1
|
Niehl A, Peña EJ, Amari K, Heinlein M. Microtubules in viral replication and transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:290-308. [PMID: 23379770 DOI: 10.1111/tpj.12134] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 05/05/2023]
Abstract
Viruses use and subvert host cell mechanisms to support their replication and spread between cells, tissues and organisms. Microtubules and associated motor proteins play important roles in these processes in animal systems, and may also play a role in plants. Although transport processes in plants are mostly actin based, studies, in particular with Tobacco mosaic virus (TMV) and its movement protein (MP), indicate direct or indirect roles of microtubules in the cell-to-cell spread of infection. Detailed observations suggest that microtubules participate in the cortical anchorage of viral replication complexes, in guiding their trafficking along the endoplasmic reticulum (ER)/actin network, and also in developing the complexes into virus factories. Microtubules also play a role in the plant-to-plant transmission of Cauliflower mosaic virus (CaMV) by assisting in the development of specific virus-induced inclusions that facilitate viral uptake by aphids. The involvement of microtubules in the formation of virus factories and of other virus-induced inclusions suggests the existence of aggresomal pathways by which plant cells recruit membranes and proteins into localized macromolecular assemblies. Although studies related to the involvement of microtubules in the interaction of viruses with plants focus on specific virus models, a number of observations with other virus species suggest that microtubules may have a widespread role in viral pathogenesis.
Collapse
Affiliation(s)
- Annette Niehl
- Zürich-Basel Plant Science Center, Botany, Department of Environmental Sciences, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
2
|
Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. PROTOPLASMA 2011; 248:75-99. [PMID: 21125301 DOI: 10.1007/s00709-010-0246-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
Plant viruses use plasmodesmata (PD) to spread infection between cells and systemically. Dependent on viral species, movement through PD can occur in virion or non-virion form, and requires different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | |
Collapse
|
3
|
Genovés A, Navarro JA, Pallás V. A self-interacting carmovirus movement protein plays a role in binding of viral RNA during the cell-to-cell movement and shows an actin cytoskeleton dependent location in cell periphery. Virology 2009; 395:133-42. [PMID: 19796783 DOI: 10.1016/j.virol.2009.08.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/12/2009] [Accepted: 08/30/2009] [Indexed: 10/20/2022]
Abstract
The p7A of Melon necrotic spot virus has been described to be a RNA-binding movement protein essential for cell-to-cell movement but its role in this process is still unknown. Here, we found that primary and secondary structure elements on p7A appear to form a composite RNA-binding site required for both RNA interaction and cell-to-cell movement in plants indicating a direct correlation between these activities. Furthermore, we found that fluorescent-tagged p7A was distributed in punctuate structures at the cell periphery but also in motile cytoplasmic inclusion bodies which were in close association with the actin MFs and most likely generated by self-interacting p7A molecules as shown by BiFC assays. Consistently, the p7A subcellular distribution was revealed to be sensitive to the actin inhibitor, latrunculin B. The involvement of the RNA-binding capabilities and the subcellular location of the p7A in the intracellular and intercellular virus movement is discussed.
Collapse
Affiliation(s)
- Ainhoa Genovés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). UPV-CSIC, Avda. de los Naranjos s/n, Valencia, Spain.
| | | | | |
Collapse
|
4
|
Dieryck B, Otto G, Doucet D, Legrève A, Delfosse P, Bragard C. Seed, soil and vegetative transmission contribute to the spread of pecluviruses in Western Africa and the Indian sub-continent. Virus Res 2009; 141:184-9. [DOI: 10.1016/j.virusres.2008.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2008] [Indexed: 11/16/2022]
|
5
|
The complex subcellular distribution of satellite panicum mosaic virus capsid protein reflects its multifunctional role during infection. Virology 2008; 376:154-64. [PMID: 18440039 DOI: 10.1016/j.virol.2008.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/02/2008] [Accepted: 03/16/2008] [Indexed: 11/20/2022]
Abstract
Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus for replication and movement in host plants. The positive-sense single-stranded genomic RNA of SPMV encodes a 17-kDa capsid protein (CP) to form 16-nm virions. We determined that SPMV CP accumulates in both cytosolic and non-cytosolic fractions, but cytosolic accumulation of SPMV CP is exclusively associated with virions. An N-terminal arginine-rich motif (N-ARM) on SPMV CP is used to bind its cognate RNA and to form virus particles. Intriguingly, virion formation is dispensable for successful systemic SPMV RNA accumulation, yet this process still depends on an intact N-ARM. In addition, a C-terminal domain on the SPMV CP is necessary for self-interaction. Biochemical fractionation and fluorescent microscopy of green fluorescent protein-tagged SPMV CP demonstrated that the non-cytosolic SPMV CP is associated with the cell wall, the nucleus and other membranous organelles. To our knowledge, this is the first report that a satellite virus CP not only accumulates exclusively as virions in the cytosol but also is directed to the nucleolus and membranes. That SPMV CP is found both in the nucleus and the cell wall suggests its involvement in viral nuclear import and cell-to-cell transport.
Collapse
|
6
|
Abstract
Plant viruses spread from the initially infected cells to the rest of the plant in several distinct stages. First, the virus (in the form of virions or nucleic acid protein complexes) moves intracellularly from the sites of replication to plasmodesmata (PD, plant-specific intercellular membranous channels), the virus then transverses the PD to spread intercellularly (cell-to-cell movement). Long-distance movement of virus occurs through phloem sieve tubes. The processes of plant virus movement are controlled by specific viral movement proteins (MPs). No extensive sequence similarity has been found in MPs belonging to different plant virus taxonomic groups. Moreover, different MPs were shown to use different pathways and mechanisms for virus transport. Some viral transport systems require a single MP while others require additional virus-encoded proteins to transport viral genomes. In this review, we focus on the functions and properties of different classes of MPs encoded by RNA containing plant viruses.
Collapse
|
7
|
Samuels TD, Ju HJ, Ye CM, Motes CM, Blancaflor EB, Verchot-Lubicz J. Subcellular targeting and interactions among the Potato virus X TGB proteins. Virology 2007; 367:375-89. [PMID: 17610926 DOI: 10.1016/j.virol.2007.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 04/24/2007] [Accepted: 05/03/2007] [Indexed: 12/16/2022]
Abstract
Potato virus X (PVX) encodes three proteins named TGBp1, TGBp2, and TGBp3 which are required for virus cell-to-cell movement. To determine whether PVX TGB proteins interact during virus cell-cell movement, GFP was fused to each TGB coding sequence within the viral genome. Confocal microscopy was used to study subcellular accumulation of each protein in virus-infected plants and protoplasts. GFP:TGBp2 and TGBp3:GFP were both seen in the ER, ER-associated granular vesicles, and perinuclear X-bodies suggesting that these proteins interact in the same subdomains of the endomembrane network. When plasmids expressing CFP:TGBp2 and TGBp3:GFP were co-delivered to tobacco leaf epidermal cells, the fluorescent signals overlapped in ER-associated granular vesicles indicating that these proteins colocalize in this subcellular compartment. GFP:TGBp1 was seen in the nucleus, cytoplasm, rod-like inclusion bodies, and in punctate sites embedded in the cell wall. The puncta were reminiscent of previous reports showing viral proteins in plasmodesmata. Experiments using CFP:TGBp1 and YFP:TGBp2 or TGBp3:GFP showed CFP:TGBp1 remained in the cytoplasm surrounding the endomembrane network. There was no evidence that the granular vesicles contained TGBp1. Yeast two hybrid experiments showed TGBp1 self associates but failed to detect interactions between TGBp1 and TGBp2 or TGBp3. These experiments indicate that the PVX TGB proteins have complex subcellular accumulation patterns and likely cooperate across subcellular compartments to promote virus infection.
Collapse
Affiliation(s)
- Timmy D Samuels
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
8
|
Lucas WJ. Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes. Virology 2006; 344:169-84. [PMID: 16364748 DOI: 10.1016/j.virol.2005.09.026] [Citation(s) in RCA: 332] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/10/2005] [Indexed: 10/25/2022]
Abstract
Plants viruses spread throughout their hosts using a number of pathways, the most common being movement cell to cell through plasmodesmata (PD), unique intercellular organelles of the plant kingdom, and between organs by means of the vascular system. Pioneering studies on plant viruses revealed that PD allow the cell-to-cell trafficking of virally encoded proteins, termed the movement proteins (MPs). This non-cell-autonomous protein (NCAP) pathway is similarly employed by the host to traffic macromolecules. Viral MPs bind RNA/DNA in a sequence nonspecific manner to form nucleoprotein complexes (NPC). Host proteins are then involved in the delivery of MPs and NPC to the PD orifice, and a role for the cytoskeleton has been implicated. Trafficking of NCAPs through the PD structure involves three steps in which the MP: (a) interacts with a putative PD docking complex, (b) induces dilation in the PD microchannels, and (c) binds to an internal translocation system for delivery into the neighboring cytoplasm. Viral genera that use this NCAP pathway have evolved a combination of a MP and ancillary proteins that work in concert to enable the formation of a stable NPC that can compete with endogenous NCAPs for the PD trafficking machinery. Incompatible MP-host protein interactions may underlie observed tissue tropisms and restricted infection domains. These pivotal discoveries are discussed in terms of the need to develop a more comprehensive understanding of the (a) three-dimensional structure of MPs, (b) PD supramolecular complex, and (c) host proteins involved in this cell-to-cell trafficking process.
Collapse
Affiliation(s)
- William J Lucas
- Section of Plant Biology, College of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
9
|
Erhardt M, Vetter G, Gilmer D, Bouzoubaa S, Richards K, Jonard G, Guilley H. Subcellular localization of the Triple Gene Block movement proteins of Beet necrotic yellow vein virus by electron microscopy. Virology 2005; 340:155-66. [PMID: 16023167 DOI: 10.1016/j.virol.2005.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 06/01/2005] [Accepted: 06/07/2005] [Indexed: 11/16/2022]
Abstract
The Triple Gene Block proteins TGBp1, TGBp2, and TGBp3 of Beet necrotic yellow vein virus (BNYVV) are required for efficient cell-to-cell spread of the infection. The TGB proteins can drive cell-to-cell movement of BNYVV in trans when expressed from a co-inoculated BNYVV RNA 3-based 'replicon'. TGBp2 and TGBp3 expressed from the replicon were nonfunctional in this assay if they were fused to the green fluorescent protein (GFP), but addition of a hemagglutinin (HA) tag to their C-termini did not incapacitate movement. Immunogold labeling of ultrathin sections treated with HA-specific antibodies localized TGBp2-HA and TGBp3-HA to what are probably structurally modified plasmodesmata (Pd) in infected cells. A similar subcellular localization was observed for TGBp1. Large gold-decorated membrane-rich bodies containing what appear to be short fragments of endoplasmic reticulum were observed near the cell periphery. The modified gold-decorated Pd and the membrane-rich bodies were not observed when the TGB proteins were produced individually in infections using the Tobacco mosaic virus P30 protein to drive cell-to-cell movement, indicating that these modifications are specific for TGB-mediated movement.
Collapse
Affiliation(s)
- M Erhardt
- Institut de Biologie Moléculaire des Plantes du CNRS et de l'Université Louis Pasteur, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Verchot-Lubicz J. A new cell-to-cell transport model for Potexviruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:283-90. [PMID: 15828680 DOI: 10.1094/mpmi-18-0283] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the last five years, we have gained significant insight into the role of the Potexvirus proteins in virus movement and RNA silencing. Potexviruses require three movement proteins, named triple gene block (TGB)p1, TGBp2, and TGBp3, and the viral coat protein (CP) to facilitate viral cell-to-cell and vascular transport. TGBp1 is a multifunctional protein that has RNA helicase activity, promotes translation of viral RNAs, increases plasmodesmal size exclusion limits, and suppresses RNA silencing. TGBp2 and TGBp3 are membrane-binding proteins. CP is required for genome encapsidation and forms ribonucleoprotein complexes along with TGBp1 and viral RNA. This review considers the functions of the TGB proteins, how they interact with each other and CP, and how silencing suppression might be linked to viral transport. A new model of the mechanism for Potexvirus transport is proposed.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK 74078, USA.
| |
Collapse
|
11
|
Zamyatnin AA, Solovyev AG, Savenkov EI, Germundsson A, Sandgren M, Valkonen JPT, Morozov SY. Transient coexpression of individual genes encoded by the triple gene block of potato mop-top virus reveals requirements for TGBp1 trafficking. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:921-30. [PMID: 15305613 DOI: 10.1094/mpmi.2004.17.8.921] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
TGBp1, TGBp2, and TGBp3, three plant virus movement proteins encoded by the "triple gene block" (TGB), may act in concert to facilitate cell-to-cell transport of viral RNA genomes. Transient expression of Potato mop-top virus (genus Pomovirus) movement proteins was used as a model to reconstruct interactions between TGB proteins. In bombarded epidermal cells of Nicotiana benthamiana, green fluorescent protein (GFP)-TGBp1 was distributed uniformly. However, in the presence of TGBp2 and TGBp3, GFP-TGBp1 was directed to intermediate bodies at the cell periphery, and to cell wall-embedded punctate bodies. Moreover, GFP-TGBp1 migrated into cells immediately adjacent to the bombarded cell. These data suggest that TGBp2 and TGBp3 mediate transport of GFP-TGBp1 to and through plasmodesmata. Mutagenesis of TGBp1 suggested that the NTPase and helicase activities of TGBp1 were not required for its transport to intermediate bodies directed by TGBp2 and TGBp3, but these activities were essential for the protein association with cell wall-embedded punctate bodies and translocation of TGBpl to neighboring cells. The C-terminal region of TGBp1 was critical for trafficking mediated by TGBp2 and TGBp3. Mutation analysis also suggested an involvement of the TGBp2 C-terminal region in interactions with TGBp1.
Collapse
Affiliation(s)
- Andrey A Zamyatnin
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
12
|
Hemmer O, Dunoyer P, Richards K, Fritsch C. Mapping of viral RNA sequences required for assembly of peanut clump virus particles. J Gen Virol 2003; 84:2585-2594. [PMID: 12917480 DOI: 10.1099/vir.0.19247-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA sequences required for assembly into rod-shaped virions of RNA-1 and RNA-2 of Peanut clump virus (PCV) were mapped by testing the ability of different RNA-1 and -2 deletion mutants to be encapsidated in vivo in an RNase-resistant form. Encapsidation of RNA-1 was found to require a sequence domain in the 5'-proximal part of the P15 gene, the 3'-proximal gene of RNA-1. On the other hand, the subgenomic RNA which encodes P15 was not encapsidated, suggesting that other features of RNA-1 are important as well. Two sequences which could drive encapsidation of RNA-2 deletion mutants were located. One was in the 5'-proximal coat protein gene and the other in the P14 gene near the RNA 3' terminus. There were no obvious sequence homologies between the different assembly initiation sequences.
Collapse
Affiliation(s)
- Odile Hemmer
- Institut de Biologie Moléculaire des Plantes du CNRS et de l'Université Louis Pasteur, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS et de l'Université Louis Pasteur, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Kenneth Richards
- Institut de Biologie Moléculaire des Plantes du CNRS et de l'Université Louis Pasteur, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Christiane Fritsch
- Institut de Biologie Moléculaire des Plantes du CNRS et de l'Université Louis Pasteur, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
13
|
Morozov SY, Solovyev AG. Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 2003; 84:1351-1366. [PMID: 12771402 DOI: 10.1099/vir.0.18922-0] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many plant virus genera encode a 'triple gene block' (TGB), a specialized evolutionarily conserved gene module involved in the cell-to-cell and long-distance movement of viruses. The TGB-based transport system exploits the co-ordinated action of three polypeptides to deliver viral genomes to plasmodesmata and to accomplish virus entry into neighbouring cells. Although data obtained on both the TGB and well-studied single protein transport systems clearly demonstrate that plant viruses employ host cell pathways for intra- and intercellular trafficking of genomic nucleic acids and proteins, there is no integral picture of the details of molecular events during TGB-mediated virus movement. Undoubtedly, understanding the molecular basis of the concerted action of TGB-encoded proteins in transporting viral genomes from cell to cell should provide new insights into the general principles of movement protein function. This review describes the structure, phylogeny and expression of TGB proteins, their roles in virus cell-to-cell movement and potential influence on host antiviral defences.
Collapse
Affiliation(s)
- Sergey Yu Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| |
Collapse
|
14
|
Gorshkova EN, Erokhina TN, Stroganova TA, Yelina NE, Zamyatnin AA, Kalinina NO, Schiemann J, Solovyev AG, Morozov SY. Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata. J Gen Virol 2003; 84:985-994. [PMID: 12655101 DOI: 10.1099/vir.0.18885-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The subcellular localization of the hydrophobic TGBp3 protein of Poa semilatent virus (PSLV, genus Hordeivirus) was studied in transgenic plants using fluorescent microscopy to detect green fluorescent protein (GFP)-tagged protein and immunodetection with monoclonal antibodies (mAbs) raised against the GFP-based fusion expressed in E. coli. In Western blot analysis, mAbs efficiently recognized the wild-type and GFP-fused PSLV TGBp3 proteins expressed in transgenic Nicotiana benthamiana, but failed to detect TGBp3 in hordeivirus-infected plants. It was found that PSLV TGBp3 and GFP-TGBp3 had a tendency to form large protein complexes of an unknown nature. Fractionation studies revealed that TGBp3 represented an integral membrane protein and probably co-localized with an endoplasmic reticulum-derived domain. Microscopy of epidermal cells in transgenic plants demonstrated that GFP-TGBp3 localized to cell wall-associated punctate bodies, which often formed pairs of opposing discrete structures that co-localized with callose, indicating their association with the plasmodesmata-enriched cell wall fields. After mannitol-induced plasmolysis of the leaf epidermal cells in the transgenic plants, TGBp3 appeared within the cytoplasm and not at cell walls. Although TGBp3-induced bodies were normally static, most of them became motile after plasmolysis and displayed stochastic motion in the cytoplasm.
Collapse
Affiliation(s)
- E N Gorshkova
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - T N Erokhina
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - T A Stroganova
- Institute of Microbiology, Russian Academy of Sciences, 7 Prospect 60 Let Oktyabrya, Moscow 117811, Russia
| | - N E Yelina
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - A A Zamyatnin
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - N O Kalinina
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - J Schiemann
- Institute of Plant Virology, Microbiology and Biosafety, Federal Biological Research Centre for Agriculture and Forestry, Messeweg 11/12, D-38104 Braunschweig, Germany
| | - A G Solovyev
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - S Yu Morozov
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| |
Collapse
|
15
|
Cowan GH, Lioliopoulou F, Ziegler A, Torrance L. Subcellular localisation, protein interactions, and RNA binding of Potato mop-top virus triple gene block proteins. Virology 2002; 298:106-15. [PMID: 12093178 DOI: 10.1006/viro.2002.1435] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Subcellular localisation, protein interactions, and RNA binding of the triple gene block proteins (TGBp) of Potato mop-top virus (PMTV) were studied. The 13-kDa (TGBp2) and 21-kDa (TGBp3) proteins with or without green fluorescent protein fused to their N-terminus, and the 51-kDa protein (TGBp1) were expressed individually from a recombinant Tobacco mosaic virus (TMV) vector. Fluorescent images and Western immunoblotting experiments of recombinant TMV-infected Nicotiana benthamiana cells suggested that TGBp2 and TGBp3 were associated with cellular endomembranes and that TGBp3 was associated with the cell wall, possibly located close to plasmodesmata. In Western blots, TGBp1 was detected in fractions containing the cell wall and those enriched for organelles and membranous structures. Self-interactions were demonstrated with all three proteins in yeast two-hybrid experiments, and a heterologous interaction was found between TGBp2 and TGBp3. No additional heterologous interactions were discovered between the different TGBp and none were detected in an in vitro binding assay. TGBp1 and TGBp2 but not TGBp3 were shown to bind ssRNA in a sequence nonspecific manner. The results support the model where TGBp2 and TGBp3 facilitate delivery and localisation of the ribonucleoprotein complex to the plasmodesmata. However, the process is facilitated by RNA-protein rather than protein:protein interactions between the TGBp1 in complex with viral RNA and membrane-localised TGBp2.
Collapse
Affiliation(s)
- G H Cowan
- Scottish Crop Research Institute, Invergowrie, By Dundee, DD2 5DA, Scotland, United Kingdom
| | | | | | | |
Collapse
|
16
|
Zamyatnin AA, Solovyev AG, Sablina AA, Agranovsky AA, Katul L, Vetten HJ, Schiemann J, Hinkkanen AE, Lehto K, Morozov SY. Dual-colour imaging of membrane protein targeting directed by poa semilatent virus movement protein TGBp3 in plant and mammalian cells. J Gen Virol 2002; 83:651-662. [PMID: 11842260 DOI: 10.1099/0022-1317-83-3-651] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The movement function of poa semilatent hordeivirus (PSLV) is mediated by the triple gene block (TGB) proteins, of which two, TGBp2 and TGBp3, are membrane proteins. TGBp3 is localized to peripheral bodies in the vicinity of the plasma membrane and is able to re-direct TGBp2 from the endoplasmic reticulum (ER) to the peripheral bodies. For imaging of TGBp3-mediated protein targeting, PSLV TGBp3 tagged with a red fluorescent protein (DsRed) was used. Coexpression of DsRed-TGBp3 with GFP targeted to the ER lumen (ER-GFP) demonstrated that ER-GFP was contained in typical ER structures and peripheral bodies formed by TGBp3 protein, suggesting an ER origin for these bodies. In transient coexpression with viral membrane proteins tagged with GFP, DsRed-TGBp3 directed to the peripheral bodies the homologous TGBp2 protein and two unrelated membrane proteins, the 6 kDa movement protein of beet yellows closterovirus and the putative movement protein encoded by the genome component 4 of faba bean necrotic yellows nanovirus. However, coexpression of TGBp3 with GFP derivatives targeted to the ER membranes by artificial hydrophobic tail sequences suggested that targeting to the ER membranes per se was not sufficient for TGBp3-directed protein trafficking to peripheral bodies. TGBp3-induced targeting of TGBp2 also occurred in mammalian cells, indicating the universal nature of the protein trafficking signals and the cotargeting mechanism.
Collapse
Affiliation(s)
- A A Zamyatnin
- A. N. Belozersky Institute of Physico-Chemical Biology and Department of Virology, Moscow State University, Moscow 119899, Russia1
| | - A G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology and Department of Virology, Moscow State University, Moscow 119899, Russia1
| | - A A Sablina
- Institute of Carcinogenesis, Cancer Research Center, Moscow 115478, Russia2
| | - A A Agranovsky
- A. N. Belozersky Institute of Physico-Chemical Biology and Department of Virology, Moscow State University, Moscow 119899, Russia1
| | - L Katul
- Institute of Plant Virology, Microbiology and Biosafety, Federal Biological Research Centre for Agriculture and Forestry, Messeweg 11/12, D-38104 Braunschweig, Germany3
| | - H J Vetten
- Institute of Plant Virology, Microbiology and Biosafety, Federal Biological Research Centre for Agriculture and Forestry, Messeweg 11/12, D-38104 Braunschweig, Germany3
| | - J Schiemann
- Institute of Plant Virology, Microbiology and Biosafety, Federal Biological Research Centre for Agriculture and Forestry, Messeweg 11/12, D-38104 Braunschweig, Germany3
| | - A E Hinkkanen
- Department of Biochemistry and Pharmacy, Åbo Akademi University, 20521 Turku, Finland4
| | - K Lehto
- Department of Biology, University of Turku, 20500 Turku, Finland5
| | - S Yu Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology and Department of Virology, Moscow State University, Moscow 119899, Russia1
| |
Collapse
|
17
|
Kobayashi K, Cabral S, Calamante G, Maldonado S, Mentaberry A. Transgenic tobacco plants expressing the potato virus X open reading frame 3 gene develop specific resistance and necrotic ring symptoms after infection with the homologous virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:1274-85. [PMID: 11763125 DOI: 10.1094/mpmi.2001.14.11.1274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tobacco plants were transformed with the open reading frame 3 gene from Potato virus X (PVX) coding for the p12 protein. Although the transgenic plants exhibited a normal morphological aspect, microscopic examination revealed extensive alterations in leaf tissue structure. After being challenged with PVX, the transgenic plants showed resistance to PVX infection and formation of specific leaf symptoms consisting of concentric rings encircled by necrotic borders. These novel symptoms were accompanied by biochemical changes normally associated with the hypersensitive response (HR) and were absent in noninfected transgenic plants or in PVX-infected nontransgenic plants. No equivalent virus resistance was observed after inoculation with Tobacco mosaic virus or Potato virus Y, suggesting the presence of a specific resistance mechanism. Despite development of HR-like symptoms, systemic acquired resistance was not induced in PVX-infected p12 transgenic plants. No evidence of an RNA-mediated resistance mechanism was found.
Collapse
Affiliation(s)
- K Kobayashi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET, and Facultad de Ciencias Exactas y Naturales, UBA, Argentina
| | | | | | | | | |
Collapse
|
18
|
Lawrence DM, Jackson AO. Interactions of the TGB1 protein during cell-to-cell movement of Barley stripe mosaic virus. J Virol 2001; 75:8712-23. [PMID: 11507216 PMCID: PMC115116 DOI: 10.1128/jvi.75.18.8712-8723.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2001] [Accepted: 06/12/2001] [Indexed: 11/20/2022] Open
Abstract
We have recently used a green fluorescent protein (GFP) fusion to the gammab protein of Barley stripe mosaic virus (BSMV) to monitor cell-to-cell and systemic virus movement. The gammab protein is involved in expression of the triple gene block (TGB) proteins encoded by RNAbeta but is not essential for cell-to-cell movement. The GFP fusion appears not to compromise replication or movement substantially, and mutagenesis experiments demonstrated that the three most abundant TGB-encoded proteins, betab (TGB1), betac (TGB3), and betad (TGB2), are each required for cell-to-cell movement (D. M. Lawrence and A. O. Jackson, Mol. Plant Pathol. 2:65-75, 2001). We have now extended these analyses by engineering a fusion of GFP to TGB1 to examine the expression and interactions of this protein during infection. BSMV derivatives containing the TGB1 fusion were able to move from cell to cell and establish local lesions in Chenopodium amaranticolor and systemic infections of Nicotiana benthamiana and barley. In these hosts, the GFP-TGB1 fusion protein exhibited a temporal pattern of expression along the advancing edge of the infection front. Microscopic examination of the subcellular localization of the GFP-TGB1 protein indicated an association with the endoplasmic reticulum and with plasmodesmata. The subcellular localization of the TGB1 protein was altered in infections in which site-specific mutations were introduced into the six conserved regions of the helicase domain and in mutants unable to express the TGB2 and/or TGB3 proteins. These results are compatible with a model suggesting that movement requires associations of the TGB1 protein with cytoplasmic membranes that are facilitated by the TGB2 and TGB3 proteins.
Collapse
Affiliation(s)
- D M Lawrence
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
19
|
Fedorkin ON, Solovyev AG, Yelina NE, Zamyatnin AA, Zinovkin RA, Mäkinen K, Schiemann J, Yu Morozov S. Cell-to-cell movement of potato virus X involves distinct functions of the coat protein. J Gen Virol 2001; 82:449-458. [PMID: 11161285 DOI: 10.1099/0022-1317-82-2-449] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complementation of movement-deficient potato virus X (PVX) coat protein (CP) mutants, namely PVX.CP-Xho lacking the 18 C-terminal amino acid residues and PVX.DeltaCP lacking the entire CP gene, was studied by transient co-expression with heterologous proteins. These data demonstrated that the potyvirus CPs and both the major and minor CPs of beet yellows closterovirus could complement cell-to-cell movement of PVX.CP-Xho but not PVX.DeltaCP. These data also indicated that the C-terminally truncated PVX CP lacked a movement function which could be provided in trans by the CPs of other filamentous viruses, whereas another movement determinant specified by some region outside the most C-terminal part of the PVX CP could not be complemented either by potyvirus or closterovirus CPs. Surprisingly, the CP of spherical cocksfoot mottle sobemovirus rescued all of the PVX CP movement functions, complementing the spread of PVX.CP-Xho and, to a lesser extent, PVX.DeltaCP. Both these mutants were also rescued by the tobacco mosaic virus (TMV) movement protein (MP). To shed light on the movement function of PVX CP, attempts were made to complement PVX.CP-Xho by a series of TMV MP mutants. An internal deletion abolished complementation, suggesting that the internal region of TMV MP, which includes a number of overlapping functional domains important for cell-to-cell transport, provides an activity complementing movement determinant(s) specified by the C-terminal region of PVX CP.
Collapse
Affiliation(s)
- O N Fedorkin
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| | - A G Solovyev
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| | - N E Yelina
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| | - A A Zamyatnin
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| | - R A Zinovkin
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| | - K Mäkinen
- Institute of Biotechnology, Program for Plant Molecular Biology, Viikki Biocentre, University of Helsinki, PO Box 56 (Viikinkaari 9), FIN-00014, Helsinki, Finland2
| | - J Schiemann
- Institute for Plant Virology, Microbiology and Biosafety, Federal Biological Research Centre for Agriculture and Forestry, Messeweg 11/12, D-38104 Braunschweig, Germany3
| | - S Yu Morozov
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| |
Collapse
|
20
|
Dunoyer P, Herzog E, Hemmer O, Ritzenthaler C, Fritsch C. Peanut clump virus RNA-1-encoded P15 regulates viral RNA accumulation but is not abundant at viral RNA replication sites. J Virol 2001; 75:1941-8. [PMID: 11160693 PMCID: PMC115140 DOI: 10.1128/jvi.75.4.1941-1948.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2000] [Accepted: 11/27/2000] [Indexed: 11/20/2022] Open
Abstract
RNA-1 of peanut clump pecluvirus (PCV) encodes N-terminally overlapping proteins which contain helicase-like (P131) and polymerase-like (P191) domains and is able to replicate in the absence of RNA-2 in protoplasts of tobacco BY-2 cells. RNA-1 also encodes P15, which is expressed via a subgenomic RNA. To investigate the role of P15, we analyzed RNA accumulation in tobacco BY-2 protoplasts inoculated with RNA-1 containing mutations in P15. For all the mutants, the amount of progeny RNA-1 produced was significantly lower than that obtained for wild-type RNA-1. If RNA-2 was included in the inoculum, the accumulation of both progeny RNAs was diminished, but near-normal yields of both could be recovered if the inoculum was supplemented with a small, chimeric viral replicon expressing P15, demonstrating that P15 has an effect on viral RNA accumulation. To further analyze the role of P15, transcripts were produced expressing P15 fused to enhanced green fluorescent protein (EGFP). Following inoculation to protoplasts, epifluorescence microscopy revealed that P15 accumulated as spots around the nucleus and in the cytoplasm. Intracellular sites of viral RNA synthesis were visualized by laser scanning confocal microscopy of infected protoplasts labeled with 5-bromouridine 5'-triphosphate (BrUTP). BrUTP labeling also occurred in spots distributed within the cytoplasm and around the nucleus. However, the BrUTP-labeled RNA and EGFP/P15 very rarely colocalized, suggesting that P15 does not act primarily at sites of viral replication but intervenes indirectly to control viral accumulation levels.
Collapse
Affiliation(s)
- P Dunoyer
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
21
|
Lough TJ, Netzler NE, Emerson SJ, Sutherland P, Carr F, Beck DL, Lucas WJ, Forster RL. Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:962-74. [PMID: 10975653 DOI: 10.1094/mpmi.2000.13.9.962] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The triple gene block proteins (TGBp1-3) and coat protein (CP) of potexviruses are required for cell-to-cell movement. Separate models have been proposed for intercellular movement of two of these viruses, transport of intact virions, or a ribonucleoprotein complex (RNP) comprising genomic RNA, TGBp1, and the CP. At issue therefore, is the form(s) in which RNA transport occurs and the roles of TGBp1-3 and the CP in movement. Evidence is presented that, based on microprojectile bombardment studies, TGBp1 and the CP, but not TGBp2 or TGBp3, are co-translocated between cells with viral RNA. In addition, cell-to-cell movement and encapsidation functions of the CP were shown to be separable, and the rate-limiting factor of potexvirus movement was shown not to be virion accumulation, but rather, the presence of TGBp1-3 and the CP in the infected cell. These findings are consistent with a common mode of transport for potexviruses, involving a non-virion RNP, and show that TGBp1 is the movement protein, whereas TGBp2 and TGBp3 are either involved in intracellular transport or interact with the cellular machinery/docking sites at the plasmodesmata.
Collapse
Affiliation(s)
- T J Lough
- Horticulture and Food Research Institute of New Zealand, Plant Health and Development Group, Auckland.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Erhardt M, Morant M, Ritzenthaler C, Stussi-Garaud C, Guilley H, Richards K, Jonard G, Bouzoubaa S, Gilmer D. P42 movement protein of Beet necrotic yellow vein virus is targeted by the movement proteins P13 and P15 to punctate bodies associated with plasmodesmata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:520-528. [PMID: 10796018 DOI: 10.1094/mpmi.2000.13.5.520] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cell-to-cell movement of Beet necrotic yellow vein virus (BNYVV) is driven by a set of three movement proteins--P42, P13, and P15--organized into a triple gene block (TGB) on viral RNA 2. The first TGB protein, P42, has been fused to the green fluorescent protein (GFP) and fusion proteins between P42 and GFP were expressed from a BNYVV RNA 3-based replicon during virus infection. GFP-P42, in which the GFP was fused to the P42 N terminus, could drive viral cell-to-cell movement when the copy of the P42 gene on RNA 2 was disabled but the C-terminal fusion P42-GFP could not. Confocal microscopy of epidermal cells of Chenopodium quinoa near the leading edge of the infection revealed that GFP-P42 localized to punctate bodies apposed to the cell wall whereas free GFP, expressed from the replicon, was distributed uniformly throughout the cytoplasm. The punctate bodies sometimes appeared to traverse the cell wall or to form pairs of disconnected bodies on each side. The punctate bodies co-localized with callose, indicating that they are associated with plasmodesmata-rich regions such as pit fields. Point mutations in P42 that inhibited its ability to drive cell-to-cell movement also inhibited GFP-P42 punctate body formation. GFP-P42 punctate body formation was dependent on expression of P13 and P15 during the infection, indicating that these proteins act together or sequentially to localize P42 to the plasmodesmata.
Collapse
Affiliation(s)
- M Erhardt
- Institut de Biologie Moléculaire des Plantes du CNRS et de l'Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Solovyev AG, Stroganova TA, Zamyatnin AA, Fedorkin ON, Schiemann J, Morozov SY. Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 2000; 269:113-27. [PMID: 10725204 DOI: 10.1006/viro.2000.0200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied subcellular distribution of green fluorescent protein (GFP)-tagged movement proteins encoded by the second and the third genes of poa semilatent hordeivirus (PSLV) triple gene block (TGB), 15K TGBp2 and 18K TGBp3. GFP-15K transiently expressed in Nicotiana benthamiana leaf epidermal cells was associated with the endomembrane system elements. GFP-18K appeared in the membrane bodies at cell periphery. Mutation analysis demonstrated that subcellular targeting of GFP-15K depended on the protein transmembrane segment(s), whereas the TGBp3 central hydrophilic region was responsible for targeting of GFP-18K. Coexpression of GFP-15K with the intact 18K protein induced drastic changes in the TGBp2 localization: GFP-15K appeared in the cell peripheral bodies similar to those in the cells expressing GFP-18K alone. Coexpression experiments with mutant forms of both proteins argue against involvement of direct interaction between small TGB proteins in the TGBp3-assisted targeting of TGBp2 to the cell peripheral compartments. This conclusion was further confirmed by similar effects on the PSLV 15K TGBp2 localization induced by TGBp3 proteins of PSLV and potato virus X, which have no detectable sequence similarity to each other.
Collapse
Affiliation(s)
- A G Solovyev
- Department of Virology, Moscow State University, Moscow, 119899, Russia.
| | | | | | | | | | | |
Collapse
|