6 can bind to and accelerate the degradation of FADD. In addition, full-length E6 binds to the TNF R1 death domain and can also bind to and accelerate the degradation of procaspase 8. In contrast, the binding of small splice isoforms known as E6* results in the stabilization of procaspase 8. In this report, we propose a model for the ability of HPV16 E6 to both sensitize and protect cells from TNF as well as to protect cells from Fas. We demonstrate that both the level of E6 expression and the ratio between full-length E6 and E6* are important factors in the modification of the host extrinsic apoptotic pathways and show that at high levels of E6 expression, the further sensitization of U2OS, NOK, and Ca Ski cells to TNF-mediated apoptosis is most likely due to the formation of a pseudo-death-inducing signaling complex structure that includes complexes of E6 proteins.
Collapse
|
19
|
van Vliet E, Eskes C, Stingele S, Gartlon J, Price A, Farina M, Ponti J, Hartung T, Sabbioni E, Coecke S. Development of a mechanistically-based genetically engineered PC12 cell system to detect p53-mediated cytotoxicity. Toxicol In Vitro 2007; 21:698-705. [PMID: 17258428 DOI: 10.1016/j.tiv.2006.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/21/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
The human wild type p53 gene, key for apoptosis, was introduced into the pheochromocytoma (PC12) cell line, to create a mechanistically-based in vitro test model for the detection of p53-mediated toxicity. Expression of the wt p53 gene was regulated by a system, which allowed or blocked expression p53 by absence or presence of tetracycline in the culture media. Western blot analyses confirmed an inducible and tetracycline-dependent expression of the wt p53 protein. Functionality of the p53 protein was verified by camptothecin treatment, known to induce p53-dependent apoptosis. Results showed that p53-expressing cells were significantly more sensitive to camptothecin induced cytotoxicity compared to non-expressing cells, and presented a significantly higher incidence of apoptosis. A screening study on 31 metal compounds, showed that the classified human carcinogens (NaAsO2, CdSO4 .8H2O, Na2CrO4 .4H2O, MnCl2, (NH4)2PtCl6) significantly increased cytotoxicity in p53-expressing cells compared to non-expressing cells, suggesting that their cytotoxicity was p53-mediated. Finally, acute and subchronic treatment with methyl mercury showed no significant differences in cytotoxicity and the percentage of apoptosis or necrosis between p53-expressing and non-expressing differentiated cells, suggesting that methyl mercury cytotoxicity was p53-independent.
Collapse
Affiliation(s)
- Erwin van Vliet
- European Centre for the Validation of Alternative Methods (ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Via E. Fermi 1, 21020 Ispra (VA), Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Garnett TO, Duerksen-Hughes PJ. Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch Virol 2006; 151:2321-35. [PMID: 16862386 PMCID: PMC1751433 DOI: 10.1007/s00705-006-0821-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 06/12/2006] [Indexed: 01/31/2023]
Abstract
The regulation of host-mediated apoptosis by the E6 and E7 oncoproteins has garnered attention because it is believed to be an important strategy employed by high-risk (HR)-human papillomaviruses (HPVs) to evade immune surveillance. Additionally, the revelation that E5 can protect cells from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis suggests that it may also play a role in undermining host defense mechanisms. Cellular transformation is an unintended consequence of persistent infection by HR-HPVs, and it is therefore likely that the primary function of E5, E6 and E7 is to regulate cell survival throughout the normal viral life cycle in order to ensure viral replication and promote the spread of progeny. The purpose of this article is to review the literature on the regulation of host-mediated apoptosis by E5, E6 and E7 that describes the mechanisms employed by HR-HPVs to persist in the host and create the conditions necessary for cellular transformation.
Collapse
Affiliation(s)
- T O Garnett
- Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | |
Collapse
|
21
|
James MA, Lee JH, Klingelhutz AJ. Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J Virol 2006; 80:5301-7. [PMID: 16699010 PMCID: PMC1472131 DOI: 10.1128/jvi.01942-05] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 03/13/2006] [Indexed: 11/20/2022] Open
Abstract
Infection with human papillomavirus (HPV) is a critical factor in the pathogenesis of most cervical cancers and some aerodigestive cancers. The HPV E6 oncoprotein from high-risk HPV types contributes to the immortalization and transformation of cells by multiple mechanisms, including degradation of p53, transcriptional activation of human telomerase reverse transcriptase (hTERT), and degradation of several proteins containing PDZ domains. The ability of E6 to bind PDZ domain-containing proteins is independent of p53 degradation or hTERT activation but does correlate with oncogenic potential (R. A. Watson, M. Thomas, L. Banks, and S. Roberts, J. Cell Sci. 116:4925-4934, 2003) and is essential for induction of epithelial hyperplasia in vivo (M. L. Nguyen, M. M. Nguyen, D. Lee, A. E. Griep, and P. F. Lambert, J. Virol. 77:6957-6964, 2003). In this study, we found that HPV type 16 E6 was able to activate NF-kappaB in airway epithelial cells through the induction of nuclear binding activity of p52-containing NF-kappaB complexes in a PDZ binding motif-dependent manner. Transcript accumulation for the NF-kappaB-responsive antiapoptotic gene encoding cIAP-2 and binding of nuclear factors to the proximal NF-kappaB binding site of the cIAP-2 gene promoter are induced by E6 expression. Furthermore, E6 is able to protect cells from TNF-induced apoptosis. All of these E6-dependent phenotypes are dependent on the presence of the PDZ binding motif of E6. Our results imply a role for targeting of PDZ proteins by E6 in NF-kappaB activation and protection from apoptosis in airway epithelial cells.
Collapse
Affiliation(s)
- Michael A James
- Department of Microbiology, and Holden Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
22
|
Filippova M, Brown-Bryan TA, Casiano CA, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein can either protect or further sensitize cells to TNF: effect of dose. Cell Death Differ 2005; 12:1622-35. [PMID: 15933739 PMCID: PMC1615884 DOI: 10.1038/sj.cdd.4401678] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
High-risk strains of human papillomavirus, including HPV 16, cause human cervical carcinomas, due in part to the activity of their E6 oncogene. E6 interacts with a number of cellular proteins involved in host-initiated apoptotic responses. Paradoxically, literature reports show that E6 can both protect cells from and sensitize cells to tumor necrosis factor (TNF). To examine this apparent contradiction, E6 was transfected into U2OS cells and stable clones were treated with TNF. Intriguingly, clones with a high level of E6 expression displayed an increased sensitivity to TNF by undergoing apoptosis, while those with low expression were resistant. Furthermore, TNF treatment of cells in which the expression of E6 was regulated by the addition of doxycycline demonstrated clearly that while low levels of E6 protect cells from TNF, high levels sensitize cells. Together, these results demonstrate that virus-host interactions can be complex and that both quantitative and qualitative aspects are important in determining outcome.
Collapse
Affiliation(s)
| | | | | | - Penelope J. Duerksen-Hughes
- Corresponding author: Dr. Penelope J. Duerksen-Hughes, Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, 11085 Campus Street, 121 Mortensen Hall, Loma Linda University School of Medicine, Loma Linda, CA 92354, Phone: 909/558-4300 ext 81361, Fax: 909/558-0177, e-mail:
| |
Collapse
|
23
|
Abstract
Infection with human papillomaviruses is strongly associated with the development of multiple cancers including esophageal squamous cell carcinoma. The HPV E6 gene is essential for the oncogenic potential of HPV. The regulation of apoptosis by oncogene has been related to carcinogenesis closely; therefore, the modulation of E6 on cellular apoptosis has become a hot research topic recently. Inactivation of the pro-apoptotic tumor suppressor p53 by E6 is an important mechanism by which E6 promotes cell growth; it is expected that inactivation of p53 by E6 should lead to a reduction in cellular apoptosis, numerous studies showed that E6 could in fact sensitize cells to apoptosis. The molecular basis for apoptosis modulation by E6 is poorly understood. In this article, we will present an overview of observations and current understanding of molecular basis for E6-induced apoptosis.
Collapse
Affiliation(s)
- Ting-Ting Li
- Institute of Gastroenterology, 15 West Changle Road, Xijing Hospital Xi'an 710032, Shaanxi Province, China
| | | | | | | | | |
Collapse
|
24
|
Routes JM, Morris K, Ellison MC, Ryan S. Macrophages kill human papillomavirus type 16 E6-expressing tumor cells by tumor necrosis factor alpha- and nitric oxide-dependent mechanisms. J Virol 2005; 79:116-23. [PMID: 15596807 PMCID: PMC538740 DOI: 10.1128/jvi.79.1.116-123.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 08/20/2004] [Indexed: 12/25/2022] Open
Abstract
The expression of adenovirus serotype 2 or 5 (Ad2/5) E1A sensitizes cells to killing by NK cells and activated macrophages, a property that correlates with the ability of E1A to bind the transcriptional coadaptor proteins p300-CBP. The E6 oncoproteins derived from the high-risk human papillomaviruses (HPV) interact with p300 and can complement mutant forms of E1A that cannot interact with p300 to induce cellular immortalization. Therefore, we determined if HPV type 16 (HPV16) E6 could sensitize cells to killing by macrophages and NK cells. HPV16 E6 expression sensitized human (H4 and C33A) and murine (MCA-102) cell lines to lysis by macrophages but not by NK cells. The lysis of cells that expressed E6 by macrophages was p53 independent but dependent on the production of tumor necrosis factor alpha (TNF-alpha) or nitric oxide (NO) by macrophages. Unlike cytolysis assays with macrophages, E6 expression did not significantly sensitize cells to lysis by the direct addition of NO or TNF-alpha. Like E1A, E6 has been reported to sensitize cells to lysis by TNF-alpha by inhibiting the TNF-alpha-induced activation of NF-kappaB. We found that E1A, but not E6, blocked the TNF-alpha-induced activation of NF-kappaB, an activity that correlated with E1A-p300 binding. In summary, Ad5 E1A and HPV16 E6 sensitized cells to lysis by macrophages. Unlike E1A, E6 did not block the ability of TNF-alpha to activate NF-kappaB or sensitize cells to lysis by NK cells, TNF-alpha, or NO. Thus, there appears to be a spectrum of common and unique biological activities that result as a consequence of the interaction of E6 or E1A with p300-CBP.
Collapse
Affiliation(s)
- John M Routes
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | |
Collapse
|
25
|
Boccardo E, Noya F, Broker TR, Chow LT, Villa LL. HPV-18 confers resistance to TNF-alpha in organotypic cultures of human keratinocytes. Virology 2004; 328:233-43. [PMID: 15464843 DOI: 10.1016/j.virol.2004.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/14/2004] [Accepted: 07/22/2004] [Indexed: 11/30/2022]
Abstract
The proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) inhibits normal keratinocytes proliferation. However, many human papillomavirus (HPV)-immortalized or transformed cell lines are resistant to TNF-alpha antiproliferative effect. The present study analyzes the effects of TNF-alpha on organotypic cultures of primary human keratinocytes (PHKs) that express HPV-18 oncogenes. Raft cultures prepared with PHKs acutely transfected with HPV-18 whole genome or infected with recombinant retroviruses containing only E6/E7 or E7 were treated with 2 nM TNF-alpha. While BrdU incorporation into basal/parabasal cells of normal PHKs cultures was markedly inhibited by TNF-alpha cultures transfected with HPV-18 whole genome showed proliferation in all cell strata. Furthermore, BrdU incorporation into cultures expressing E6/E7 or E7 was not significantly reduced, indicating that E7 alone confers partial resistance to TNF-alpha. Besides, TNF-alpha treatment did not alter p16ink4a, p21cip1, p27kip1, or cyclin E levels, but did reduce cyclin A and PCNA levels in sensitive cells.
Collapse
Affiliation(s)
- Enrique Boccardo
- Ludwig Institute for Cancer Research, 1509-010 São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
26
|
Filippova M, Parkhurst L, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem 2004; 279:25729-44. [PMID: 15073179 DOI: 10.1074/jbc.m401172200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
High risk strains of human papillomavirus (HPV), such as HPV 16, cause human cervical carcinoma. The E6 protein of HPV 16 mediates the rapid degradation of the tumor suppressor p53, although this is not the only function of E6 and cannot completely explain its transforming potential. Previous work in our laboratory has demonstrated that E6 can protect cells from tumor necrosis factor-induced apoptosis by binding to the C-terminal end of tumor necrosis factor R1, thus blocking apoptotic signal transduction. In this study, E6 was shown to also protect cells from apoptosis induced via the Fas pathway. Furthermore, use of an inducible E6 expression system demonstrated that this protection is dose-dependent, with higher levels of E6 leading to greater protection. Although E6 suppresses activation of both caspase 3 and caspase 8, it does not affect apoptotic signaling through the mitochondrial pathway. Mammalian two-hybrid and in vitro pull-down assays were then used to demonstrate that E6 binds directly to the death effector domain of Fas-associated death domain (FADD), with deletion and site-directed mutants enabling the localization of the E6-binding site to the N-terminal end of the FADD death effector domain. E6 is produced in two forms as follows: a full-length version of approximately 16 kDa and a smaller version of about half that size corresponding to the N-terminal half of the full-length protein. Pull-down and functional assays demonstrated that the full-length version, but not the small version of E6, was able to bind to FADD and to protect cells from Fas-induced apoptosis. In addition, binding to E6 leads to degradation of FADD, with the loss of cellular FADD proportional to the amount of E6 expressed. These results support a model in which E6-mediated degradation of FADD prevents transmission of apoptotic signals via the Fas pathway.
Collapse
Affiliation(s)
- Maria Filippova
- Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, Loma Linda University School of Medicine, Loma Linda, California 92354, USA
| | | | | |
Collapse
|
27
|
Filippova M, Song H, Connolly JL, Dermody TS, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J Biol Chem 2002; 277:21730-9. [PMID: 11934887 DOI: 10.1074/jbc.m200113200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High risk strains of human papillomavirus (HPV), such as HPV 16, cause human cervical carcinoma. The E6 protein of HPV 16 mediates the rapid degradation of p53, although this is not the only function of E6 and cannot completely explain its transforming potential. Previous work in our laboratory has demonstrated that transfection of HPV 16 E6 into the tumor necrosis factor (TNF)-sensitive LM cell line protects expressing cells from TNF-induced apoptosis in a p53-independent manner, and the purpose of this study was to determine the molecular mechanism underlying this protection. Caspase 3 and caspase 8 activation were significantly reduced in E6-expressing cells, indicating that E6 acts early in the TNF apoptotic pathway. In fact, E6 binds directly to TNF R1, as shown both by co-immunoprecipitation and mammalian two-hybrid approaches. E6 requires the same C-terminal portion of TNF R1 for binding as does TNF R1-associated death domain, and TNF R1/TNF R1-associated death domain interactions are decreased in the presence of E6. HA-E6 also blocked cell death triggered by transfection of the death domain of TNF R1. Together, these results provide strong support for a model in which HPV E6 binding to TNF R1 interferes with formation of the death-inducing signaling complex and thus with transduction of proapoptotic signals. They also demonstrate that HPV, like several other viruses, has developed a method for evading the TNF-mediated host immune response.
Collapse
Affiliation(s)
- Maria Filippova
- Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, Loma Linda University School of Medicine, Loma Linda, California 92354, USA
| | | | | | | | | |
Collapse
|
28
|
Padilla LA, Leung BS, Carson LF. Evidence of an association between human papillomavirus and impaired chemotherapy-induced apoptosis in cervical cancer cells. Gynecol Oncol 2002; 85:59-66. [PMID: 11925121 DOI: 10.1006/gyno.2002.6604] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of this study was to determine cervical cancer cell sensitivity to chemotherapy-induced apoptosis based on human papillomavirus (HPV) status. METHODS CaSki (HPV-positive) and C33A (HPV-negative) cells were treated with camptothecin or cisplatin. Cellular viability was determined by trypan blue exclusion. Apoptotic indexes were determined by flow cytometric analysis of annexin V labeling and morphological changes. Mitochondrial release of cytochrome c was determined by immunofluorescence using confocal microscopy. Caspase 3 activation and bax expression were assessed by immunoblotting. RESULTS CaSki cells displayed chemoresistance to both camptothecin and cisplatin. Low response to apoptogenic stimuli was evidenced by a marginal increase in the apoptotic cell fraction after camptothecin treatment (22.9 +/- 2.56%) compared with control (17.8 +/- 1.95%). Cisplatin (14.8 +/- 1.01%) caused a slight decrease in apoptosis. Mitochondrial release of cytochrome c and cleavage of caspase 3 could not be demonstrated in CaSki cells after treatment. Despite p53 mutation, C33A cells were sensitive to the antiproliferative effects of camptothecin and cisplatin. Mean apoptotic events were 17.5 +/- 0.33 for control, 42 +/- 1.76 for cisplatin, and 38.1 +/- 0.75 for camptothecin. An intact cytochrome c pathway was demonstrated in C33A cells leading to cleavage of caspase 3 after camptothecin treatment. The constitutive bax expression demonstrated in both cell lines displayed no change after camptothecin treatment. CONCLUSION HPV-positive cervical cancer cells have an inherent resistance to chemotherapy-induced apoptosis. HPV-dependant inactivation of apoptotic regulators such as p53 and blockage of downstream events such as cytochrome c release and caspase 3 activation might be elemental to this cellular survival advantage provided by high-risk oncogenic papillomavirus.
Collapse
Affiliation(s)
- Luis A Padilla
- Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
29
|
Aguilar-Lemarroy A, Gariglio P, Whitaker NJ, Eichhorst ST, zur Hausen H, Krammer PH, Rösl F. Restoration of p53 expression sensitizes human papillomavirus type 16 immortalized human keratinocytes to CD95-mediated apoptosis. Oncogene 2002; 21:165-75. [PMID: 11803460 DOI: 10.1038/sj.onc.1204979] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2001] [Revised: 09/10/2001] [Accepted: 09/18/2001] [Indexed: 12/30/2022]
Abstract
To understand the function of the individual oncogenes of HPV16 in modulating the cellular response to apoptogenic signals, we used human keratinocytes immortalized with either E6, E7 or E6/E7 oncoproteins as model system. Applying CD95 antibodies or recombinant CD95 ligand, only the E7-immortalized cells underwent extensive apoptosis. In contrast, E6- and E6/E7-expressing keratinocytes were resistant. Dominance of E6 correlated with significant down-regulation of p53, c-Myc, p21 and Bcl-2. CD95 was found to be reduced in resistant HPV-positive cells, while there were no quantitative differences in expression levels of FADD, FLICE/caspase-8 or caspase-3. Notably, in contrast to primary human keratinocytes, all immortalized cells showed a general reduction of c-FLIP, an inhibitory protein which normally prevents unscheduled CD95-induced apoptosis. E6- and E6/E7-positive keratinocytes, however, can be sensitized to CD95 apoptosis by blocking proteasome-mediated proteolysis. CD95-resistant HPV-positive cells underwent apoptosis within 3-5 h upon co-incubation with MG132 and agonistic antibodies or CD95 ligand, which was preceded by a strong re-expression of p53 and c-Myc, but not of other half-life controlled proteins such as Bax or IkappaBalpha. Blockage of proteasomal activity alone did not result in apoptosis, although the same set of pro-apoptotic proteins was up-regulated. Performing similar experiments with cervical carcinoma cells expressing mutated p53 (C33a) or with p53-'null' lung carcinoma cells (H1299), no CD95 cell killing occurred even though c-Myc was strongly induced. These data indicate that the reduced bioavailability of p53 is a key-regulatory event in perturbation of CD95 signaling in HPV16 immortalized keratinocytes.
Collapse
Affiliation(s)
- Adriana Aguilar-Lemarroy
- Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Yang J, Duerksen-Hughes PJ. Activation of a p53-independent, sphingolipid-mediated cytolytic pathway in p53-negative mouse fibroblast cells treated with N-methyl-N-nitro-N-nitrosoguanidine. J Biol Chem 2001; 276:27129-35. [PMID: 11369765 DOI: 10.1074/jbc.m100729200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipids such as ceramide are important mediators of apoptosis and growth arrest triggered by ligands such as tumor necrosis factor and Fas-L binding to their receptors. When LM (expressing p53) and LME6 (lacking p53) cells were exposed to the genotoxin N-methyl-N-nitro-N-nitrosoguanidine (MNNG), both cell lines underwent cytolysis in a very similar manner, suggesting the presence of a p53-independent apoptotic response to this genotoxic stress. To determine whether sphingolipids such as ceramide might serve as mediators in this system, the responses of these cells to exogenous sphingolipids as well as their changes in endogenous sphingolipid levels after DNA damage were examined. Treatment with exogenous C2-ceramide and sphingosine led to cell death in both LM and LME6, and treatment of the LME6 cells with MNNG resulted in a transient increase in intracellular ceramide of approximately 50% over a period of 3 h. Finally, treatment with the de novo inhibitor of ceramide synthesis ISP-1 protected LME6 cells from MNNG-triggered cell death. This MNNG-triggered induction of ceramide was not observed in the p53-expressing LM cells, suggesting that it may be down-regulated by p53. Although ceramide-mediated cell death can proceed in the absence of p53, exogenously added C2-ceramide increased the cellular p53 level in LM cells, suggesting that the two pathways do interact.
Collapse
Affiliation(s)
- J Yang
- Center for Molecular Biology and Gene Therapy, Loma Linda University School of Medicine, Loma Linda, California 92354, USA
| | | |
Collapse
|