1
|
Connell BJ, Hermans LE, Wensing AMJ, Schellens I, Schipper PJ, van Ham PM, de Jong DTCM, Otto S, Mathe T, Moraba R, Borghans JAM, Papathanasopoulos MA, Kruize Z, Venter FWD, Kootstra NA, Tempelman H, Tesselaar K, Nijhuis M. Immune activation correlates with and predicts CXCR4 co-receptor tropism switch in HIV-1 infection. Sci Rep 2020; 10:15866. [PMID: 32985522 PMCID: PMC7522993 DOI: 10.1038/s41598-020-71699-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
HIV-1 cell entry is mediated by binding to the CD4-receptor and chemokine co-receptors CCR5 (R5) or CXCR4 (X4). R5-tropic viruses are predominantly detected during early infection. A switch to X4-tropism often occurs during the course of infection. X4-tropism switching is strongly associated with accelerated disease progression and jeopardizes CCR5-based HIV-1 cure strategies. It is unclear whether host immunological factors play a causative role in tropism switching. We investigated the relationship between immunological factors and X4-tropism in a cross-sectional study in HIV-1 subtype C (HIV-1C)-infected patients and in a longitudinal HIV-1 subtype B (HIV-1B) seroconverter cohort. Principal component analysis identified a cluster of immunological markers (%HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD8+ T-cells, %CD70+ CD4+ T-cells, %CD169+ monocytes, and absolute CD4+ T-cell count) in HIV-1C patients that was independently associated with X4-tropism (aOR 1.044, 95% CI 1.003–1.087, p = 0.0392). Analysis of individual cluster contributors revealed strong correlations of two markers of T-cell activation (%HLA-DR+ CD4+ T-cells, %HLA-DR+CD38+ CD4+ T-cells) with X4-tropism, both in HIV-1C patients (p = 0.01;p = 0.03) and HIV-1B patients (p = 0.0003;p = 0.0001). Follow-up data from HIV-1B patients subsequently revealed that T-cell activation precedes and independently predicts X4-tropism switching (aHR 1.186, 95% CI 1.065–1.321, p = 0.002), providing novel insights into HIV-1 pathogenesis and CCR5-based curative strategies.
Collapse
Affiliation(s)
- Bridgette J Connell
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Lucas E Hermans
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.,Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Annemarie M J Wensing
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.,Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Ingrid Schellens
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Pauline J Schipper
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Petra M van Ham
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Dorien T C M de Jong
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Sigrid Otto
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Tholakele Mathe
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Robert Moraba
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | | | - Maria A Papathanasopoulos
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zita Kruize
- Amsterdam University Medical Center, Amsterdam Infection and Immunity Institute, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Francois W D Venter
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neeltje A Kootstra
- Amsterdam University Medical Center, Amsterdam Infection and Immunity Institute, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Hugo Tempelman
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Kiki Tesselaar
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands. .,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa. .,HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Wiredja DD, Tabler CO, Schlatzer DM, Li M, Chance MR, Tilton JC. Global phosphoproteomics of CCR5-tropic HIV-1 signaling reveals reprogramming of cellular protein production pathways and identifies p70-S6K1 and MK2 as HIV-responsive kinases required for optimal infection of CD4+ T cells. Retrovirology 2018; 15:44. [PMID: 29970186 PMCID: PMC6029029 DOI: 10.1186/s12977-018-0423-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Viral reprogramming of host cells enhances replication and is initiated by viral interaction with the cell surface. Upon human immunodeficiency virus (HIV) binding to CD4+ T cells, a signal transduction cascade is initiated that reorganizes the actin cytoskeleton, activates transcription factors, and alters mRNA splicing pathways. METHODS We used a quantitative mass spectrometry-based phosphoproteomic approach to investigate signal transduction cascades initiated by CCR5-tropic HIV, which accounts for virtually all transmitted viruses and the vast majority of viruses worldwide. RESULTS CCR5-HIV signaling induced significant reprogramming of the actin cytoskeleton and mRNA splicing pathways, as previously described. In addition, CCR5-HIV signaling induced profound changes to the mRNA transcription, processing, translation, and post-translational modifications pathways, indicating that virtually every stage of protein production is affected. Furthermore, we identified two kinases regulated by CCR5-HIV signaling-p70-S6K1 (RPS6KB1) and MK2 (MAPKAPK2)-that were also required for optimal HIV infection of CD4+ T cells. These kinases regulate protein translation and cytoskeletal architecture, respectively, reinforcing the importance of these pathways in viral replication. Additionally, we found that blockade of CCR5 signaling by maraviroc had relatively modest effects on CCR5-HIV signaling, in agreement with reports that signaling by CCR5 is dispensable for HIV infection but in contrast to the critical effects of CXCR4 on cortical actin reorganization. CONCLUSIONS These results demonstrate that CCR5-tropic HIV induces significant reprogramming of host CD4+ T cell protein production pathways and identifies two novel kinases induced upon viral binding to the cell surface that are critical for HIV replication in host cells.
Collapse
Affiliation(s)
- Danica D Wiredja
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Caroline O Tabler
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daniela M Schlatzer
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ming Li
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark R Chance
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - John C Tilton
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Sojane K, Kangethe RT, Chang CC, Moosa MYS, Lewin SR, French MA, Ndung'u T. Individuals with HIV-1 Subtype C Infection and Cryptococcal Meningitis Exhibit Viral Genetic Intermixing of HIV-1 Between Plasma and Cerebrospinal Fluid and a High Prevalence of CXCR4-Using Variants. AIDS Res Hum Retroviruses 2018; 34:607-620. [PMID: 29658309 PMCID: PMC6314437 DOI: 10.1089/aid.2017.0209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genotypic properties of human immunodeficiency virus type 1 (HIV-1) subtype C in individuals presenting with cryptococcal meningitis (CM) are not well established. Employing single-genome amplification as well as bulk PCR, cloning and sequencing strategies, we evaluated the genetic properties of HIV-1 subtype C env in 16 antiretroviral therapy-naive study participants with CM. Eleven of the 16 participants had matched blood plasma and cerebrospinal fluid (CSF) evaluated, with the rest having either a plasma or CSF sample evaluated. Before antiretroviral therapy initiation, matched plasma and CSF-derived env sequences of all 11 participants displayed genetic intermixing between the two compartments. Overall, 7 of the 16 (∼43.8%) participants harbored CXCR4-using variants in plasma and/or CSF, according to coreceptor usage prediction algorithms. This study suggests that HIV-1 subtype C genetic intermixing between peripheral blood and the central nervous system is common in individuals presenting with CM, and that CXCR4 usage is present in one or both compartments in approximately 44% of individuals.
Collapse
Affiliation(s)
- Katlego Sojane
- 1 HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal , Durban, South Africa
| | - Richard T Kangethe
- 1 HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal , Durban, South Africa
| | - Christina C Chang
- 2 Department of Infectious Diseases, Alfred Hospital and Monash University , Melbourne, Australia
| | - Mahomed-Yunus S Moosa
- 3 Department of Infectious Diseases, King Edward VIII Hospital, University of KwaZulu-Natal , Durban, South Africa
| | - Sharon R Lewin
- 2 Department of Infectious Diseases, Alfred Hospital and Monash University , Melbourne, Australia
- 4 The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital , Melbourne, Australia
| | - Martyn A French
- 5 Medical School and School of Biomedical Sciences, University of Western Australia , Perth, Australia
- 6 Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine , Perth, Australia
| | - Thumbi Ndung'u
- 1 HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal , Durban, South Africa
- 7 Africa Health Research Institute , Durban, South Africa
- 8 Ragon Institute of MGH, MIT and Harvard University , Cambridge, Massachusetts
- 9 Max Planck Institute for Infection Biology , Berlin, Germany
| |
Collapse
|
4
|
Matume ND, Tebit DM, Gray LR, Hammarskjold ML, Rekosh D, Bessong PO. Next generation sequencing reveals a high frequency of CXCR4 utilizing viruses in HIV-1 chronically infected drug experienced individuals in South Africa. J Clin Virol 2018; 103:81-87. [PMID: 29661652 DOI: 10.1016/j.jcv.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Entry inhibitors, such as Maraviroc, bind to CCR5 inhibiting entry of CCR5 utilizing viruses (R5 viruses). In the course of HIV infection, CXCR4 utilizing viruses (X4 viruses) may emerge and outgrow R5 viruses, and potentially limit the effectiveness of Maraviroc. The use of Maraviroc is reserved for salvage therapy in South Africa. OBJECTIVE In this study, we examined the frequency of R5 and X4 viruses, using next generation sequencing, in patients under treatment to draw inferences on the utility of Maraviroc in a South African population. STUDY DESIGN Proviral DNA was isolated from peripheral blood mononuclear cells (PBMC) of 72 chronically HIV infected patients on antiretroviral treatment. HIV V3 loop gene was amplified and sequenced on an Illumina MiniSeq platform. Viral subtypes were determined by the jumping profile Hidden Markov Model (jpHMM) and REGA genotyping tools. De Novo consensus sequences were derived for the majority and minority populations for each patient using Geneious® software version 8.1.5. HIV-1 tropism was inferred using PSSMsinsi, Geno2pheno and Phenoseq-C web-based tools. RESULTS Quality V3 loop sequences were obtained from 72 patients, with 5 years (range: 0-16) median duration on treatment. Subtypes A1, B and C viruses were identified at frequencies of 4% (3/72), 4% (3/72) and 92% (66/72) respectively. Fifty four percent (39/72) of patients exclusively harboured R5 viral quasispecies; and 21% (15/72) exclusively harbored X4 viral quasispecies. Twenty five percent of patients (18/72) harbored dual/mixture of R5X4 quasispecies. Of these 18 patients, about 28% (5/18) harbored the R5+X4, a mixture with a majority R5 and minority X4 viruses, while about 72% (13/18) harbored the R5X4+ mixture with a majority X4 and minority R5 viruses. The proportion of all patients who harbored X4 viruses either exclusively or dual/mixture was 46% (33/72). Thirty-five percent (23/66) of the patients who were of HIV-1 subtype C harboured X4 viruses (χ2 = 3.58; p = .058), and 57% of these (13/23) harbored X4 viruses exclusively. CD4+ cell count less than 350 cell/μl was associated with the presence of X4 viruses (χ2 = 4.99; p = .008). CONCLUSION The effectiveness of Maraviroc as a component in salvage therapy may be compromised for a significant number of chronically infected patients harboring CXCR4 utilizing viruses.
Collapse
Affiliation(s)
- Nontokozo D Matume
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa.
| | - Denis M Tebit
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - Laurie R Gray
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - Pascal O Bessong
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa.
| |
Collapse
|
5
|
Dauwe K, Mortier V, Schauvliege M, Van Den Heuvel A, Fransen K, Servais JY, Bercoff DP, Seguin-Devaux C, Verhofstede C. Characteristics and spread to the native population of HIV-1 non-B subtypes in two European countries with high migration rate. BMC Infect Dis 2015; 15:524. [PMID: 26572861 PMCID: PMC4647655 DOI: 10.1186/s12879-015-1217-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Background Non-B subtypes account for at least 50 % of HIV-1 infections diagnosed in Belgium and Luxembourg. They are considered to be acquired through heterosexual contacts and infect primarily individuals of foreign origin. Information on the extent to which non-B subtypes spread to the local population is incomplete. Methods Pol and env gene sequences were collected from 410 non-subtype B infections. Profound subtyping was performed using 5 subtyping tools and sequences of both pol and env. Demographic information, disease markers (viral load, CD4 count) and viral characteristics (co-receptor tropism) were compared between subtypes. Maximum likelihood phylogenetic trees were constructed and examined for clustering. Results The majority of non-B infections were diagnosed in patients originating from Africa (55.8 %), individuals born in Western Europe represented 30.5 %. Heterosexual transmission was the most frequently reported transmission route (79.9 %), MSM transmission accounted for 12.2 % and was significantly more frequently reported for Western Europeans (25.7 % versus 4.3 % for individuals originating from other regions; p < 0.001). Subtypes A and C and the circulating recombinant forms CRF01_AE and CRF02_AG were the most represented and were included in the comparative analysis. Native Western Europeans were underrepresented for subtype A (14.5 %) and overrepresented for CRF01_AE (38.6 %). The frequency of MSM transmission was the highest for CRF01_AE (18.2 %) and the lowest for subtype A (0 %). No differences in age, gender, viral load or CD4 count were observed. Prevalence of CXCR4-use differed between subtypes but largely depended on the tropism prediction algorithm applied. Indications for novel intersubtype recombinants were found in 20 patients (6.3 %). Phylogenetic analysis revealed only few and small clusters of local transmission but could document one cluster of CRF02_AG transmission among Belgian MSM. Conclusions The extent to which non-B subtypes spread in the native Belgian-Luxembourg population is higher than expected, with 30.5 % of the non-B infections diagnosed in native Western Europeans. These infections resulted from hetero- as well as homosexual transmission. Introduction of non-B variants in the local high at risk population of MSM may lead to new sub-epidemics and/or increased genetic variability and is an evolution that needs to be closely monitored.
Collapse
Affiliation(s)
- Kenny Dauwe
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185-Blok A, B-9000, Ghent, Belgium.
| | - Virginie Mortier
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185-Blok A, B-9000, Ghent, Belgium.
| | - Marlies Schauvliege
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185-Blok A, B-9000, Ghent, Belgium.
| | - Annelies Van Den Heuvel
- Aids Reference laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium.
| | - Katrien Fransen
- Aids Reference laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium.
| | - Jean-Yves Servais
- Laboratory of Retrovirology, Department of Infection and Immunity, Luxembourg Institute of Health, Val Fleuri 84, L-1526, Luxembourg, Luxembourg.
| | - Danielle Perez Bercoff
- Laboratory of Retrovirology, Department of Infection and Immunity, Luxembourg Institute of Health, Val Fleuri 84, L-1526, Luxembourg, Luxembourg.
| | - Carole Seguin-Devaux
- Laboratory of Retrovirology, Department of Infection and Immunity, Luxembourg Institute of Health, Val Fleuri 84, L-1526, Luxembourg, Luxembourg.
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185-Blok A, B-9000, Ghent, Belgium.
| |
Collapse
|
6
|
Abstract
ABSTRACT HIV resistance against currently approved entry inhibitors, the chemokine receptor-5 (CCR5) antagonist maraviroc and the fusion inhibitor enfuvirtide (T-20), manifests in a complex manner that is distinct from the resistance patterns against other classes of antiretroviral drugs. Several attachment and fusion inhibitors are currently under various stages of development. Whereas CCR5 co-receptor antagonists have been widely studied until now, because patients who lack CCR5 are healthy and protected to some extent from HIV-infection, CXCR4-antagonist development has been slower, due to limited antiviral activity and potential toxicity given that CXCR4 may have essential cellular functions. Novel fusion inhibitor development is focusing on orally available small-molecule inhibitors that might replace T-20, which needs to be administered by subcutaneous injection.
Collapse
Affiliation(s)
- Victor G Kramer
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Seager I, Travers SA, Leeson MD, Crampin AC, French N, Glynn JR, McCormack GP. Coreceptor usage, diversity, and divergence in drug-naive and drug-exposed individuals from Malawi, infected with HIV-1 subtype C for more than 20 years. AIDS Res Hum Retroviruses 2014; 30:975-83. [PMID: 24925099 DOI: 10.1089/aid.2013.0240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There are few cohorts of individuals who have survived infection with HIV-1 for more than 20 years, reported and followed in the literature, and even fewer from Africa. Here we present data on a cohort of subtype C-infected individuals from rural northern Malawi. By sequencing multiple clones from long-term survivors at different time points, and using multiple genotyping approaches, we show that 5 of the 11 individuals are predicted as CXCR4 using (by ≥3/5 predictors) but only one individual is predicted as CXCR4 using by all five algorithms. Using any one genotyping approach overestimates the number of predicted CXCR4 sequences. Patterns of diversity and divergence were variable between the HIV-1 long-term survivors with some individuals showing very small amounts of variation and change, and others showing a greater amount; both patterns are consistent with what has been described in the literature.
Collapse
Affiliation(s)
- Ishla Seager
- Molecular Evolution and Systematics Laboratory, Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Simon A. Travers
- Molecular Evolution and Systematics Laboratory, Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- South African National Bioinformatics Institute, SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Bellville, South Africa
| | - Michael D. Leeson
- Molecular Evolution and Systematics Laboratory, Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Amelia C. Crampin
- Karonga Prevention Study, Chilumba, Malawi
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Neil French
- Karonga Prevention Study, Chilumba, Malawi
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Judith R. Glynn
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grace P. McCormack
- Molecular Evolution and Systematics Laboratory, Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
8
|
Ketseoglou I, Lukhwareni A, Steegen K, Carmona S, Stevens WS, Papathanasopoulos MA. Viral tropism and antiretroviral drug resistance in HIV-1 subtype C-infected patients failing highly active antiretroviral therapy in Johannesburg, South Africa. AIDS Res Hum Retroviruses 2014; 30:289-93. [PMID: 24224886 DOI: 10.1089/aid.2013.0267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reports show that up to 30% of antiretroviral drug-naive patients in Johannesburg have CXCR4-utilizing HIV-1 subtype C. We assessed whether HIV-1 subtype C-infected individuals failing highly active antiretroviral therapy (HAART) have a higher proportion of CXCR4-utilizing viruses compared to antiretroviral drug-naive patients. The V3 loop was sequenced from plasma from 100 randomly selected HAART-failing patients, and tropism was established using predictive algorithms. All patients harbored HIV-1 subtype C with at least one antiretroviral drug resistance mutation. Viral tropism prediction in individuals failing HAART revealed similar proportions (29%) of X4-utilizing viruses compared to antiretroviral drug-naive patients (30%). Findings are in contrast to reports from Durban in which 60% of HAART-failing subjects harbored X4/dual/mixed-tropic viruses. Despite differences in proportions of X4-tropism within South Africa, the high proportion of thymidine analogue mutations (TAMs) and CXCR4-utilizing HIV-1 highlights the need for intensified monitoring of HAART patients and the predicament of diminishing drug options, including CCR5 antagonists, for patients failing therapy.
Collapse
Affiliation(s)
- Irene Ketseoglou
- 1 Faculty of Health Sciences, University of the Witwatersrand Medical School , Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
9
|
Lavigne S, Santos C, Arif MS, Reis A, Samer S, dos Santos CV, Diaz RS. Short communication: HIV type 1 tropism determination in a novel dried blood spot membrane and the use of a mixture of outer nested polymerase chain reaction primers. AIDS Res Hum Retroviruses 2014; 30:147-50. [PMID: 24111560 DOI: 10.1089/aid.2012.0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genotropism was determined in 608 Brazilian samples collected in dried blood spots using Polyethersulfone collection cards. Patients were infected by subtype B (88.8%), F (5.6%), C (3.3%), A (1.8%), and G (0.5%). All patients were exposed to three classes of antiretrovirals, and 59.8% of the samples harbored R5 viruses, 35% non-R5-tropic viruses, and 5.1% harbored mixtures of R5 and non-R5-tropic viruses, with non-R5 more prevalent among clade B-infected patients as compared to non-B (42.8% versus 19.1%; p<0.0003). A strategy using a mixture of outer nested polymerase chain reaction (PCR) primers reduced the number of negative PCR results from 39% to 19%.
Collapse
Affiliation(s)
| | | | - Muhammad Shoaib Arif
- Retrovirology Laboratory, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Alexanda Reis
- Retrovirology Laboratory, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Sadia Samer
- Retrovirology Laboratory, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Cintia Vilhena dos Santos
- Laboratório Centro de Genomas, São Paulo, Brazil
- Retrovirology Laboratory, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Laboratório Centro de Genomas, São Paulo, Brazil
- Retrovirology Laboratory, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Peters PJ, Richards K, Clapham P. Human immunodeficiency viruses: propagation, quantification, and storage. CURRENT PROTOCOLS IN MICROBIOLOGY 2013; Chapter 15:Unit 15J.1. [PMID: 23408133 DOI: 10.1002/9780471729259.mc15j01s28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Described in this unit are basic protocols frequently used in the research of human immunodeficiency viruses (HIVs). Provided are methods for propagating and quantifying HIV, as well as recommendations for long-term storage. Background information about these methods is also provided and includes their advantages, disadvantages, and troubleshooting.
Collapse
Affiliation(s)
- Paul J Peters
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
11
|
Andrabi R, Kumar R, Bala M, Nair A, Ss P, Kushwaha V, Luthra K. Envelope diversity, characteristics of V3 region and predicted co-receptor usage of human immunodeficiency viruses infecting north Indians. J Microbiol 2012; 50:869-73. [PMID: 23124759 DOI: 10.1007/s12275-012-2136-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/12/2012] [Indexed: 11/27/2022]
Abstract
Subtypes of human immunodeficiency virus type 1 circulating in 21 north Indian patients were characterized based on the partial sequence of the gp120 envelope protein. A majority of viruses (85.7%, 18/21) were subtype C, while 14.3% (3/21) were subtype A. Sequence analysis revealed that the V3 region was highly conserved compared with V4 and V5. The predicted use of co-receptors indicated exclusive usage of R5, except for two subtype A viruses (AIIMS279 and AIIMS281). Our results demonstrate conservation within the V3 loop of subtype C viruses, and suggest the emergence of non-clade C viruses in the north Indian population.
Collapse
Affiliation(s)
- Raiees Andrabi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
12
|
Lin NH, Becerril C, Giguel F, Novitsky V, Moyo S, Makhema J, Essex M, Lockman S, Kuritzkes DR, Sagar M. Env sequence determinants in CXCR4-using human immunodeficiency virus type-1 subtype C. Virology 2012; 433:296-307. [PMID: 22954962 DOI: 10.1016/j.virol.2012.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/12/2012] [Accepted: 08/01/2012] [Indexed: 02/09/2023]
Abstract
HIV-1 subtype C (HIV-1C) CXCR4-using virus is isolated infrequently and is poorly characterized. Understanding HIV-1C env characteristics has implications for the clinical use of antiretrovirals that target viral entry. A total of 209 env clones derived from 10 samples with mixed CCR5-(R5), CXCR4-using (X4) or dual-tropic HIV-1C were phenotyped for coreceptor usage. Intra-patient X4 and R5 variants generally formed distinct monophyletic phylogenetic clusters. X4 compared to R5 envs had significantly greater amino acid variability and insertions, higher net positive charge, fewer glycosylation sites and increased basic amino acid substitutions in the GPGQ crown. Basic amino acid substitution and/or insertion prior to the crown are highly sensitive characteristics for predicting X4 viruses. Chimeric env functional studies suggest that the V3 loop is necessary but often not sufficient to impart CXCR4 utilization. Our studies provide insights into the unique genotypic characteristics of X4 variants in HIV-1C.
Collapse
Affiliation(s)
- Nina H Lin
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a006866. [PMID: 22908191 DOI: 10.1101/cshperspect.a006866] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first step of the human immunodeficiency virus (HIV) replication cycle-binding and entry into the host cell-plays a major role in determining viral tropism and the ability of HIV to degrade the human immune system. HIV uses a complex series of steps to deliver its genome into the host cell cytoplasm while simultaneously evading the host immune response. To infect cells, the HIV protein envelope (Env) binds to the primary cellular receptor CD4 and then to a cellular coreceptor. This sequential binding triggers fusion of the viral and host cell membranes, initiating infection. Revealing the mechanism of HIV entry has profound implications for viral tropism, transmission, pathogenesis, and therapeutic intervention. Here, we provide an overview into the mechanism of HIV entry, provide historical context to key discoveries, discuss recent advances, and speculate on future directions in the field.
Collapse
Affiliation(s)
- Craig B Wilen
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
15
|
Muriuki JK, Ngeranwa JN, Mwangi J, Orinda G, Lwembe R, Khamadi S. Isolation and biological characterization of non-B HIV type 1 from Kenya. AIDS Res Hum Retroviruses 2012; 28:660-6. [PMID: 22077875 DOI: 10.1089/aid.2010.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The isolation and characterization of primary strains of human immunodeficiency virus (HIV) is a vital tool for assessing properties of viruses replicating in HIV-infected subjects. HIV-1 isolation was carried out from 30 HIV-1-infected patients from a Comprehensive Care Clinic (CCC) after informed consent. Virus was successfully isolated from 9 out of the 30 samples investigated. Seven of the isolates were from drug-naive patients while two were from patients on antiretroviral drugs. The isolates were biologically phenotyped through measurement of the syncytium-inducing capacity in MT2 cells. Six of the isolates exhibited syncytia induction (SI) associated with CXCR4 coreceptor usage while three of the isolates were non-syncytia-inducing (NSI) isolates associated with CCR5 coreceptor usage. In addition, the replication capacity of the isolates was further determined in established cell line CD4(+) C8166. Indirect immunofluorescence assay was used to check the antigen expression on the cells as a supplementary test. HIV-1 isolation success was 70% (7/10) and 20% (2/20) in naive and drug-experienced patients, respectively. The majority of the viral isolates obtained (6/9) were of the SI phenotype, though SI virus strains are rare among non-B subtypes. A significant correlation between virus isolation success and viral load was established. Coreceptor use data for heavily treatment-experienced patients with limited treatment options are scanty and this is the group with perhaps the most urgent need of novel antiretroviral agents.
Collapse
Affiliation(s)
- Joseph K. Muriuki
- Centre of Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Joseph N. Ngeranwa
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Joseph Mwangi
- Centre of Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - George Orinda
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Raphael Lwembe
- Centre of Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Samuel Khamadi
- Centre of Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
16
|
Dimonte S, Babakir-Mina M, Mercurio F, Di Pinto D, Ceccherini-Silberstein F, Svicher V, Perno CF. Selected amino acid changes in HIV-1 subtype-C gp41 are associated with specific gp120(V3) signatures in the regulation of co-receptor usage. Virus Res 2012; 168:73-83. [PMID: 22732432 DOI: 10.1016/j.virusres.2012.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 11/18/2022]
Abstract
The majority of studies have characterized the tropism of HIV-1 subtype-B isolates, but little is known about the determinants of tropism in other subtypes. So, the goal of the present study was to genetically characterize the envelope of viral proteins in terms of co-receptor usage by analyzing 356 full-length env sequences derived from HIV-1 subtype-C infected individuals. The co-receptor usage of V3 sequences was inferred by using the Geno2Pheno and PSSM algorithms, and also analyzed to the "11/25 rule". All reported env sequences were also analyzed with regard to N-linked glycosylation sites, net charge and hydrophilicity, as well as the binomial correlation phi coefficient to assess covariation among gp120(V3) and gp41 signatures and the average linkage hierarchical agglomerative clustering were also performed. Among env sequences present in Los Alamos Database, 255 and 101 sequences predicted as CCR5 and CXCR4 were selected, respectively. The classical V3 signatures at positions 11 and 25, and other specific V3 and gp41 amino acid changes were found statistically associated with different co-receptor usage. Furthermore, several statistically significant associations between V3 and gp41 signatures were also observed. The dendrogram topology showed a cluster associated with CCR5-usage composed by five gp41 mutated positions, A22V, R133M, E136G, N140L, and N166Q that clustered with T2V(V3) and G24T(V3) (bootstrap=1). Conversely, a heterogeneous cluster with CXCR4-usage, involving S11GR(V3), 13-14insIG/LG(V3), P16RQ(V3), Q18KR(V3), F20ILV(V3), D25KRQ(V3), Q32KR(V3) along with A30T(gp41), S107N(gp41), D148E(gp41), A189S(gp41) was identified (bootstrap=0.86). Our results show that as observed for HIV-1 subtype-B, also in subtype-C specific and different gp41 and gp120V3 amino acid changes are associated individually or together with CXCR4 and/or CCR5 usage. These findings strengthen previous observations that determinants of tropism may also reside in the gp41 protein.
Collapse
Affiliation(s)
- Salvatore Dimonte
- University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Higher prevalence of predicted X4-tropic strains in perinatally infected older children with HIV-1 subtype C in India. J Acquir Immune Defic Syndr 2012; 59:347-53. [PMID: 22107818 DOI: 10.1097/qai.0b013e3182405c7b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Coreceptor switch from CCR5 to CXCR4 is considered to be less common in HIV-1 subtype C even in advanced stages of infection. In this study, we have examined viral genotypic coreceptor tropism and its clinical, virological, and host genetic determinants among perinatally infected children in India. METHODS Genotypic coreceptor tropism analysis was conducted on env V3 sequences using Geno2pheno with a threshold of 10% false-positive rate. A total of 473 sequences were obtained from 72 isolates amplified from children aged 2-17 years. Factors associated with viral tropism in subtype C infections were studied using logistic regression. RESULTS Among the samples, 98.6% (71 of 72) were HIV-1 subtype C. Coreceptor tropism analysis determined 81.7% (58 of 71) as R5 tropic, 9.9% (7 of 71) as X4 tropic, and 8.5% (6 of 71) as R5/X4 tropic or dual-tropic HIV-1 strains. Children with X4 or R5/X4 strains were more likely to be older than those with R5-tropic strains (P < 0.05), have lower CD4 counts (P < 0.05), and have viral populations with greater intrapopulation viral divergence (P < 0.01). Older age was a significant independent predictor for X4 or R5/X4 tropism in these children (P < 0.05). None were identified as being heterozygous or homozygous for the CCR5[INCREMENT]32 deletion. CONCLUSIONS The high prevalence of X4 and R5/X4 tropic strains among older perinatally infected children with HIV-1 subtype C in India indicate that this phenomenon is not uncommon as previously thought and suggest that coreceptor transition can occur with longer duration of infection and greater disease progression in this population of perinatally infected children living with HIV-1 subtype C.
Collapse
|
18
|
Prakash SS, Kalra R, Lodha R, Kabra SK, Luthra K. Diversity of HIV type 1 envelope (V3-V5) sequence in HIV type 1-infected Indian children. AIDS Res Hum Retroviruses 2012; 28:505-9. [PMID: 21902590 DOI: 10.1089/aid.2011.0206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Abstract We assessed the viral envelope (V3-V5 region) sequence diversity from 13 HIV-1-infected Indian children from north India. All of the 13 children were found to be infected with subtype C viruses. One of the viral sequences exhibited usage of the CXCR4 coreceptor predicted by Web PSSM and Geno2pheno tools. This virus also had a longer V3 sequence with 37 amino acids, a GRGQ motif, and a methionine residue before it (AIIMS_307). A unique finding was the complete deletion of the V4 region of another virus (AIIMS_363). High sequence diversity was observed in the envelope of the HIV-1-infected Indian children.
Collapse
Affiliation(s)
- Somi Sankaran Prakash
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kalra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil K. Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Ataher Q, Portsmouth S, Napolitano LA, Eng S, Greenacre A, Kambugu A, Wood R, Badal-Faesen S, Tressler R. The epidemiology and clinical correlates of HIV-1 co-receptor tropism in non-subtype B infections from India, Uganda and South Africa. J Int AIDS Soc 2012; 15:2. [PMID: 22281097 PMCID: PMC3298508 DOI: 10.1186/1758-2652-15-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 01/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The introduction of C-C chemokine receptor type-5 (CCR5) antagonists as antiretroviral therapy has led to the need to study HIV co-receptor tropism in different HIV-1 subtypes and geographical locations. This study was undertaken to evaluate HIV-1 co-receptor tropism in the developing world where non-B subtypes predominate, in order to assess the therapeutic and prophylactic potential of CCR5 antagonists in these regions. METHODS HIV-1-infected patients were recruited into this prospective, cross-sectional, epidemiologic study from HIV clinics in South Africa, Uganda and India. Patients were infected with subtypes C (South Africa, India) or A or D (Uganda). HIV-1 subtype and co-receptor tropism were determined and analyzed with disease characteristics, including viral load and CD4(+) and CD8(+) T cell counts. RESULTS CCR5-tropic (R5) HIV-1 was detected in 96% of treatment-naïve (TN) and treatment-experienced (TE) patients in India, 71% of TE South African patients, and 86% (subtype A/A1) and 71% (subtype D) of TN and TE Ugandan patients. Dual/mixed-tropic HIV-1 was found in 4% of Indian, 25% of South African and 13% (subtype A/A1) and 29% (subtype D) of Ugandan patients. Prior antiretroviral treatment was associated with decreased R5 tropism; however, this decrease was less in subtype C from India (TE: 94%, TN: 97%) than in subtypes A (TE: 59%; TN: 91%) and D (TE: 30%; TN: 79%). R5 virus infection in all three subtypes correlated with higher CD4(+) count. CONCLUSIONS R5 HIV-1 was predominant in TN individuals with HIV-1 subtypes C, A, and D and TE individuals with subtypes C and A. Higher CD4(+) count correlated with R5 prevalence, while treatment experience was associated with increased non-R5 infection in all subtypes.
Collapse
|
20
|
Sucupira MCA, Sanabani S, Cortes RM, Giret MTM, Tomiyama H, Sauer MM, Sabino EC, Janini LM, Kallas EG, Diaz RS. Faster HIV-1 disease progression among Brazilian individuals recently infected with CXCR4-utilizing strains. PLoS One 2012; 7:e30292. [PMID: 22291931 PMCID: PMC3266896 DOI: 10.1371/journal.pone.0030292] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/13/2011] [Indexed: 02/06/2023] Open
Abstract
Introduction Primary HIV infection is usually caused by R5 viruses, and there is an association between the emergence of CCXR4-utilizing strains and faster disease progression. We characterized HIV-1 from a cohort of recently infected individuals in Brazil, predicted the virus's co-receptor use based on the env genotype and attempted to correlate virus profiles with disease progression. Methods A total of 72 recently infected HIV patients were recruited based on the Serologic Testing Algorithm for Recent HIV Seroconversion and were followed every three to four months for up to 78 weeks. The HIV-1 V3 region was characterized by sequencing nine to twelve weeks after enrollment. Disease progression was characterized by CD4+ T-cell count decline to levels consistently below 350 cells/µL. Results Twelve out of 72 individuals (17%) were predicted to harbor CXCR4-utilizing strains; a baseline CD4<350 was more frequent among these individuals (p = 0.03). Fifty-seven individuals that were predicted to have CCR5-utilizing viruses and 10 individuals having CXCR4-utilizing strains presented with baseline CD4>350; after 78 weeks, 33 individuals with CCR5 strains and one individual with CXCR4 strains had CD4>350 (p = 0.001). There was no association between CD4 decline and demographic characteristics or HIV-1 subtype. Conclusions Our findings confirm the presence of strains with higher in vitro pathogenicity during early HIV infection, suggesting that even among recently infected individuals, rapid progression may be a consequence of the early emergence of CXCR4-utilizing strains. Characterizing the HIV-1 V3 region by sequencing may be useful in predicting disease progression and guiding treatment initiation decisions.
Collapse
Affiliation(s)
| | - Sabri Sanabani
- Sao Paulo Blood Bank, Fundacao Pro-Sangue, Sao Paulo, Brazil
| | - Rodrigo M. Cortes
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Teresa M. Giret
- Division of Clinical Immunology and Allergy, University of Sao Paulo, Sao Paulo, Brazil
| | - Helena Tomiyama
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana M. Sauer
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Luiz Mario Janini
- Microbiology Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Esper Georges Kallas
- Division of Clinical Immunology and Allergy, University of Sao Paulo, Sao Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Federal University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
21
|
Drug resistance and viral tropism in HIV-1 subtype C-infected patients in KwaZulu-Natal, South Africa: implications for future treatment options. J Acquir Immune Defic Syndr 2011; 58:233-40. [PMID: 21709569 DOI: 10.1097/qai.0b013e318228667f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Drug resistance poses a significant challenge for the successful application of highly active antiretroviral therapy (HAART) globally. Furthermore, emergence of HIV-1 isolates that preferentially use CXCR4 as a coreceptor for cell entry, either as a consequence of natural viral evolution or HAART use, may compromise the efficacy of CCR5 antagonists as alternative antiviral therapy. METHODS We sequenced the pol gene of viruses from 45 individuals failing at least 6 months of HAART in Durban, South Africa, to determine the prevalence and patterns of drug-resistance mutations. Coreceptor use profiles of these viruses and those from 45 HAART-naive individuals were analyzed using phenotypic and genotypic approaches. RESULTS Ninety-five percent of HAART-failing patients had at least one drug-resistant mutation. Thymidine analog mutations (TAMs) were present in 55% of patients with 9% of individuals possessing mutations indicative of the TAM1 pathway, 44% had TAM2, whereas 7% had mutations common to both pathways. Sixty percent of HAART-failing subjects had X4/dual//mixed-tropic viruses compared with 30% of HAART-naïve subjects (P < 0.02). Genetic coreceptor use prediction algorithms correlated with phenotypic results with 60% of samples from HAART-failing subjects predicted to possess CXCR4-using (X4/dual/mixed viruses) versus 15% of HAART-naïve patients. CONCLUSIONS The high proportion of TAMs and X4/dual/mixed HIV-1 viruses among patients failing therapy highlight the need for intensified monitoring of patients taking HAART and the problem of diminished drug options (including CCR5 antagonists) for patients failing therapy in resource-poor settings.
Collapse
|
22
|
Prevalence and clinical associations of CXCR4-using HIV-1 among treatment-naive subtype C-infected women in Botswana. J Acquir Immune Defic Syndr 2011; 57:46-50. [PMID: 21346588 DOI: 10.1097/qai.0b013e318214fe27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HIV-1 coreceptor use was determined using a phenotypic assay in plasma samples from treatment-naive women infected with subtype C virus who had CD4 cell counts below 200 cells/mm3. Of 148 women, 14.9% were infected with dual/mixed virus; the remainder had R5 virus. A greater proportion of women in the lowest CD4 cell count stratum had dual/mixed virus (P = 0.026); change in coreceptor use after antiretroviral therapy exposure was uncommon. CXCR4-using HIV-1 was less common in subtype C-infected women than reported in subtype B cohorts but was most prevalent in women with the lowest CD4 cell counts.
Collapse
|
23
|
Gharu L, Ringe R, Bhattacharya J. HIV-1 clade C envelopes obtained from late stage symptomatic Indian patients varied in their ability towards relative CD4 usages and sensitivity to CCR5 antagonist TAK-779. Virus Res 2011; 158:216-24. [PMID: 21524671 DOI: 10.1016/j.virusres.2011.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 11/30/2022]
Abstract
The mechanism by which strictly CCR5 using HIV-1 clade C variants exacerbate disease progression in absence of coreceptor switch is not clearly known. We previously reported HIV-1 clade C envelopes (Env) obtained from late stage Indian patients with expanded coreceptor tropism. Here we compared such Envs (having expanded coreceptor tropism) with strictly CCR5 using Envs also obtained from late stage in their capacity to utilize CD4 and CCR5 for productive entry. We found that while envelopes with low CD4 dependence tend to infect primary CD4(+) T cells better than those required optimum CD4 for entry, no significant association was found between low CD4 usage and infectivity of primary CD4(+) T cells by Env-pseudotyped viruses and their sensitivity to CCR5 antagonist TAK-779. Interestingly, Envs that readily infected HeLa cells expressing low CD4 showed relative resistance to T20 indicating that conformational intermediates of these envelopes remained for a shorter period of time than is required for efficient inhibition by T20.
Collapse
Affiliation(s)
- Lavina Gharu
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune 411026, India
| | | | | |
Collapse
|
24
|
Gharu L, Ringe R, Satyakumar A, Patil A, Bhattacharya J. Short communication: evidence of HIV type 1 clade C env clones containing low V3 loop charge obtained from an AIDS patient in India that uses CXCR6 and CCR8 for entry in addition to CCR5. AIDS Res Hum Retroviruses 2011; 27:211-9. [PMID: 20854195 DOI: 10.1089/aid.2009.0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract HIV-1 clade C is the major subtype circulating in India and preferentially uses CCR5 during the entire disease course. We have recently shown that env clones from an Indian patient; NARI-VB105 uses multiple coreceptors for entry and was presented with an unusual V3 loop sequence giving rise to high net V3 loop positive charges. Here we show that env clones belonging to subtype C obtained from an AIDS patient, NARI-VB52, use CXCR6 and CCR8 in addition to CCR5 for entry. However, unlike the NARI-105 patient, the env clones contained a low V3 loop net charge of +3 with a conserved GPGQ motif typical of CCR5 using subtype C strains, indicating that residues outside the V3 loop contributed to extended coreceptor use in this particular patient.
Collapse
Affiliation(s)
- Lavina Gharu
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Rajesh Ringe
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Anupindi Satyakumar
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Ajit Patil
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Jayanta Bhattacharya
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| |
Collapse
|
25
|
Abstract
DESIGN the origin and evolution of HIV-1 in breast milk is unclear, despite the continuing significance of this tissue as a transmitting compartment. To elucidate the evolutionary trajectory of viral populations in a transient mucosal compartment, longitudinal sequences of the envelope glycoprotein (gp120) region from plasma and breast milk spanning the first year after delivery were analyzed in six women infected by HIV-1 subtype C. METHODS multiple phylogenetic algorithms were used to elucidate the evolutionary history and spatial structure of virus populations between tissues. RESULTS overall persistent mixing of viral sequences between plasma and breast milk indicated that breast milk is not a distinct genetic viral compartment. Unexpectedly, longitudinal phylogenies showed multiple lineages defined by long branches that included virus from both the breast milk and the plasma. Plasma was unlikely the anatomical origin of the most recent common ancestor (MRCA) in at least three of the patients, although in other women, the temporal origin of the MRCA of the viral populations following delivery occurred well before the onset of breast milk production. CONCLUSIONS these findings suggest that during pregnancy/lactation, a viral variant distinct from the plasma virus initially seeds the breast milk, followed by subsequent gene flow between the plasma and breast milk tissues. This study indicates the potential for reactivation or reintroduction of distinct lineages during major immunological disruptions during the course of natural infection.
Collapse
|
26
|
Sachdeva RK, Wanchu A, Bagga R, Malla N, Sharma M. Effect of non-nucleoside reverse transcriptase inhibitors on cytokine, chemokine, and immunoglobulin profiles in serum and genital secretions of HIV-infected women. J Interferon Cytokine Res 2010; 30:299-310. [PMID: 20187769 DOI: 10.1089/jir.2009.0056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Non-protease inhibitor-based antiretroviral therapy (ART) is widely accepted as first-line ART in developing countries. Although reverse transcriptase inhibitor-based regimens have been studied in the peripheral blood, no studies have analyzed alterations in cytokine and chemokine levels, together in peripheral blood and genital secretions. Forty HIV-infected women with CD4 cell counts <200 cells/mm(3), asymptomatic, with no genital tract infection, willing to participate in the study, and adhere to ART were enrolled. Cervicovaginal lavage (CVL) was collected in the mid-cycle phase of menstrual cycle. Patients were initiated with reverse transcriptase-based antiretrovirals. Repeat sampling was performed at 24 weeks. Cytokines and chemokines were measured using ultrasensitive ELISA kits. Viral load declined to undetectable levels in 29 patients in the blood and in 33 cases in the CVL. Proinflammatory cytokines (tumor necrosis factor-alpha [TNF-alpha, interleukin-6 [IL-6], IL-1beta) in the serum and CVL showed a significant decrease in mean levels after therapy. IL-2 levels increased significantly whereas IL-12 and (IFN-gamma decreased in both compartments. Mean levels of IL-4 and IL-10 decreased significantly in the serum. There was direct correlation between serum and CVL levels of IL-2 and IL-10. IL-10 had a negative correlation with CD4% at baseline and 6 months of therapy. Mean levels of all alpha- and beta-chemokines decreased in serum after therapy. In CVL, mean levels of MIP-1alpha, RANTES, and IL-8 reduced and SDF-1alpha increased significantly (P value <0.001). Serum levels of all the cytokines, except IL-2, and all chemokines prior to therapy, were significantly higher than healthy controls. In CVL, mean levels of TNF-alpha, IL-6, IL-1beta, IL-12, IFN-gamma, IL-10, RANTES, and IL-8 were significantly higher, whereas IL-2, MIP-1alpha, and MIP-1beta were significantly lower than healthy controls. The mean levels of proinflammatory cytokines and chemokines significantly decreased in serum and CVL after therapy, possibly due to reduced viral load.
Collapse
Affiliation(s)
- Ravinder Kaur Sachdeva
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research , Chandigarh, India
| | | | | | | | | |
Collapse
|
27
|
Zhang H, Tully DC, Zhang T, Moriyama H, Thompson J, Wood C. Molecular determinants of HIV-1 subtype C coreceptor transition from R5 to R5X4. Virology 2010; 407:68-79. [PMID: 20797755 DOI: 10.1016/j.virol.2010.07.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/01/2010] [Accepted: 07/28/2010] [Indexed: 11/18/2022]
Abstract
The molecular mechanism(s) underlying transition from CCR5 to CXCR4 usage of subtype C viruses remain largely unknown. We previously identified a subtype C HIV-1 infected child whose virus demonstrated CXCR4 usage along with CCR5 upon longitudinal follow-up. Here we delineated the molecular determinants of Env involved in expanded coreceptor usage. Residue changes in three positions of Env V3 domain are critical for the dual tropic phenotype. These include: substitution of arginine at position 11, MG or LG insertion between positions 13 and 14, and substitution of threonine at the position immediately downstream of the GPGQ crown. Introducing these mutations into V3 region of a heterologous R5 virus also conferred dual tropism. Molecular modeling of V3 revealed a possible structural basis for the dual tropic phenotype. Determining what defines a subtype C X4 virus will lead to a better understanding of subtype C HIV-1 pathogenesis, and will provide important information relevant to anti-retroviral therapy.
Collapse
Affiliation(s)
- Hong Zhang
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | | | | | | | | | | |
Collapse
|
28
|
Neogi U, Prarthana SB, D'Souza G, DeCosta A, Kuttiatt VS, Ranga U, Shet A. Co-receptor tropism prediction among 1045 Indian HIV-1 subtype C sequences: Therapeutic implications for India. AIDS Res Ther 2010; 7:24. [PMID: 20646329 PMCID: PMC2918521 DOI: 10.1186/1742-6405-7-24] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/21/2010] [Indexed: 05/26/2023] Open
Abstract
Background Understanding co-receptor tropism of HIV-1 strains circulating in India will provide key analytical leverage for assessing the potential usefulness of newer antiretroviral drugs such as chemokine co-receptor antagonists among Indian HIV-infected populations. The objective of this study was to determine using in silico methods, HIV-1 tropism among a large number of Indian isolates both from primary clinical isolates as well as from database-derived sequences. Results R5-tropism was seen in 96.8% of a total of 1045 HIV-1 subtype C Indian sequences. Co-receptor prediction of 15 primary clinical isolates detected two X4-tropic strains using the C-PSSM matrix. R5-tropic HIV-1 subtype C V3 sequences were conserved to a greater extent than X4-tropic strains. X4-tropic strains were obtained from subjects who had a significantly longer time since HIV diagnosis (96.5 months) compared to R5-tropic strains (20.5 months). Conclusions High prevalence of R5 tropism and greater homogeneity of the V3 sequence among HIV-1 subtype C strains in India suggests the potential benefit of CCR5 antagonists as a therapeutic option in India.
Collapse
|
29
|
Duenas-Decamp MJ, Peters PJ, Repik A, Musich T, Gonzalez-Perez MP, Caron C, Brown R, Ball J, Clapham PR. Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis. Future Virol 2010; 5:435-451. [PMID: 20930940 DOI: 10.2217/fvl.10.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.
Collapse
Affiliation(s)
- Maria José Duenas-Decamp
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Koh WWL, Forsman A, Hue S, van der Velden GJ, Yirrell DL, McKnight A, Weiss RA, Aasa-Chapman MMI. Novel subtype C human immunodeficiency virus type 1 envelopes cloned directly from plasma: coreceptor usage and neutralization phenotypes. J Gen Virol 2010; 91:2374-80. [DOI: 10.1099/vir.0.022228-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Shen C, Ding M, Craigo JK, Tarwater P, Chatterjee R, Roy P, Guha SK, Saha B, Modak D, Neogi D, Chen Y, Gupta P. Genetic characterization of HIV-1 from semen and blood from clade C-infected subjects from India and effect of therapy in these body compartments. Virology 2010; 401:190-6. [PMID: 20231027 DOI: 10.1016/j.virol.2010.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/18/2009] [Accepted: 01/28/2010] [Indexed: 11/18/2022]
Abstract
Biologic and genetic differences between HIV-1 clade C in India and clade B in US suggest that the effect of anti-viral therapy in various body compartments may differ between these two clades. We examined the effect of therapy on viral loads in semen and blood of HIV-1-clade C infected subjects from India and evaluated whether HIV-1 in the semen is different from that in blood in these subjects. HIV-1 RNA was detected in semen and blood at all stages of the disease. Viral loads in semen and blood were strongly correlated with each other, but not with the CD4+ T cell count. Anti-viral treatment reduced viral load drastically in blood and semen within one month of post therapy. Genetic characterization of HIV-1 in the semen and blood demonstrated that they were highly compartmentalized. These data have important implications of sexual transmission of HIV-1 in clade C HIV-1 infected subjects.
Collapse
Affiliation(s)
- Chengli Shen
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Arias JF, Nishihara R, Bala M, Ikuta K. High systemic levels of interleukin-10, interleukin-22 and C-reactive protein in Indian patients are associated with low in vitro replication of HIV-1 subtype C viruses. Retrovirology 2010; 7:15. [PMID: 20211031 PMCID: PMC2841095 DOI: 10.1186/1742-4690-7-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/09/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND HIV-1 subtype C (HIV-1C) accounts for almost 50% of all HIV-1 infections worldwide and predominates in countries with the highest case-loads globally. Functional studies suggest that HIV-1C is unique in its biological properties, and there are contradicting reports about its replicative characteristics. The present study was conducted to evaluate whether the host cytokine environment modulates the in vitro replication capacity of HIV-1C viruses. METHODS A small subset of HIV-1C isolates showing efficient replication in peripheral blood mononuclear cells (PBMC) is described, and the association of in vitro replication capacity with disease progression markers and the host cytokine response was evaluated. Viruses were isolated from patient samples, and the corresponding in vitro growth kinetics were determined by monitoring for p24 production. Genotype, phenotype and co-receptor usage were determined for all isolates, while clinical category, CD4 cell counts and viral loads were recorded for all patients. Plasmatic concentrations of cytokines and, acute-phase response, and microbial translocation markers were determined; and the effect of cytokine treatment on in vitro replication rates was also measured. RESULTS We identified a small number of viral isolates showing high in vitro replication capacity in healthy-donor PBMC. HIV-1C usage of CXCR4 co-receptor was rare; therefore, it did not account for the differences in replication potential observed. There was also no correlation between the in vitro replication capacity of HIV-1C isolates and patients' disease status. Efficient virus growth was significantly associated with low interleukin-10 (IL-10), interleukin-22 (IL-22), and C-reactive protein (CRP) levels in plasma (p < .0001). In vitro, pretreatment of virus cultures with IL-10 and CRP resulted in a significant reduction of virus production, whereas IL-22, which lacks action on immune cells appears to mediate its anti-HIV effect through interaction with both IL-10 and CRP, and its own protective effect on mucosal membranes. CONCLUSIONS These results indicate that high systemic levels of IL-10, CRP and IL-22 in HIV-1C-infected Indian patients are associated with low viral replication in vitro, and that the former two have direct inhibitory effects whereas the latter acts through downstream mechanisms that remain uncertain.
Collapse
Affiliation(s)
- Juan F Arias
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Viral Emergent Diseases Research Group (VIREM), Universidad del Valle, Cali, Colombia
| | - Reiko Nishihara
- Department of Health Promotion Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manju Bala
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Regional STD Teaching, Training and Research Center, VM Medical College & Safdarjang Hospital, New Delhi, India
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Jakobsen MR, Ellett A, Churchill MJ, Gorry PR. Viral tropism, fitness and pathogenicity of HIV-1 subtype C. Future Virol 2010. [DOI: 10.2217/fvl.09.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The majority of studies on HIV-1 pathogenesis have been conducted on subtype B HIV-1 (B-HIV) strains. However, B-HIV strains constitute the minority of HIV-1 cases worldwide, and are not common in regions that stand to benefit the most from advances in HIV-1 research such as southern Africa and Asia, where the HIV-1 pandemic is at its worst. The majority of individuals with HIV-1 are infected with subtype C HIV-1 (C-HIV) and reside in Southern Africa and Central Asia. Relatively little is known about C-HIV, but current evidence suggests the pathogenesis of C-HIV is distinct from B-HIV and other HIV-1 subtypes. This article summarizes what is currently known about the viral tropism, fitness and pathogenicity of C-HIV, and compares and contrasts these features to B-HIV. A thorough understanding of the molecular pathogenesis of C-HIV is important for a targeted approach to developing vaccines and novel drugs optimized for effectiveness in populations that are most in need.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Infectious Diseases, Aarhus University Hospital, Skejby, Brendstrupgaardvej 100, 8200 Aarhus N, Denmark
| | - Anne Ellett
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Melissa J Churchill
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Paul R Gorry
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Medicine, Monash University, Melbourne, Victoria, Australia and Department of Microbiology & Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Prediction of HIV type 1 subtype C tropism by genotypic algorithms built from subtype B viruses. J Acquir Immune Defic Syndr 2010; 53:167-75. [PMID: 19996764 DOI: 10.1097/qai.0b013e3181c8413b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Genotypic predictions of HIV-1 tropism could simplify CCR5 antagonist usage. However, the genotypic algorithms built from subtype B viruses could be inadequate for non-B subtypes. We therefore performed paired genotypic and phenotypic determination of subtype C tropism. METHODS We studied 52 patients recruited in Malawi and 21 patients recruited in France. We directly sequenced the V3 env region and performed a recombinant virus phenotypic entry assay in parallel. RESULTS The Malawi patients had 29% of CXCR4-using subtype C viruses compared with only 5% in the patients from France. For detecting CXCR4-using subtype C viruses, the genotypic rule combining the amino acids at positions 11/25 and the net charge of V3 was 93.3% sensitive and 96.4% specific. The Geno2pheno tool was 86.7% sensitive and 89.1% specific. The WebPSSM tool with the SI/NSI matrix was 80% sensitive and 98.2% specific in its subtype B version and 93.3% sensitive and 81.8% specific in its subtype C version. CONCLUSIONS The genotypic determinants of coreceptor usage for HIV-1 subtype C were mainly in V3 and were globally similar to those previously reported for subtype B viruses. The main genotypic algorithms built from subtype B viruses perform well when applied to subtype C viruses.
Collapse
|
35
|
Donor and recipient envs from heterosexual human immunodeficiency virus subtype C transmission pairs require high receptor levels for entry. J Virol 2010; 84:4100-4. [PMID: 20147398 DOI: 10.1128/jvi.02068-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Compact, glycan-restricted envelope (Env) glycoproteins are selected during heterosexual transmission of subtype C HIV-1. Donor and recipient glycoproteins (Envs) from six transmission pairs were evaluated for entry into HeLa cells expressing different levels of CD4 and CCR5. Donor and recipient Envs demonstrated efficient entry into cells expressing high levels of CD4 and CCR5, and entry declined as CCR5 levels decreased. Infectivity for all Envs was severely impaired in cells expressing low levels of CD4, even at the highest CCR5 levels. In 5/6 pairs, there was no significant difference in efficiency of receptor utilization between the donor and recipient Envs in these HeLa-derived cell lines. Thus, HIV-1 transmission does not appear to select for viruses that can preferentially utilize low levels of entry receptors.
Collapse
|
36
|
Campbell GR, Loret EP, Spector SA. HIV-1 clade B Tat, but not clade C Tat, increases X4 HIV-1 entry into resting but not activated CD4+ T cells. J Biol Chem 2010; 285:1681-91. [PMID: 19917610 PMCID: PMC2804326 DOI: 10.1074/jbc.m109.049957] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 11/13/2009] [Indexed: 11/06/2022] Open
Abstract
CXCR4-using human immunodeficiency virus, type 1 (HIV-1) variants emerge late in the course of infection in >40% of individuals infected with clade B HIV-1 but are described less commonly with clade C isolates. Tat is secreted by HIV-1-infected cells where it acts on both uninfected bystander cells and infected cells. In this study, we show that clade B Tat, but not clade C Tat, increases CXCR4 surface expression on resting CD4+ T cells through a CCR2b-dependent mechanism that does not involve de novo protein synthesis. The expression of plectin, a cytolinker protein that plays an important role as a scaffolding platform for proteins involved in cellular signaling including CXCR4 signaling and trafficking, was found to be significantly increased following B Tat but not C Tat treatment. Knockdown of plectin using RNA interference showed that plectin is essential for the B Tat-induced translocation of CXCR4 to the surface of resting CD4+ T cells. The increased surface CXCR4 expression following B Tat treatment led to increased function of CXCR4 including increased chemoattraction toward CXCR4-using-gp120. Moreover, increased CXCR4 surface expression rendered resting CD4+ T cells more permissive to X4 but not R5 HIV-1 infection. However, neither B Tat nor C Tat was able to up-regulate surface expression of CXCR4 on activated CD4+ T cells, and both proteins inhibited the infection of activated CD4+ T cells with X4 but not R5 HIV-1. Thus, B Tat, but not C Tat, has the capacity to render resting, but not activated, CD4+ T cells more susceptible to X4 HIV-1 infection.
Collapse
Affiliation(s)
- Grant R. Campbell
- From the Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California 92093-0672
| | - Erwann P. Loret
- INSERM U911, Faculté de Pharmacie, Université de la Méditerranée, 13385 Marseille Cedex 5, France
| | - Stephen A. Spector
- From the Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California 92093-0672
- Rady Children's Hospital, San Diego, California 92123, and
| |
Collapse
|
37
|
Genetic analysis of HIV-1 Circulating Recombinant Form 02_AG, B and C subtype-specific envelope sequences from Northern India and their predicted co-receptor usage. AIDS Res Ther 2009; 6:28. [PMID: 19954551 PMCID: PMC2794860 DOI: 10.1186/1742-6405-6-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 12/03/2009] [Indexed: 11/10/2022] Open
Abstract
HIV-1 epidemic in India is largely driven by subtype C but other subtypes or recombinants have also been reported from several states of India. This is mainly due to the co-circulation of other genetic subtypes that potentially can recombine to generate recombinant/mosaic genomes. In this study, we report detail genetic characterization of HIV-1 envelope sequences from North India (Delhi and neighboring regions). Six of 13 were related to subtype C, one B and the rest six showed relatedness with CRF02_AG strain. The subtype C possessed the highly conserved GPGQ motif but subtype B possessed the GPGR motif in the V3 loop as observed earlier. While most of the sequences suggested CCR5 co-receptor usage, one subtype C sample clearly indicated CXCR4 usage. A successful mother to child transmission was established in two pairs. Thus, co-circulation of multiple subtypes (B and C) and the recombinant CRF02_AG strains in North India suggests a rapidly evolving scenario of HIV-1 epidemic in this region with impact on vaccine formulation. Since this is the first report of CRF02_AG envelope from India, it will be important to monitor the spread of this strain and its impact on HIV-1 transmission in India.
Collapse
|
38
|
Singh A, Page T, Moore PL, Allgaier RL, Hiramen K, Coovadia HM, Walker BD, Morris L, Ndung’u T. Functional and genetic analysis of coreceptor usage by dualtropic HIV-1 subtype C isolates. Virology 2009; 393:56-67. [PMID: 19695656 PMCID: PMC3492694 DOI: 10.1016/j.virol.2009.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 05/19/2009] [Accepted: 07/15/2009] [Indexed: 11/25/2022]
Abstract
It is widely documented that a complete switch from the predominant CCR5 (R5) to CXCR4 (X4) phenotype is less common for HIV-1 subtype C (HIV-1C) compared to other major subtypes. We investigated whether dualtropic HIV-1C isolates represented dualtropic, mixed R5 and X4 clones or both. Thirty of 35 functional HIV-1 env clones generated by bulk PCR amplification from peripheral blood mononuclear cells (PBMCs) infected with seven dualtropic HIV-1C isolates utilized CXCR4 exclusively. Five of 35 clones displayed dualtropism. Endpoint dilution of one isolate did not yield a substantial proportion of R5-monotropic env clones. Sequence-based predictive algorithms showed that env sequences from PBMCs, CXCR4 or CCR5-expressing cell lines were indistinguishable and all possessed X4/dualtropic characteristics. We describe HIV-1C CXCR4-tropic env sequence features. Our results suggest a dramatic loss of CCR5 monotropism as dualtropism emerges in HIV-1C which has important implications for the use of coreceptor antagonists in therapeutic strategies for this subtype.
Collapse
MESH Headings
- Amino Acid Sequence
- Cells, Cultured
- Cluster Analysis
- DNA, Viral/chemistry
- DNA, Viral/genetics
- HIV-1/classification
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Leukocytes, Mononuclear/virology
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction/methods
- Receptors, CCR5/analysis
- Receptors, CXCR5/analysis
- Receptors, HIV/analysis
- Receptors, HIV/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology
- Virus Internalization
- env Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Ashika Singh
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Taryn Page
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Penny L. Moore
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Rachel L. Allgaier
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| | - Keshni Hiramen
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Hoosen M. Coovadia
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Department of Paediatrics and Child Heath, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| | - Lynn Morris
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| |
Collapse
|
39
|
HIV-1 clade C env clones obtained from an Indian patient exhibiting expanded coreceptor tropism are presented with naturally occurring unusual amino acid substitutions in V3 loop. Virus Res 2009; 144:306-14. [PMID: 19409946 DOI: 10.1016/j.virusres.2009.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 04/17/2009] [Indexed: 11/20/2022]
Abstract
HIV-1 subtype C is predominantly circulating in India and has been reported to be strictly CCR5 tropic irrespective of disease stages. In the present study, we examined env clones obtained from a late stage Indian patient with a history of multiple sexual partners and opportunistic infections for coreceptor usage and V3 loop sequence. The env clones were found to exploit several coreceptors in addition to CCR5 in a cell-associated and cell-free manner. Analysis of V3 loop sequence revealed that the NARI-VB105 env clones were presented with unique amino acid substitutions with GPGR motif, atypical of clade C envelope. Further genetic analysis showed the V3 sequences albeit belonging to subtype C; however clustered distinctly to that of other clade C envelopes originated in different geographical regions. Modelling data revealed that NARI-VB105 V3 loop contained several basic residues giving rise a high net positive charge of +8 to these envelopes.
Collapse
|
40
|
Kandathil AJ, Kannangai R, Abraham OC, Pulimood SA, Jensen MA, Sridharan G. HIV-1 with predicted CXCR4 genotype identified in clade C from India. Mol Diagn Ther 2009; 13:19-24. [PMID: 19351212 DOI: 10.1007/bf03256311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE HIV-1 uses co-receptors CCR5 and CXCR4 in addition to CD4 for viral entry into cells. CCR5 is used in the early stages of HIV-1 infection, but viruses that utilize CXCR4 for viral entry emerge in the later stages. This is not common among clade C strains, with previous data from India showing the absence of the emergence of CXCR4-using strains. Sequence analysis has demonstrated that the V3 loop plays a very important role in determining the syncytium-inducing (SI) phenotype. The V3 region of the SI variants were observed to have positively charged amino acids at positions 11 and/or 25 and also a overall higher charge. This study looked at co-receptor usage among HIV-1 strains in India from individuals who were antiretroviral therapy (ART) naïve and those not responding to ART. METHODS Amplification and sequencing of the HIV-1 env gp120 V3 region was done on 40 ART-naïve individuals, who were selected for the study based on their CD4 counts, and eight patients who had not responded to ART. The sequences were submitted to Geno2Pheno and Web PSSM. The pol gene sequences of these strains were submitted to the REGA HIV-1 subtyping tool. RESULTS Forty-seven strains were identified as clade C and one strain as clade A1. Geno2Pheno identified three CXCR4-using strains, and the Web PSSM clade C matrix identified two. CONCLUSION We report, for the first time, CXCR4-using strains among HIV-1 clade C strains circulating in India.
Collapse
|
41
|
CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. J Virol 2009; 83:5592-605. [PMID: 19297481 DOI: 10.1128/jvi.02051-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C is the dominant subtype globally, due largely to the incidence of subtype C infections in sub-Saharan Africa and east Asia. We compared the relative replicative fitness (ex vivo) of the major (M) group of HIV-1 subtypes A, B, C, D, and CRF01_AE and group O isolates. To estimate pathogenic fitness, pairwise competitions were performed between CCR5-tropic (R5) or CXCR4-tropic (X4) virus isolates in peripheral blood mononuclear cells (PBMC). A general fitness order was observed among 33 HIV-1 isolates; subtype B and D HIV-1 isolates were slightly more fit than the subtype A and dramatically more fit than the 12 subtype C isolates. All group M isolates were more fit (ex vivo) than the group O isolates. To estimate ex vivo transmission fitness, a subset of primary HIV-1 isolates were examined in primary human explants from penile, cervical, and rectal tissues. Only R5 isolates and no X4 HIV-1 isolates could replicate in these tissues, whereas the spread to PM1 cells was dependent on active replication and passive virus transfer. In tissue competition experiments, subtype C isolates could compete with and, in some cases, even win over subtype A and D isolates. However, when the migratory cells from infected tissues were mixed with a susceptible cell line, the subtype C isolates were outcompeted by other subtypes, as observed in experiments with PBMC. These findings suggest that subtype C HIV-1 isolates might have equal transmission fitness but reduced pathogenic fitness relative to other group M HIV-1 isolates.
Collapse
|
42
|
Lynch RM, Shen T, Gnanakaran S, Derdeyn CA. Appreciating HIV type 1 diversity: subtype differences in Env. AIDS Res Hum Retroviruses 2009; 25:237-48. [PMID: 19327047 DOI: 10.1089/aid.2008.0219] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) group M is responsible for the current AIDS pandemic and exhibits exceedingly high levels of viral genetic diversity around the world, necessitating categorization of viruses into distinct lineages, or subtypes. These subtypes can differ by around 35% in the envelope (Env) glycoproteins of the virus, which are displayed on the surface of the virion and are targets for both neutralizing antibody and cell-mediated immune responses. This diversity reflects the remarkable ability of the virus to adapt to selective pressures, the bulk of which is applied by the host immune response, and represents a serious obstacle for developing an effective vaccine with broad coverage. Thus, it is important to understand the underlying biological consequences of intersubtype diversity. Recent studies have revealed that some of the HIV-1 subtypes exhibit phenotypic differences stemming from subtle changes in Env structure, particularly within the highly immunogenic V3 domain, which participates directly in viral entry. This review will therefore explore current research that describes subtype differences in Env at the genetic and phenotypic level, focusing in particular on V3, and highlighting recent discoveries about the unique features of subtype C Env, which is the most globally prevalent subtype.
Collapse
Affiliation(s)
- Rebecca M. Lynch
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia 30329
| | - Tongye Shen
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - S. Gnanakaran
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Cynthia A. Derdeyn
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Emory Vaccine Center, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
43
|
Predicted co-receptor tropism and sequence characteristics of China HIV-1 V3 loops: implications for the future usage of CCR5 antagonists and AIDS vaccine development. Int J Infect Dis 2009; 13:e212-6. [PMID: 19217335 DOI: 10.1016/j.ijid.2008.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 09/29/2008] [Accepted: 12/10/2008] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The co-receptor tropism of any given HIV-1 isolate is closely associated with the progression of AIDS. Understanding the co-receptor tropism and genetic diversity of circulating HIV-1 strains is critical for AIDS treatment and vaccine development. METHODS All available China HIV-1 V3 sequences with known subtypes/circulating recombinant forms (CRFs) and transmission routes were retrieved from the Los Alamos HIV Sequence Database. HIV-1 co-receptor tropism was predicted using online tool HIV-1 PhenoPred. RESULTS All C/CRF07_BC/CRF08_BC strains appeared to use CCR5 for cell entry (R5 strains), while 61.1% of subtype B and 38.7% of CRF01_AE were also R5, indicating a higher prevalence of R5 (76.9%) than X4. The prevalence of R5 remained relatively stable over the different sample years regardless of C/CRF07_BC/CRF08_BC, B, or CRF01_AE subtypes. The co-receptor usage of HIV-1 appeared to be associated with the different subtypes, rather than transmission route. Furthermore, the V3 sequences of C/CRF07_BC/CRF08_BC were more genetically homogeneous relative to both subtypes B and CRF01_AE. CONCLUSIONS The higher prevalence of R5 and higher level of homogeneity of V3 sequences in C/CRF07_BC/CRF08_BC suggest that CCR5 antagonists will be promising drugs for future AIDS treatment in China, and that circulating R5 strains are valuable candidates for AIDS vaccine development.
Collapse
|
44
|
Ding M, Tarwater P, Rodriguez M, Chatterjee R, Ratner D, Yamamura Y, Roy P, Mellors J, Neogi D, Chen Y, Gupta P. Estimation of the predictive role of plasma viral load on CD4 decline in HIV-1 subtype C-infected subjects in India. J Acquir Immune Defic Syndr 2009; 50:119-25. [PMID: 19131898 PMCID: PMC4512736 DOI: 10.1097/qai.0b013e3181911991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Plasma viral load has been shown to be a meaningful prognostic marker for disease progression in untreated, HIV-1 subtype B-infected subjects in United States and Western Europe and therefore used as a prognostic marker for disease progression. Because of high expenses of commercially available viral load assays, the role of viral load in disease progression has not been evaluated in HIV-1 subtype C-infected patients in India. METHODS We developed an inexpensive real-time reverse transcriptase-polymerase chain reaction assay to quantify viral load in plasma of HIV-1 subtype C-infected subjects from India and used it in a longitudinal analysis of viral load and CD4 cell number in HIV-infected subjects from Calcutta, India. RESULTS The real-time reverse transcriptase-polymerase chain reaction assay can quantify plasma viral load with a linear range of detection from 10 to 10 HIV-1 RNA copies per input. Longitudinal analysis of viral load in a cohort of 39 subjects over an average period of approximately 3 years indicates that 1-log increase in HIV-1 RNA level was associated with a decline of 67 CD4 cell count. Furthermore, HIV-1 RNA level between 500 and 50,000 copies per milliliter would predict a 12.9% decrease in CD4 cell count per year, whereas HIV-1 RNA levels above 50,000 copies HIV-1 RNA per milliliter would predict a 25.3% decrease in CD4 cells per year. In addition, we estimated that the mean incubation period of disease development, as defined by the loss of CD4 below 200, is 8.2 years. CONCLUSION Our report on the level of viral load on predicting CD4 decline in Indian subjects with HIV-1 provides an additional important tool to the physicians for treating and planning a therapeutic strategy to control HIV-1 infection in India.
Collapse
Affiliation(s)
- Ming Ding
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, USA
| | | | - Milka Rodriguez
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, USA
| | | | - Deena Ratner
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, USA
| | | | - Pratima Roy
- Department of Virology, Calcutta School of Tropical Medicine, India
| | - John Mellors
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, USA
| | - Dhruba Neogi
- Department of Virology, Calcutta School of Tropical Medicine, India
| | - Yue Chen
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, USA
| | - Phalguni Gupta
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, USA
| |
Collapse
|
45
|
Rodriguez MA, Ding M, Ratner D, Chen Y, Tripathy SP, Kulkarni SS, Chatterjee R, Tarwater PM, Gupta P. High replication fitness and transmission efficiency of HIV-1 subtype C from India: Implications for subtype C predominance. Virology 2009; 385:416-24. [PMID: 19157481 DOI: 10.1016/j.virol.2008.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/30/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
HIV-1 subtype C has been the predominant subtype throughout the course of the HIV-1 epidemic in India regardless of the geographic region of the country. In an effort to understand the mechanism of subtype C predominance in this country, we have investigated the in vitro replication fitness and transmission efficiency of HIV-1 subtypes A and C from India. Using a dual infection growth competition assay, we found that primary HIV-1 subtype C isolates had higher overall relative fitness in PBMC than subtype A primary isolates. Moreover, in an ex vivo cervical tissue derived organ culture, subtype C isolates displayed higher transmission efficiency across cervical mucosa than subtype A isolates. We found that higher fitness of subtype C was not due to a trans effect exerted by subtype C infected PBMC. A half genome A/C recombinant clone in which the 3' half of the viral genome of subtype A was replaced with the corresponding subtype C3' half, had similar replicative fitness as the parental subtype A. These results suggest that the higher replication fitness and transmission efficiency of subtype C virus compared to subtype A virus from India is most probably not due to the envelope gene alone and may be due to genes present within the 5' half of the viral genome or to a more complex interaction between the genes located within the two halves of the viral genome. These data provide a model to explain the asymmetric distribution of subtype C over other subtypes in India.
Collapse
Affiliation(s)
- Milka A Rodriguez
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 426 Parran Hall, GSPH, 130 DeSoto Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Richards KH, Clapham PR. Human immunodeficiency viruses: propagation, quantification, and storage. ACTA ACUST UNITED AC 2008; Chapter 15:Unit15J.1. [PMID: 18770581 DOI: 10.1002/9780471729259.mc15j01s02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Described in this unit are basic protocols frequently used in the research of human immunodeficiency viruses (HIVs). Provided are methods for propagating and quantifying HIV, as well as recommendations for long-term storage. Background information about these methods is also provided and includes their advantages, disadvantages, and troubleshooting.
Collapse
Affiliation(s)
- Kathryn H Richards
- University of Massachusetts, Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
48
|
Dubey S, Khalid M, Wesley C, Khan SA, Wanchu A, Jameel S. Downregulation of CCR5 on activated CD4 T cells in HIV-infected Indians. J Clin Virol 2008; 43:25-31. [PMID: 18462992 DOI: 10.1016/j.jcv.2008.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/15/2008] [Accepted: 03/27/2008] [Indexed: 01/23/2023]
Abstract
BACKGROUND HIV infection in India is unique as it occurs predominantly by CCR5-utilizing isolates that exhibit no co-receptor switch. OBJECTIVES To study HIV-1 co-receptor dynamics on T cells and monocytes following viral infection. STUDY DESIGN HIV co-receptor expression was evaluated by flow cytometry on various cell subsets in HIV-infected Indians and in vitro in human peripheral blood mononuclear cells infected with CCR5- or CXCR4-utilizing HIV-1. Transfection of the T cell line CEM-CCR5 (which expresses CD4, CCR5 and CXCR4) with HIV-1 Nef or Vpu expression vectors, or treatment with recombinant soluble gp120 from CCR5- and CXCR4-tropic HIV-1, was carried out to determine their effects on co-receptor expression. RESULTS Indian HIV patients had fewer CD4+CCR5+ T cells and CCR5-expressing activated CD4+ T cells, but higher CXCR4-expressing activated CD4+ T cells compared with controls. Expression of CCR5 was not different on monocytes in HIV patients as compared to controls. The CCR5 downregulation on T cells was HIV infection specific and was governed by the co-receptor-utilization phenotype of the virus. The Nef and soluble gp120 proteins induced CCR5 downregulation, the latter in a co-receptor-utilization phenotype specific manner. CONCLUSIONS The HIV-1 co-receptor dynamics in Indian patients is distinct from western patients and depends upon the virus surface protein. We propose this to be a viral survival strategy.
Collapse
Affiliation(s)
- Shweta Dubey
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
49
|
Michler K, Connell BJ, Venter WD, Stevens WS, Capovilla A, Papathanasopoulos MA. Genotypic characterization and comparison of full-length envelope glycoproteins from South African HIV type 1 subtype C primary isolates that utilize CCR5 and/or CXCR4. AIDS Res Hum Retroviruses 2008; 24:743-51. [PMID: 18507530 DOI: 10.1089/aid.2007.0304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CCR5 has preferentially been used by all circulating HIV-1 subtype C viruses for cell entry. Recently, we reported the highest proportion of CXCR4-utilizing primary isolates among a cohort of 20 South African AIDS patients. This study describes and compares the Env genotypic characteristics from these 20 HIV-1 subtype C (and unique CD recombinant) primary isolates. Fourteen primary isolates utilized CCR5, four (including the CD recombinant) used CXCR4, and two were dual tropic. Extensive analysis and comparison of important structural motifs such as the N-linked glycosylation sites, signal sequences, CD4-binding sites, variable loops, cleavage sites, known neutralizing antibody and small molecule inhibitor binding sites confirmed that other than the expected differences in the V3 loop, no sequence motifs distinguished between R5 and X4 tropism. Further correlation of the env genotype to functionally relevant motifs is necessary to elucidate the relationship between biologically and immunologically relevant sites and aid vaccine and novel drug design.
Collapse
Affiliation(s)
- Katherine Michler
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Parktown, Johannesburg, 2193, South Africa
| | - Bridgette J. Connell
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Parktown, Johannesburg, 2193, South Africa
| | - Willem D.F. Venter
- Reproductive Health and HIV Research Unit, University of the Witwatersrand Medical School, Parktown, Johannesburg, 2193, South Africa
| | - Wendy S. Stevens
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Parktown, Johannesburg, 2193, South Africa
| | - Alexio Capovilla
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Parktown, Johannesburg, 2193, South Africa
| | - Maria A. Papathanasopoulos
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
50
|
Abstract
This study investigated the genotype and phenotype of HIV-1 isolates of 20 South African AIDS patients. We found the highest percentage of CXCR4 usage among primary isolates, in which 30% efficiently utilized CXCR4 and exhibited the syncytium-inducing phenotype. Phylogenetic analysis of env confirmed that 19 of the 20 were subtype C, and syncytium-inducing viruses had genetic changes in the V3 loop, characteristic of CXCR4 usage. Results imply that the frequency of CXCR4-utilizing subtype C is increasing with time.
Collapse
|