1
|
Solis-Leal A, Karlinsey DC, Sithole ST, Lopez JB, Carlson A, Planelles V, Poole BD, Berges BK. The HIV-1 vpr R77Q Mutant Induces Apoptosis, G 2 Cell Cycle Arrest, and Lower Production of Pro-Inflammatory Cytokines in Human CD4+ T Cells. Viruses 2024; 16:1642. [PMID: 39459974 PMCID: PMC11512211 DOI: 10.3390/v16101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) occurs when HIV depletes CD4+ helper T cells. Some patients develop AIDS slowly or not at all, and are termed long-term non-progressors (LTNP), and while mutations in the HIV-1 Viral Protein R (vpr) gene such as R77Q are associated with LTNP, mechanisms for this correlation are unclear. This study examines the induction of apoptosis, cell cycle arrest, and pro-inflammatory cytokine release in the HUT78 T cell line following infection with replication-competent wild-type strain NL4-3, the R77Q mutant, or a vpr Null mutant. Our results show a significant enhancement of apoptosis and G2 cell cycle arrest in HUT78 cells infected with R77Q, but not with WT NL4-3 or the vpr Null strain. Conversely, HUT78 cells infected with the WT virus show higher levels of necrosis. We also detected lower TNF and IL-6 release after infection with R77Q vs. WT. The apoptotic phenotype was also seen in the CEM cell line and in primary CD4+ T cells. Protein expression of the R77Q vpr variant was low compared to WT vpr, but expression levels alone cannot explain these phenotypes because the Null virus did not show apoptosis or G2 arrest. These results suggest that R77Q triggers a non-inflammatory apoptotic pathway that attenuates inflammation, possibly contributing to LTNP.
Collapse
Affiliation(s)
- Antonio Solis-Leal
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Dalton C. Karlinsey
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Sidney T. Sithole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Jack Brandon Lopez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Amanda Carlson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Vicente Planelles
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA;
| | - Brian D. Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| |
Collapse
|
2
|
Jackson-Jones KA, McKnight Á, Sloan RD. The innate immune factor RPRD2/REAF and its role in the Lv2 restriction of HIV. mBio 2023; 14:e0257221. [PMID: 37882563 PMCID: PMC10746242 DOI: 10.1128/mbio.02572-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Intracellular innate immunity involves co-evolved antiviral restriction factors that specifically inhibit infecting viruses. Studying these restrictions has increased our understanding of viral replication, host-pathogen interactions, and pathogenesis, and represent potential targets for novel antiviral therapies. Lentiviral restriction 2 (Lv2) was identified as an unmapped early-phase restriction of HIV-2 and later shown to also restrict HIV-1 and simian immunodeficiency virus. The viral determinants of Lv2 susceptibility have been mapped to the envelope and capsid proteins in both HIV-1 and HIV-2, and also viral protein R (Vpr) in HIV-1, and appears dependent on cellular entry mechanism. A genome-wide screen identified several likely contributing host factors including members of the polymerase-associated factor 1 (PAF1) and human silencing hub (HUSH) complexes, and the newly characterized regulation of nuclear pre-mRNA domain containing 2 (RPRD2). Subsequently, RPRD2 (or RNA-associated early-stage antiviral factor) has been shown to be upregulated upon T cell activation, is highly expressed in myeloid cells, binds viral reverse transcripts, and potently restricts HIV-1 infection. RPRD2 is also bound by HIV-1 Vpr and targeted for degradation by the proteasome upon reverse transcription, suggesting RPRD2 impedes reverse transcription and Vpr targeting overcomes this block. RPRD2 is mainly localized to the nucleus and binds RNA, DNA, and DNA:RNA hybrids. More recently, RPRD2 has been shown to negatively regulate genome-wide transcription and interact with the HUSH and PAF1 complexes which repress HIV transcription and are implicated in maintenance of HIV latency. In this review, we examine Lv2 restriction and the antiviral role of RPRD2 and consider potential mechanism(s) of action.
Collapse
Affiliation(s)
- Kathryn A. Jackson-Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
- Division of Infectious Diseases & Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Áine McKnight
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Richard D. Sloan
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
- ZJU-UoE Institute, Zhejiang University, Haining, China
| |
Collapse
|
3
|
Sato H, Murakami T, Matsuura R, Abe M, Matsuoka S, Yashiroda Y, Yoshida M, Akari H, Nagasawa Y, Takei M, Aida Y. A Novel Class of HIV-1 Inhibitors Targeting the Vpr-Induced G2-Arrest in Macrophages by New Yeast- and Cell-Based High-Throughput Screening. Viruses 2022; 14:v14061321. [PMID: 35746791 PMCID: PMC9227106 DOI: 10.3390/v14061321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) accessory protein, Vpr, arrests the cell cycle of the G2 phase, and this Vpr-mediated G2 arrest is implicated in an efficient HIV-1 spread in monocyte-derived macrophages. Here, we screened new candidates for Vpr-targeting HIV-1 inhibitors by using fission yeast- and mammalian cell-based high-throughput screening. First, fission yeast strains expressing the HIV-1 Vpr protein were generated and then treated for 48 h with 20 μM of a synthetic library, including 140,000 chemical compounds. We identified 268 compounds that recovered the growth of Vpr-overexpressing yeast. The selected compounds were then tested in mammalian cells, and those displaying high cytotoxicity were excluded from further cell cycle analysis and imaging-based screening. A flow cytometry analysis confirmed that seven compounds recovered from the Vpr-induced G2 arrest. The cell toxicity and inhibitory effect of HIV-1 replication in human monocyte-derived macrophages (MDM) were examined, and three independent structural compounds, VTD227, VTD232, and VTD263, were able to inhibit HIV-1 replication in MDM. Furthermore, we showed that VTD227, but not VTD232 and VTD263, can directly bind to Vpr. Our results indicate that three new compounds and their derivatives represent new drugs targeting HIV-1 replication and can be potentially used in clinics to improve the current antiretroviral therapy.
Collapse
Affiliation(s)
- Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (H.S.); (T.M.); (R.M.)
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamichou, Itabashi-ku, Tokyo 173-8610, Japan; (Y.N.); (M.T.)
- Department of Microbiology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Tomoyuki Murakami
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (H.S.); (T.M.); (R.M.)
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamichou, Itabashi-ku, Tokyo 173-8610, Japan; (Y.N.); (M.T.)
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (H.S.); (T.M.); (R.M.)
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamichou, Itabashi-ku, Tokyo 173-8610, Japan; (Y.N.); (M.T.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masako Abe
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (M.A.); (S.M.); (M.Y.)
| | - Seiji Matsuoka
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (M.A.); (S.M.); (M.Y.)
| | - Yoko Yashiroda
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Minoru Yoshida
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (M.A.); (S.M.); (M.Y.)
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Hirofumi Akari
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan;
| | - Yosuke Nagasawa
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamichou, Itabashi-ku, Tokyo 173-8610, Japan; (Y.N.); (M.T.)
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamichou, Itabashi-ku, Tokyo 173-8610, Japan; (Y.N.); (M.T.)
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (H.S.); (T.M.); (R.M.)
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamichou, Itabashi-ku, Tokyo 173-8610, Japan; (Y.N.); (M.T.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence:
| |
Collapse
|
4
|
Murakami T, Matsuura R, Chutiwitoonchai N, Takei M, Aida Y. Huntingtin-Interacting Protein 1 Promotes Vpr-Induced G2 Arrest and HIV-1 Infection in Macrophages. Viruses 2021; 13:v13112308. [PMID: 34835114 PMCID: PMC8624357 DOI: 10.3390/v13112308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) modulates the host cell cycle. The HIV-1 accessory protein Vpr arrests the cell cycle at the G2 phase in dividing cells, and the ability of Vpr to induce G2 arrest is well conserved among primate lentiviruses. Additionally, Vpr-mediated G2 arrest likely correlates with enhanced HIV-1 infection in monocyte-derived macrophages. Here, we screened small-interfering RNA to reveal candidates that suppress Vpr-induced G2 arrest and identified Huntingtin-interacting protein 1 (HIP1) required for efficient G2 arrest. Interestingly, HIP1 was not essential for Vpr-induced DNA double-strand breaks, which are required for activation of the DNA-damage checkpoint and G2 arrest. Furthermore, HIP1 knockdown suppressed HIV-1 infection in monocyte-derived macrophages. This study identifies HIP1 as a factor promoting Vpr-induced G2 arrest and HIV-1 infection in macrophages.
Collapse
Affiliation(s)
- Tomoyuki Murakami
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nopporn Chutiwitoonchai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi, Tokyo 173-8610, Japan;
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (T.M.); (R.M.); (N.C.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence:
| |
Collapse
|
5
|
Chang H, Siarot L, Matsuura R, Lo CW, Sato H, Otsuki H, Aida Y. Distinct MCM10 Proteasomal Degradation Profiles by Primate Lentiviruses Vpr Proteins. Viruses 2020; 12:v12010098. [PMID: 31952107 PMCID: PMC7019430 DOI: 10.3390/v12010098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/28/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Viral protein R (Vpr) is an accessory protein found in various primate lentiviruses, including human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) as well as simian immunodeficiency viruses (SIVs). Vpr modulates many processes during viral lifecycle via interaction with several of cellular targets. Previous studies showed that HIV-1 Vpr strengthened degradation of Mini-chromosome Maintenance Protein10 (MCM10) by manipulating DCAF1-Cul4-E3 ligase in proteasome-dependent pathway. However, whether Vpr from other primate lentiviruses are also associated with MCM10 degradation and the ensuing impact remain unknown. Based on phylogenetic analyses, a panel of primate lentiviruses Vpr/x covering main virus lineages was prepared. Distinct MCM10 degradation profiles were mapped and HIV-1, SIVmus and SIVrcm Vprs induced MCM10 degradation in proteasome-dependent pathway. Colocalization and interaction between MCM10 with these Vprs were also observed. Moreover, MCM10 2-7 interaction region was identified as a determinant region susceptible to degradation. However, MCM10 degradation did not alleviate DNA damage response induced by these Vpr proteins. MCM10 degradation by HIV-1 Vpr proteins was correlated with G2/M arrest, while induction of apoptosis and oligomerization formation of Vpr failed to alter MCM10 proteolysis. The current study demonstrated a distinct interplay pattern between primate lentiviruses Vpr proteins and MCM10.
Collapse
Affiliation(s)
- Hao Chang
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Lowela Siarot
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chieh-Wen Lo
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nakamura Laboratory, Baton Zone program, Riken Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Otsuki
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nakamura Laboratory, Baton Zone program, Riken Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Correspondence:
| |
Collapse
|
6
|
HIV-1 Vpr mediates the depletion of the cellular repressor CTIP2 to counteract viral gene silencing. Sci Rep 2019; 9:13154. [PMID: 31511615 PMCID: PMC6739472 DOI: 10.1038/s41598-019-48689-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Mammals have evolved many antiviral factors impacting different steps of the viral life cycle. Associated with chromatin-modifying enzymes, the cellular cofactor CTIP2 contributes to HIV-1 gene silencing in latently infected reservoirs that constitute the major block toward an HIV cure. We report, for the first time, that the virus has developed a strategy to overcome this major transcriptional block. Productive HIV-1 infection results in a Vpr-mediated depletion of CTIP2 in microglial cells and CD4+ T cells, two of the major viral reservoirs. Associated to the Cul4A-DDB1-DCAF1 ubiquitin ligase complex, Vpr promotes CTIP2 degradation via the proteasome pathway in the nuclei of target cells and notably at the latent HIV-1 promoter. Importantly, Vpr targets CTIP2 associated with heterochromatin-promoting enzymes dedicated to HIV-1 gene silencing. Thereby, Vpr reactivates HIV-1 expression in a microglial model of HIV-1 latency. Altogether our results suggest that HIV-1 Vpr mediates the depletion of the cellular repressor CTIP2 to counteract viral gene silencing.
Collapse
|
7
|
Payne EH, Ramalingam D, Fox DT, Klotman ME. Polyploidy and Mitotic Cell Death Are Two Distinct HIV-1 Vpr-Driven Outcomes in Renal Tubule Epithelial Cells. J Virol 2018; 92:e01718-17. [PMID: 29093088 PMCID: PMC5752950 DOI: 10.1128/jvi.01718-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 01/24/2023] Open
Abstract
Prior studies have found that HIV, through the Vpr protein, promotes genome reduplication (polyploidy) in infection-surviving epithelial cells within renal tissue. However, the temporal progression and molecular regulation through which Vpr promotes polyploidy have remained unclear. Here we define a sequential progression to Vpr-mediated polyploidy in human renal tubule epithelial cells (RTECs). We found that as in many cell types, Vpr first initiates G2 cell cycle arrest in RTECs. We then identified a previously unreported cascade of Vpr-dependent events that lead to renal cell survival and polyploidy. Specifically, we found that a fraction of G2-arrested RTECs reenter the cell cycle. Following this cell cycle reentry, two distinct outcomes occur. Cells that enter complete mitosis undergo mitotic cell death due to extra centrosomes and aberrant division. Conversely, cells that abort mitosis undergo endoreplication to become polyploid. We further show that multiple small-molecule inhibitors of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, including those that target ATR, ATM, and mTOR, indirectly prevent Vpr-mediated polyploidy by preventing G2 arrest. In contrast, an inhibitor that targets DNA-dependent protein kinase (DNA-PK) specifically blocks the Vpr-mediated transition from G2 arrest to polyploidy. These findings outline a temporal, molecularly regulated path to polyploidy in HIV-positive renal cells.IMPORTANCE Current cure-focused efforts in HIV research aim to elucidate the mechanisms of long-term persistence of HIV in compartments. The kidney is recognized as one such compartment, since viral DNA and mRNA persist in the renal tissues of HIV-positive patients. Further, renal disease is a long-term comorbidity in the setting of HIV. Thus, understanding the regulation and impact of HIV infection on renal cell biology will provide important insights into this unique HIV compartment. Our work identifies mechanisms that distinguish between HIV-positive cell survival and death in a known HIV compartment, as well as pharmacological agents that alter these outcomes.
Collapse
Affiliation(s)
- Emily H Payne
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Dhivya Ramalingam
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Mary E Klotman
- Department of Pathology, Duke University, Durham, North Carolina, USA
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
8
|
Chutiwitoonchai N, Siarot L, Takeda E, Shioda T, Ueda M, Aida Y. HIV-1 Vpr Abrogates the Effect of TSG101 Overexpression to Support Virus Release. PLoS One 2016; 11:e0163100. [PMID: 27648839 PMCID: PMC5029901 DOI: 10.1371/journal.pone.0163100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/02/2016] [Indexed: 11/18/2022] Open
Abstract
HIV-1 budding requires interaction between Gag and cellular TSG101 to initiate viral particle assembly and release via the endosomal sorting complexes required for transport (ESCRT) pathway. However, some reports show that overexpression of TSG101 inhibits virus release by disruption of Gag targeting process. Since a HIV-1 accessory protein, Vpr binds to Gag p6 domain at the position close to the binding site for TSG101, whether Vpr implicates TSG101 overexpression effect has not been investigated. Here, we found that Vpr abrogates TSG101 overexpression effect to rescue viral production. Co-transfection of TSG101 and Gag with Vpr prevented TSG101-induced Gag accumulation in endosomes and lysosomes. In addition, Vpr rescued virus-like particle (VLP) production in a similar manner as a lysosomal inhibitor, Bafilomycin A1 indicating that Vpr inhibits TSG101-induced Gag downregulation via lysosomal pathway. Vpr and Gag interaction is required to counteract TSG101 overexpression effect since Vpr A30F mutant which is unable to interact with Gag and incorporate into virions, reduced ability to prevent Gag accumulation and to rescue VLP production. In addition, GST pull-down assays and Biacore analysis revealed that Vpr competed with TSG101 for Gag binding. These results indicate that Vpr overcomes the effects of TSG101 overexpression to support viral production by competing with TSG101 to bind Gag.
Collapse
Affiliation(s)
- Nopporn Chutiwitoonchai
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- Japan Foundation for AIDS Prevention, Chiyoda-ku, Tokyo, Japan
| | - Lowela Siarot
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Eri Takeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, RIKEN, Wako, Saitama, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
9
|
HIV-1 Vpr- and Reverse Transcription-Induced Apoptosis in Resting Peripheral Blood CD4 T Cells and Protection by Common Gamma-Chain Cytokines. J Virol 2015; 90:904-16. [PMID: 26537673 DOI: 10.1128/jvi.01770-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED HIV-1 infection leads to the progressive depletion of the CD4 T cell compartment by various known and unknown mechanisms. In vivo, HIV-1 infects both activated and resting CD4 T cells, but in vitro, in the absence of any stimuli, resting CD4 T cells from peripheral blood are resistant to infection. This resistance is generally attributed to an intracellular environment that does not efficiently support processes such as reverse transcription (RT), resulting in abortive infection. Here, we show that in vitro HIV-1 infection of resting CD4 T cells induces substantial cell death, leading to abortive infection. In vivo, however, various microenvironmental stimuli in lymphoid and mucosal tissues provide support for HIV-1 replication. For example, common gamma-chain cytokines (CGCC), such as interleukin-7 (IL-7), render resting CD4 T cells permissible to HIV-1 infection without inducing T cell activation. Here, we find that CGCC primarily allow productive infection by preventing HIV-1 triggering of apoptosis, as evidenced by early release of cytochrome c and caspase 3/7 activation. Cell death is triggered both by products of reverse transcription and by virion-borne Vpr protein, and CGCC block both mechanisms. When HIV-1 RT efficiency was enhanced by SIVmac239 Vpx protein, cell death was still observed, indicating that the speed of reverse transcription and the efficiency of its completion contributed little to HIV-1-induced cell death in this system. These results show that a major restriction on HIV-1 infection in resting CD4 T cells resides in the capacity of these cells to survive the early steps of HIV-1 infection. IMPORTANCE A major consequence of HIV-1 infection is the destruction of CD4 T cells. Here, we show that delivery of virion-associated Vpr protein and the process of reverse transcription are each sufficient to trigger apoptosis of resting CD4 T cells isolated from peripheral blood. While these 2 mechanisms have been previously described in various cell types, we show for the first time their concerted effect in inducing resting CD4 T cell depletion. Importantly, we found that cytokines such as IL-7 and IL-4, which are particularly active in sites of HIV-1 replication, protect resting CD4 T cells from these cytopathic effects and, primarily through this protection, rather than through enhancement of specific replicative steps, they promote productive infection. This study provides important new insights for the understanding of the early steps of HIV-1 infection and T cell depletion.
Collapse
|
10
|
Zahoor MA, Xue G, Sato H, Aida Y. Genome-wide transcriptional profiling reveals that HIV-1 Vpr differentially regulates interferon-stimulated genes in human monocyte-derived dendritic cells. Virus Res 2015; 208:156-63. [PMID: 26116899 DOI: 10.1016/j.virusres.2015.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that directly link the innate and adaptive immune responses. HIV-1 infection of DCs leads to a diverse array of changes in gene expression and play a major role in dissemination of the virus into T-cells. Although HIV-1 Vpr is a pleiotropic protein involved in HIV-1 replication and pathogenesis, its exact role in APCs such as DCs remains elusive. In this study, utilizing a microarray-based systemic biology approach, we found that HIV-1 Vpr differentially regulates (fold change >2.0) more than 200 genes, primarily those involved in the immune response and innate immune response including type I interferon signaling pathway. The differential expression profiles of select genes involved in innate immune responses (interferon-stimulated genes [ISGs]), including MX1, MX2, ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFI27, IFI44L, and TNFSF10, were validated by real-time quantitative PCR; the results were consistent with the microarray data. Taken together, our findings are the first to demonstrate that HIV-1 Vpr induces ISGs and activates the type I IFN signaling pathway in human DCs, and provide insights into the role of Vpr in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Muhammad Atif Zahoor
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan; International Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Guangai Xue
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan; International Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan; Japanese Foundation of AIDS Prevention, Tokyo, Japan
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
11
|
Guenzel CA, Hérate C, Benichou S. HIV-1 Vpr-a still "enigmatic multitasker". Front Microbiol 2014; 5:127. [PMID: 24744753 PMCID: PMC3978352 DOI: 10.3389/fmicb.2014.00127] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/12/2014] [Indexed: 11/13/2022] Open
Abstract
Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2) and simian (SIV) immunodeficiency viruses. However, Vpr and homologous HIV-2, and SIV Vpx are the only viral auxiliary proteins specifically incorporated into virus particles through direct interaction with the Gag precursor, indicating that this presence in the core of the mature virions is mainly required for optimal establishment of the early steps of the virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects and functions have been attributed to Vpr, including induction of cell cycle arrest and apoptosis, modulation of the fidelity of reverse transcription, nuclear import of viral DNA in macrophages and other non-dividing cells, and transcriptional modulation of viral and host cell genes. Even if some more recent studies identified a few cellular targets that HIV-1 Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr during the course of natural infection are still enigmatic. In this review, we will summarize the main reported functions of HIV-1 Vpr and their significance in the context of the viral life cycle.
Collapse
Affiliation(s)
- Carolin A Guenzel
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Cécile Hérate
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Serge Benichou
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| |
Collapse
|
12
|
Murakami T, Aida Y. Visualizing Vpr-induced G2 arrest and apoptosis. PLoS One 2014; 9:e86840. [PMID: 24466265 PMCID: PMC3899331 DOI: 10.1371/journal.pone.0086840] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 12/13/2013] [Indexed: 12/05/2022] Open
Abstract
Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1) with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2). The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to characterize the dynamics of the morphological changes that occur during Vpr-induced G2 arrest and apoptosis.
Collapse
Affiliation(s)
- Tomoyuki Murakami
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
13
|
Maudet C, Bertrand M, Le Rouzic E, Lahouassa H, Ayinde D, Nisole S, Goujon C, Cimarelli A, Margottin-Goguet F, Transy C. Molecular insight into how HIV-1 Vpr protein impairs cell growth through two genetically distinct pathways. J Biol Chem 2011; 286:23742-52. [PMID: 21566118 DOI: 10.1074/jbc.m111.220780] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vpr, a small HIV auxiliary protein, hijacks the CUL4 ubiquitin ligase through DCAF1 to inactivate an unknown cellular target, leading to cell cycle arrest at the G(2) phase and cell death. Here we first sought to delineate the Vpr determinants involved in the binding to DCAF1 and to the target. On the one hand, the three α-helices of Vpr are necessary and sufficient for binding to DCAF1; on the other hand, nonlinear determinants in Vpr are required for binding to the target, as shown by using protein chimeras. We also underscore that a SRIG motif conserved in the C-terminal tail of Vpr proteins from HIV-1/SIVcpz and HIV-2/SIVsmm lineages is critical for G(2) arrest. Our results suggest that this motif may be predictive of the ability of Vpr proteins from other SIV lineages to mediate G(2) arrest. We took advantage of the characterization of a subset of G(2) arrest-defective, but DCAF1 binding-proficient mutants, to investigate whether Vpr interferes with cell viability independently of its ability to induce G(2) arrest. These mutants inhibited cell colony formation in HeLa cells and are cytotoxic in lymphocytes, unmasking a G(2) arrest-independent cytopathic effect of Vpr. Furthermore these mutants do not block cell cycle progression at the G(1) or S phases but trigger apoptosis through caspase 3. Disruption of DCAF1 binding restored efficiency of colony formation. However, DCAF1 binding per se is not sufficient to confer cytopathicity. These data support a model in which Vpr recruits DCAF1 to induce the degradation of two host proteins independently required for proper cell growth.
Collapse
|
14
|
Kogan M, Rappaport J. HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology 2011; 8:25. [PMID: 21489275 PMCID: PMC3090340 DOI: 10.1186/1742-4690-8-25] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 04/13/2011] [Indexed: 01/11/2023] Open
Abstract
The HIV protein, Vpr, is a multifunctional accessory protein critical for efficient viral infection of target CD4+ T cells and macrophages. Vpr is incorporated into virions and functions to transport the preintegration complex into the nucleus where the process of viral integration into the host genome is completed. This action is particularly important in macrophages, which as a result of their terminal differentiation and non-proliferative status, would be otherwise more refractory to HIV infection. Vpr has several other critical functions including activation of HIV-1 LTR transcription, cell-cycle arrest due to DCAF-1 binding, and both direct and indirect contributions to T-cell dysfunction. The interactions of Vpr with molecular pathways in the context of macrophages, on the other hand, support accumulation of a persistent reservoir of HIV infection in cells of the myeloid lineage. The role of Vpr in the virus life cycle, as well as its effects on immune cells, appears to play an important role in the immune pathogenesis of AIDS and the development of HIV induced end-organ disease. In view of the pivotal functions of Vpr in virus infection, replication, and persistence of infection, this protein represents an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Michael Kogan
- Department of Neuroscience, Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | | |
Collapse
|
15
|
Jacquot G, Le Rouzic E, Maidou-Peindara P, Maizy M, Lefrère JJ, Daneluzzi V, Monteiro-Filho CMR, Hong D, Planelles V, Morand-Joubert L, Benichou S. Characterization of the molecular determinants of primary HIV-1 Vpr proteins: impact of the Q65R and R77Q substitutions on Vpr functions. PLoS One 2009; 4:e7514. [PMID: 19838296 PMCID: PMC2759284 DOI: 10.1371/journal.pone.0007514] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/18/2009] [Indexed: 11/23/2022] Open
Abstract
Although HIV-1 Vpr displays several functions in vitro, limited information exists concerning their relevance during infection. Here, we characterized Vpr variants isolated from a rapid and a long-term non-progressor (LTNP). Interestingly, vpr alleles isolated from longitudinal samples of the LTNP revealed a dominant sequence that subsequently led to diversity similar to that observed in the progressor patient. Most of primary Vpr proteins accumulated at the nuclear envelope and interacted with host-cell partners of Vpr. They displayed cytostatic and proapoptotic activities, although a LTNP allele, harboring the Q65R substitution, failed to bind the DCAF1 subunit of the Cul4a/DDB1 E3 ligase and was inactive. This Q65R substitution correlated with impairment of Vpr docking at the nuclear envelope, raising the possibility of a functional link between this property and the Vpr cytostatic activity. In contradiction with published results, the R77Q substitution, found in LTNP alleles, did not influence Vpr proapoptotic activity.
Collapse
Affiliation(s)
- Guillaume Jacquot
- Institut Cochin, Université Paris-Descartes, CNRS, UMR 8104, Paris, France
- Inserm, U567, Paris, France
| | - Erwann Le Rouzic
- Institut Cochin, Université Paris-Descartes, CNRS, UMR 8104, Paris, France
- Inserm, U567, Paris, France
| | - Priscilla Maidou-Peindara
- Institut Cochin, Université Paris-Descartes, CNRS, UMR 8104, Paris, France
- Inserm, U567, Paris, France
| | - Marion Maizy
- Institut Cochin, Université Paris-Descartes, CNRS, UMR 8104, Paris, France
- Inserm, U567, Paris, France
| | | | - Vincent Daneluzzi
- Institut Cochin, Université Paris-Descartes, CNRS, UMR 8104, Paris, France
- Inserm, U567, Paris, France
| | | | - Duanping Hong
- University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
| | - Vicente Planelles
- University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
| | - Laurence Morand-Joubert
- Service de Bactériologie-Virologie, Centre hospitalo-universitaire de Saint-Antoine, APHP, Université Paris VI., Paris, France
- * E-mail: (SB); (LMJ)
| | - Serge Benichou
- Institut Cochin, Université Paris-Descartes, CNRS, UMR 8104, Paris, France
- Inserm, U567, Paris, France
- * E-mail: (SB); (LMJ)
| |
Collapse
|
16
|
Virion-associated Vpr of human immunodeficiency virus type 1 triggers activation of apoptotic events and enhances fas-induced apoptosis in human T cells. J Virol 2009; 83:11283-97. [PMID: 19692467 DOI: 10.1128/jvi.00756-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vpr protein exists in three different forms: soluble, intracellular, and virion associated. Previous studies showed that virion-associated Vpr induces apoptosis in activated peripheral blood mononuclear cells (PBMCs) and Jurkat T cells, but these studies were conducted in the presence of other de novo-expressed HIV proteins that may have had additive proapoptotic effects. In this report, we show that virion-associated Vpr triggers apoptosis through caspases 3/7 and 9 in human T cells independently of other HIV de novo-expressed proteins. In contrast to a previous study, we also detected the activation of caspase 8, the initiator caspase of the death receptor pathway. However, activation of all caspases by virion-associated Vpr was independent of the Fas death receptor pathway. Further analyses showed that virion-associated Vpr enhanced caspase activation in Fas-mediated apoptosis in Jurkat T cells and human activated PBMCs. Thus, our results indicate for the first time that viral particles that contain virion-associated Vpr can cause apoptosis in the absence of other de novo-expressed viral factors and can act in synergy with the Fas receptor pathway, thereby enhancing the apoptotic process in T cells. These findings suggest that virion-associated Vpr can contribute to the depletion of CD4(+) lymphocytes either directly or by enhancing Fas-mediated apoptosis during acute HIV-1 infection and in AIDS.
Collapse
|
17
|
Nonaka M, Hashimoto Y, Takeshima SN, Aida Y. The human immunodeficiency virus type 1 Vpr protein and its carboxy-terminally truncated form induce apoptosis in tumor cells. Cancer Cell Int 2009; 9:20. [PMID: 19674438 PMCID: PMC2735735 DOI: 10.1186/1475-2867-9-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 08/12/2009] [Indexed: 01/19/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces apoptosis after cell cycle arrest at the G2 phase in primate cells. We have reported previously that C81, a carboxy-terminally truncated form of Vpr, interferes with cell proliferation and results in apoptosis without G2 arrest. Here, we investigated whether this property of Vpr and C81 could be exploited for use as a potential anticancer agent. First, we demonstrated that C81 induced G1 arrest and apoptosis in all tumor cells tested. In contrast, Vpr resulted in G2 arrest and apoptosis in HeLa and 293 T cells. Vpr also suppressed the damaged-DNA-specific binding protein 1 (DDB1) in HepG2 cells, thereby inducing apoptosis without G2 arrest. G2 arrest was restored when DDB1 was overexpressed in cells that also expressed Vpr. Surprisingly, C81 induced G2 arrest when DDB1 was overexpressed in HepG2 cells, but not in HeLa or 293 T cells. Thus, the induction of Vpr- and C81-mediated cell cycle arrest appears to depend on the cell type, whereas apoptosis was observed in all tumor cells tested. Overall, Vpr and C81 have potential as novel therapeutic agents for treatment of cancer.
Collapse
Affiliation(s)
- Mizuho Nonaka
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
18
|
Andersen JL, Le Rouzic E, Planelles V. HIV-1 Vpr: mechanisms of G2 arrest and apoptosis. Exp Mol Pathol 2008; 85:2-10. [PMID: 18514189 DOI: 10.1016/j.yexmp.2008.03.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 03/04/2008] [Indexed: 02/05/2023]
Abstract
Since the first isolation of HIV-1 from a patient with generalized lymphadenopathy in 1983, great progress has been made in understanding the viral life cycle and the functional nuances of each of the nine genes encoded by HIV-1. Considerable attention has been paid to four small HIV-1 open reading frames, vif, vpr, vpu and nef. These genes were originally termed "accessory" because their deletion failed to completely disable viral replication in vitro. More than twenty years after the cloning and sequencing of HIV-1, a great deal of information is available regarding the multiple functions of the accessory proteins and it is well accepted that, collectively, these gene products modulate the host cell biology to favor viral replication, and that they are largely responsible for the pathogenesis of HIV-1. Expression of Vpr, in particular, leads to cell cycle arrest in G(2), followed by apoptosis. Here we summarize our current understanding of Vpr biology with a focus on Vpr-induced G(2) arrest and apoptosis.
Collapse
Affiliation(s)
- Joshua L Andersen
- Center for the Study of Aging and Human Development, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
19
|
Human immunodeficiency virus type 1 Vpr binds to the N lobe of the Wee1 kinase domain and enhances kinase activity for CDC2. J Virol 2008; 82:5672-82. [PMID: 18385244 DOI: 10.1128/jvi.01330-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 Vpr is a virion-associated accessory protein that has multiple activities within an infected cell. One of the most dramatic effects of Vpr is the induction of cell cycle arrest at the G(2)/M boundary, followed by apoptosis. This effect has implications for CD4(+) cell loss in AIDS. In normal cell cycle regulation, Wee1, a key regulator for G(2)-M progression, phosphorylates Tyr15 on Cdc2 and thereby blocks the progression of cells into M phase. We demonstrate that Vpr physically interacts with Wee1 at the N lobe of the kinase domain analogous to that present in other kinases. This interaction with Vpr enhances Wee1 kinase activity for Cdc2. Overexpression of Wee1 kinase-deficient mutants competes for Vpr-mediated cell cycle arrest, and deletion of the region of Wee1 that binds Vpr abrogates that competition. However, the Vpr mutants I74P and I81P, which fail to induce G(2) arrest, can bind to and increase the kinase activity of Wee1 to the same extent as wild-type Vpr. Therefore, we conclude that the binding of Vpr to Wee1 is not sufficient for Vpr to activate the G(2) checkpoint, and it may reflect an independent function of Vpr.
Collapse
|
20
|
Jacquot G, Le Rouzic E, David A, Mazzolini J, Bouchet J, Bouaziz S, Niedergang F, Pancino G, Benichou S. Localization of HIV-1 Vpr to the nuclear envelope: impact on Vpr functions and virus replication in macrophages. Retrovirology 2007; 4:84. [PMID: 18039376 PMCID: PMC2211753 DOI: 10.1186/1742-4690-4-84] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 11/26/2007] [Indexed: 12/23/2022] Open
Abstract
Background HIV-1 Vpr is a dynamic protein that primarily localizes in the nucleus, but a significant fraction is concentrated at the nuclear envelope (NE), supporting an interaction between Vpr and components of the nuclear pore complex, including the nucleoporin hCG1. In the present study, we have explored the contribution of Vpr accumulation at the NE to the Vpr functions, including G2-arrest and pro-apoptotic activities, and virus replication in primary macrophages. Results In order to define the functional role of Vpr localization at the NE, we have characterized a set of single-point Vpr mutants, and selected two new mutants with substitutions within the first α-helix of the protein, Vpr-L23F and Vpr-K27M, that failed to associate with hCG1, but were still able to interact with other known relevant host partners of Vpr. In mammalian cells, these mutants failed to localize at the NE resulting in a diffuse nucleocytoplasmic distribution both in HeLa cells and in primary human monocyte-derived macrophages. Other mutants with substitutions in the first α-helix (Vpr-A30L and Vpr-F34I) were similarly distributed between the nucleus and cytoplasm, demonstrating that this helix contains the determinants required for localization of Vpr at the NE. All these mutations also impaired the Vpr-mediated G2-arrest of the cell cycle and the subsequent cell death induction, indicating a functional link between these activities and the Vpr accumulation at the NE. However, this localization is not sufficient, since mutations within the C-terminal basic region of Vpr (Vpr-R80A and Vpr-R90K), disrupted the G2-arrest and apoptotic activities without altering NE localization. Finally, the replication of the Vpr-L23F and Vpr-K27M hCG1-binding deficient mutant viruses was also affected in primary macrophages from some but not all donors. Conclusion These results indicate that the targeting of Vpr to the nuclear pore complex may constitute an early step toward Vpr-induced G2-arrest and subsequent apoptosis; they also suggest that Vpr targeting to the nuclear pore complex is not absolutely required, but can improve HIV-1 replication in macrophages.
Collapse
Affiliation(s)
- Guillaume Jacquot
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bolton DL, Lenardo MJ. Vpr cytopathicity independent of G2/M cell cycle arrest in human immunodeficiency virus type 1-infected CD4+ T cells. J Virol 2007; 81:8878-90. [PMID: 17553871 PMCID: PMC1951439 DOI: 10.1128/jvi.00122-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of CD4(+) T-cell depletion in human immunodeficiency virus type 1 (HIV-1)-infected individuals remains unknown, although mounting evidence suggests that direct viral cytopathicity contributes to this loss. The HIV-1 Vpr accessory protein causes cell death and arrests cells in the G(2)/M phase; however, the molecular mechanism underlying these properties is not clear. Mutation of hydrophobic residues on the surface of its third alpha-helix disrupted Vpr toxicity, G(2)/M arrest induction, nuclear localization, and self-association, implicating this region in multiple Vpr functions. Cytopathicity by virion-delivered mutant Vpr protein correlated with G(2)/M arrest induction but not nuclear localization or self-association. However, infection with whole virus encoding these Vpr mutants did not abrogate HIV-1-induced cell killing. Rather, mutant Vpr proteins that are impaired for G(2)/M block still prevented infected cell proliferation, and this property correlated with the death of infected cells. Chemical agents that inhibit infected cells from entering G(2)/M also did not reduce HIV-1 cytopathicity. Combined, these data implicate Vpr in HIV-1 killing through a mechanism involving inhibiting cell division but not necessarily in G(2)/M. Thus, the hydrophobic region of the third alpha-helix of Vpr is crucial for mediating G(2)/M arrest, nuclear localization, and self-association but dispensable for HIV-1 cytopathicity due to residual cell proliferation blockade mediated by a separate region of the protein.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/virology
- Cell Cycle
- Cell Death
- Cell Line, Tumor
- Cytopathogenic Effect, Viral
- Gene Products, vpr/chemistry
- Gene Products, vpr/genetics
- Gene Products, vpr/physiology
- HIV-1/pathogenicity
- Humans
- Hydrophobic and Hydrophilic Interactions
- Jurkat Cells
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation, Missense
- Protein Binding/genetics
- Protein Structure, Secondary
- Protein Transport/genetics
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Diane L Bolton
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Rm. 11N311, 10 Center Dr., Bethesda, MD 20892-1892, USA
| | | |
Collapse
|
22
|
Hashizume C, Kuramitsu M, Zhang X, Kurosawa T, Kamata M, Aida Y. Human immunodeficiency virus type 1 Vpr interacts with spliceosomal protein SAP145 to mediate cellular pre-mRNA splicing inhibition. Microbes Infect 2007; 9:490-7. [PMID: 17347016 DOI: 10.1016/j.micinf.2007.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 01/13/2007] [Accepted: 01/16/2007] [Indexed: 11/21/2022]
Abstract
Vpr, an accessory gene product of human immunodeficiency virus type 1 (HIV-1), affects both viral and cellular proliferation by mediating long terminal repeat activation, cell cycle arrest at the G2 phase, and apoptosis. We previously found that Vpr plays a novel role as a regulator of pre-mRNA splicing both in vivo and in vitro. However, the cellular target of Vpr, as well as the mechanism of cellular pre-mRNA splicing inhibition by Vpr, is unknown. Here, we show clearly that Vpr inhibits the splicing of cellular pre-mRNA, such as beta-globin pre-mRNA and immunoglobulin (Ig) M pre-mRNA and that the third alpha-helical domain and arginine-rich region are important its ability to inhibit splicing. Additionally, using mutants with specific substitutions in two domains of Vpr, we demonstrated that the interaction between Vpr and SAP145, an essential splicing factor, was indispensable for splicing inhibition. Finally, co-immunoprecipitation and in vitro competitive binding assays indicated that Vpr associates with SAP145 and interferes with SAP145-SAP49 complex formation. Thus, these results suggest that cellular expression of Vpr may block spliceosome assembly by interfering with the function of the SAP145-SAP49 complex in host cells.
Collapse
Affiliation(s)
- Chieko Hashizume
- Retrovirus Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Nitahara-Kasahara Y, Kamata M, Yamamoto T, Zhang X, Miyamoto Y, Muneta K, Iijima S, Yoneda Y, Tsunetsugu-Yokota Y, Aida Y. Novel nuclear import of Vpr promoted by importin alpha is crucial for human immunodeficiency virus type 1 replication in macrophages. J Virol 2007; 81:5284-93. [PMID: 17344301 PMCID: PMC1900242 DOI: 10.1128/jvi.01928-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Monocytes/macrophages are major targets of human immunodeficiency virus type 1 (HIV-1) infection. The viral preintegration complex (PIC) of HIV-1 enters the nuclei of monocyte-derived macrophages, but very little PIC migrates into the nuclei of immature monocytes. Vpr, one of the accessory gene products of HIV-1, is essential for the nuclear import of PIC in these cells, although the role of Vpr in the entry mechanism of PIC remains to be clarified. We have shown previously that Vpr is targeted to the nuclear envelope and then transported into the nucleus by importin alpha alone, in an importin beta-independent manner. Here we demonstrate that the nuclear import of Vpr is strongly promoted by the addition of cytoplasmic extract from macrophages but not of that from monocytes and that the nuclear import activity is lost with immunodepletion of importin alpha from the cytoplasmic extract. Immunoblot analysis and real-time PCR demonstrate that immature monocytes express importin alpha at low levels, whereas the expression of three major importin alpha isoforms markedly increases upon their differentiation into macrophages, indicating that the expression of importin alpha is required for nuclear import of Vpr. Furthermore, interaction between importin alpha and the N-terminal alpha-helical domain of Vpr is indispensable, not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages. This study suggests the possibility that the binding of Vpr to importin alpha, preceding a novel nuclear import process, is a potential target for therapeutic intervention.
Collapse
|
24
|
Qiao H, McMillan JR. Gelsolin segment 5 inhibits HIV-induced T-cell apoptosis via Vpr-binding to VDAC. FEBS Lett 2007; 581:535-40. [PMID: 17254575 DOI: 10.1016/j.febslet.2006.12.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/19/2006] [Accepted: 12/28/2006] [Indexed: 11/24/2022]
Abstract
Viral protein R (Vpr) from the human immunodeficiency virus induces cell cycle arrest in proliferating cells, stimulates virus transcription, and regulates activation and apoptosis of infected T-lymphocytes. We report that Jurkat cells overexpressing full-length gelsolin show resistance to Vpr-induced T-cell apoptosis with abrogation of mitochondrial membrane potential loss and the release of cytochrome c. Co-immunoprecipitation assays in HEK293T cells demonstrated that overexpression of full-length or segment 5 (G5) but not G5-deleted gelsolin (DeltaG5) bound to the voltage-dependent anion channel (VDAC), and that the G5 subunit can inhibit HIV-1-Vpr-binding to VDAC. We also confirmed that full-length gelsolin has the same effect in Jurkat cells. Clonogenic analysis showed that transfection of G5 but not DeltaG5 cDNA protects Jurkat T cells from HIV-Vpr-Tet induced T-cell apoptosis and promoted cell survival, as did full-length gelsolin. These results suggest that the gelsolin G5 domain inhibits HIV-Vpr-induced T-cell apoptosis by blocking the interaction between Vpr and VDAC, and might be used as a protective treatment against HIV-Vpr-induced T-cell apoptosis.
Collapse
Affiliation(s)
- Hongjiang Qiao
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan.
| | | |
Collapse
|
25
|
Kamata M, Wu RP, An DS, Saxe JP, Damoiseaux R, Phelps ME, Huang J, Chen ISY. Cell-based chemical genetic screen identifies damnacanthal as an inhibitor of HIV-1 Vpr induced cell death. Biochem Biophys Res Commun 2006; 348:1101-6. [PMID: 16904642 PMCID: PMC1761125 DOI: 10.1016/j.bbrc.2006.07.158] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 11/30/2022]
Abstract
Viral protein R (Vpr), one of the human immunodeficiency virus type 1 (HIV-1) accessory proteins, contributes to multiple cytopathic effects, G2 cell cycle arrest and apoptosis. The mechanisms of Vpr have been intensely studied because it is believed that they underlie HIV-1 pathogenesis. We here report a cell-based small molecule screen on Vpr induced cell death in the context of HIV-1 infection. From the screen of 504 bioactive compounds, we identified damnacanthal (Dam), a component of noni [corrected] as an inhibitor of Vpr induced cell death. Our studies illustrate a novel efficient platform for drug discovery and development in anti-HIV therapy which should also be applicable to other viruses.
Collapse
Affiliation(s)
- Masakazu Kamata
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sakai K, Dimas J, Lenardo MJ. The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Proc Natl Acad Sci U S A 2006; 103:3369-74. [PMID: 16492778 PMCID: PMC1413893 DOI: 10.1073/pnas.0509417103] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV type I (HIV-1) can cause G(2) cell cycle arrest and death of CD4(+) T lymphocytes in vitro and inexorable depletion of these cells in vivo. However, the molecular mechanism of viral cytopathicity has not been satisfactorily elucidated. Previously, we showed that HIV-1 kills T cells by a necrotic form of cell death that requires high level expression of an integrated provirus but not the env or nef genes. To determine which viral protein(s) are required for cell death, we systematically mutated, alone and in combination, the ORFs of the NL4-3 strain of HIV-1. We found that the elimination of the viral functions encoded by gag-pol and vpu, tat, and rev did not mitigate cytopathicity. However, elimination of the vif and vpr accessory genes together, but not individually, renders the virus incapable of causing cell death and G(2) cell cycle blockade. We thus identify vif and vpr as necessary for T cell cytopathic effects induced by HIV-1. These findings may provide an important insight into the molecular mechanism of viral pathogenesis in AIDS.
Collapse
Affiliation(s)
- Keiko Sakai
- Laboratory of Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1892
| | - Joseph Dimas
- Laboratory of Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1892
| | - Michael J. Lenardo
- Laboratory of Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1892
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Azuma A, Matsuo A, Suzuki T, Kurosawa T, Zhang X, Aida Y. Human immunodeficiency virus type 1 Vpr induces cell cycle arrest at the G(1) phase and apoptosis via disruption of mitochondrial function in rodent cells. Microbes Infect 2006; 8:670-9. [PMID: 16480911 DOI: 10.1016/j.micinf.2005.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 08/31/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
Vpr of human immunodeficiency virus type 1 causes cell cycle arrest at the G(2)/M phase and induces apoptosis after G(2)/M arrest in primate cells. We have reported previously that Vpr also induces apoptosis independently of G(2)/M arrest in human HeLa cells. By contrast, Vpr does not induce G(2)/M arrest in rodent cells, but it retards cell growth. To clarify the relationship between cell cycle arrest and apoptosis, we expressed Vpr endogenously in rodent cells and investigated cell cycle profiles and apoptosis. We show here that Vpr induces cell cycle arrest at the G(1) phase and apoptosis in rodent cells. Vpr increased the activity of caspase-3 and caspase-9, but not of caspase-8. Moreover, Vpr-induced apoptosis could be inhibited by inhibitors of caspase-3 and caspase-9, but not by inhibitor of caspase-8. We also showed that Vpr induces the release of cytochrome c from mitochondria into the cytosol and disrupts the mitochondrial transmembrane potential. Finally, we showed that apoptosis occurred in HeLa cells through an identical pathway. These results suggest that disruption of mitochondrial functions by Vpr induces apoptosis via cell cycle arrest at G(1), but that apoptosis is independent of G(2)/M arrest. Furthermore, it appears that Vpr acts species-specifically with respect to induction of cell cycle arrest but not of apoptosis.
Collapse
Affiliation(s)
- Akihiko Azuma
- Retrovirus Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Nakazawa J, Watanabe N, Imoto M, Osada H. Mutational analysis of growth arrest and cellular localization of human immunodeficiency virus type 1 Vpr in the budding yeast, Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2005; 51:245-56. [PMID: 16205032 DOI: 10.2323/jgam.51.245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Viral protein R (Vpr), one of the accessory gene products of human immunodeficiency virus type 1 (HIV-1), is responsible for the incorporation of a viral genome into the nucleus upon infection. Vpr also arrests the cell cycle and induces apoptosis in infected cells. Similarly, in yeast, Vpr localizes in the nucleus and shows growth inhibitory activity; however, the molecular mechanism of growth inhibition remains unknown. To elucidate this mechanism, several point mutations of Vpr, which are known to perturb several phenotypes of Vpr in mammalian cells, were introduced in the budding yeast, Saccharomyces cerevisiae. For the first time, we found that growth inhibition by Vpr occurred independently of intracellular localization in yeast, as has previously been reported in mammals. We also identified several amino acid residues, the mutation of which cancels growth inhibitory activity, and/or alters localization, both in yeast and mammalian cells, suggesting the importance of these residues for the phenotypes.
Collapse
Affiliation(s)
- Junko Nakazawa
- Antibiotics Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama, Japan
| | | | | | | |
Collapse
|
29
|
Li L, Li HS, Pauza CD, Bukrinsky M, Zhao RY. Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions. Cell Res 2005; 15:923-34. [PMID: 16354571 DOI: 10.1038/sj.cr.7290370] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Active host-pathogen interactions take place during infection of human immunodeficiency virus type 1 (HIV-1). Outcomes of these interactions determine the efficiency of viral infection and subsequent disease progression. HIV-infected cells respond to viral invasion with various defensive strategies such as innate, cellular and humoral immune antiviral mechanisms. On the other hand, the virus has also developed various offensive tactics to suppress these host cellular responses. Among many of the viral offensive strategies, HIV-1 viral auxiliary proteins (Tat, Rev, Nef, Vif, Vpr and Vpu) play important roles in the host-pathogen interaction and thus have significant impacts on the outcome of HIV infection. One of the best examples is the interaction of Vif with a host cytidine deaminase APOBEC3G. Although specific roles of other auxiliary proteins are not as well described as Vif-APOBEC3G interaction, it is the goal of this brief review to summarize some of the preliminary findings with the hope to stimulate further discussion and investigation in this exhilarating area of research.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, Institute of Human Virology,University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
30
|
Andersen JL, Zimmerman ES, DeHart JL, Murala S, Ardon O, Blackett J, Chen J, Planelles V. ATR and GADD45alpha mediate HIV-1 Vpr-induced apoptosis. Cell Death Differ 2005; 12:326-34. [PMID: 15650754 DOI: 10.1038/sj.cdd.4401565] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) accessory gene vpr encodes a conserved 96-amino-acid protein that is necessary and sufficient for the HIV-1-induced block of cellular proliferation. Expression of vpr in CD4+ lymphocytes results in G2 arrest, followed by apoptosis. In a previous study, we identified the ataxia telangiectasia-mutated (ATM) and Rad3-related protein (ATR) as a cellular factor that mediates Vpr-induced cell cycle arrest. In the present study, we report that the breast cancer-associated protein-1 (BRCA1), a known target of ATR, is activated in the presence of Vpr. In addition, the gene encoding the growth arrest and DNA damage-45 protein alpha (GADD45alpha), a known transcriptional target of BRCA1, is upregulated by Vpr in an ATR-dependent manner. We demonstrate that RNAi-mediated silencing of either ATR or GADD45alpha leads to nearly complete suppression of the proapoptotic effect of Vpr. Our results support a model in which Vpr-induced apoptosis is mediated via ATR phosphorylation of BRCA1, and consequent upregulation of GADD45alpha.
Collapse
Affiliation(s)
- J L Andersen
- Department of Pathology, Division of Cellular Biology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kuramitsu M, Hashizume C, Yamamoto N, Azuma A, Kamata M, Yamamoto N, Tanaka Y, Aida Y. A novel role for Vpr of human immunodeficiency virus type 1 as a regulator of the splicing of cellular pre-mRNA. Microbes Infect 2005; 7:1150-60. [PMID: 15908254 DOI: 10.1016/j.micinf.2005.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Accepted: 03/21/2005] [Indexed: 12/13/2022]
Abstract
Vpr, one of the accessory gene products of human immunodeficiency virus type 1 (HIV-1), affects aspects of both viral and cellular proliferation, being involved in long terminal repeat (LTR) activation, arrest of the cell cycle at the G2 phase, and apoptosis. We have discovered a novel role for Vpr as a regulator of the splicing of pre-mRNA both in vivo and in vitro. We found, by RT-PCR and RNase protection analysis, that Vpr caused the accumulation of incompletely spliced forms of alpha-globin 2 and beta-globin pre-mRNAs in cells that had been transiently transfected with a Vpr expression vector. We postulated that this novel effect of Vpr might occur via a pathway that is distinct from arrest of the cell cycle at G2. By analyzing splicing reactions in vitro, we showed that Vpr inhibited the splicing of beta-globin pre-mRNA in vitro. The splicing of intron 1 of alpha-globin 2 pre-mRNA was modestly inhibited by Vpr but the splicing of intron 2 was unaffected. Interestingly, an experimental infection system which utilizes high-titered HIV-1/vesticular stomatitis virus G protein showed that Vpr expressed from an HIV-1 provirus was sufficient to accumulate endogenous alpha-globin 2 pre-mRNA. Thus, it is likely that Vpr contributes to selective inhibition of the splicing of cellular pre-mRNA.
Collapse
Affiliation(s)
- Madoka Kuramitsu
- Retrovirus Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Le Rouzic E, Benichou S. The Vpr protein from HIV-1: distinct roles along the viral life cycle. Retrovirology 2005; 2:11. [PMID: 15725353 PMCID: PMC554975 DOI: 10.1186/1742-4690-2-11] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 02/22/2005] [Indexed: 12/30/2022] Open
Abstract
The genomes of human and simian immunodeficiency viruses (HIV and SIV) encode the gag, pol and env genes and contain at least six supplementary open reading frames termed tat, rev, nef, vif, vpr, vpx and vpu. While the tat and rev genes encode regulatory proteins absolutely required for virus replication, nef, vif, vpr, vpx and vpu encode for small proteins referred to "auxiliary" (or "accessory"), since their expression is usually dispensable for virus growth in many in vitro systems. However, these auxiliary proteins are essential for viral replication and pathogenesis in vivo. The two vpr- and vpx-related genes are found only in members of the HIV-2/SIVsm/SIVmac group, whereas primate lentiviruses from other lineages (HIV-1, SIVcpz, SIVagm, SIVmnd and SIVsyk) contain a single vpr gene. In this review, we will mainly focus on vpr from HIV-1 and discuss the most recent developments in our understanding of Vpr functions and its role during the virus replication cycle.
Collapse
Affiliation(s)
- Erwann Le Rouzic
- Institut Cochin, Department of Infectious Diseases, INSERM U567, CNRS UMR8104, Université Paris 5, Paris, France
| | - Serge Benichou
- Institut Cochin, Department of Infectious Diseases, INSERM U567, CNRS UMR8104, Université Paris 5, Paris, France
| |
Collapse
|
33
|
Iijima S, Nitahara-Kasahara Y, Kimata K, Zhong Zhuang W, Kamata M, Isogai M, Miwa M, Tsunetsugu-Yokota Y, Aida Y. Nuclear localization of Vpr is crucial for the efficient replication of HIV-1 in primary CD4+ T cells. Virology 2004; 327:249-61. [PMID: 15351213 DOI: 10.1016/j.virol.2004.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 06/17/2004] [Indexed: 11/21/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr appears to make a substantial contribution to the replication of HIV-1 in established T cell lines when HIV-1 is present at very low multiplicities of infection. However, the role of Vpr in viral replication in primary CD4+ T cells remains to be clarified. In this study, we generated a panel of viruses that encoded mutant forms of Vpr that lacked either the ability to accumulate in the nucleus and induce G2 arrest or the ability to induce apoptosis, which has been shown to occur independently of G2 arrest of the cell cycle. We demonstrate here that the nuclear localization of Vpr and consequent G2 arrest but not the induction of apoptosis by Vpr are important for viral replication in primary CD4+ T cells at both high and low multiplicities of infection. Viruses that encoded mutant forms of Vpr that failed to be imported into the nucleus in the presence of cytoplasmic extracts from primary CD4+ T cells in an in vitro nuclear import assay replicated at drastically reduced rates. Thus, Vpr might be a key regulator of the viral nuclear import process during infection in primary CD4+ T cells. By contrast, a mutant form of Vpr that exhibited diffuse cytosolic staining exclusively in an immunofluorescence assay of HeLa cells and was not imported into nucleus by the cytosol from HeLa cells was effectively imported into the nucleus by cytosol from primary CD4+ T cells. This Vpr mutant virus replicated well in primary CD4+ T cells, indicating that cellular factors in primary CD4+ T cells are indispensable for the accumulation of Vpr in the nucleus and, thus, for viral replication. Our results suggest that the nuclear import of Vpr might be a good target in efforts to block the early stages of replication of HIV-1.
Collapse
Affiliation(s)
- Sayuki Iijima
- Retrovirus Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bouzar AB, Villet S, Morin T, Rea A, Genestier L, Guiguen F, Garnier C, Mornex JF, Narayan O, Chebloune Y. Simian immunodeficiency virus Vpr/Vpx proteins kill bystander noninfected CD4+ T-lymphocytes by induction of apoptosis. Virology 2004; 326:47-56. [PMID: 15262494 DOI: 10.1016/j.virol.2004.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 03/01/2004] [Accepted: 05/18/2004] [Indexed: 11/24/2022]
Abstract
The depletion of CD4+ T-lymphocytes central to the immunodeficiency in acquired immunodeficiency syndrome (AIDS) is largely mediated by apoptosis of both infected and uninfected cells, but the mechanisms involved and the viral proteins responsible are still poorly characterized. It has recently been suggested that, in human and simian immunodeficiency virus (HIV) and SIV, Vpr is a major modulator of apoptosis in infected cells. Recently, we have reported on a chimera of caprine arthritis-encephalitis virus (CAEV) carrying vpr/vpx genes from SIVmac239, which is replication competent in goat macrophages but not in lymphocytes or human cells. Despite infection being restricted to macrophages, inoculation of primary goat peripheral blood mononuclear cells (PBMCs) with this chimera induced apoptosis in the lymphocyte population. In addition, when infected goat synovial membrane (GSM) cells were co-cultured with human CD4+ T lymphocyte SupT1 cell line, these CD4+ T cells showed increased apoptosis. The parental CAEV induced no significant apoptosis in goat PBMC cultures or in co-cultures with human SupT1 lymphocytes. This indicates that SIV Vpr/Vpx proteins indeed mediate apoptosis of T-lymphocytes and, moreover, do so without the need for active infection of these cells. Moreover, this apoptosis was observed when SupT1s were cocultured in direct contact, but not in absence of contact with CAEV-pBSCAvpxvpr-infected GSM cells. In view of these data, we propose that SIV Vpx/Vpr activate cell-to-cell contact-dependent extracellular signaling pathways to promote apoptotic death of uninfected bystander T-lymphocytes. Understanding this mechanism might bring insight for intervening in the loss of CD4+ T lymphocytes in the SIV infection model and in human AIDS.
Collapse
Affiliation(s)
- Amel Baya Bouzar
- UMR 754 INRA/ENVL/UCBL Rétrovirus et Pathologie Comparée Virologie Cellulaire, Moléculaire et Maladies Emergentes, IFR-128 Université Claude Bernard Lyon-1, 69366, Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Iordanskiy S, Zhao Y, Dubrovsky L, Iordanskaya T, Chen M, Liang D, Bukrinsky M. Heat shock protein 70 protects cells from cell cycle arrest and apoptosis induced by human immunodeficiency virus type 1 viral protein R. J Virol 2004; 78:9697-704. [PMID: 15331702 PMCID: PMC515005 DOI: 10.1128/jvi.78.18.9697-9704.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is an accessory protein that plays an important role in viral pathogenesis. This pathogenic activity of Vpr is related in part to its capacity to induce cell cycle G2 arrest and apoptosis of target T cells. A screening for multicopy suppressors of these Vpr activities in fission yeast identified heat shock protein 70 (Hsp70) as a suppressor of Vpr-induced cell cycle arrest. Hsp70 is a member of a family of molecular chaperones involved in innate immunity and protection from environmental stress. In this report, we demonstrate that HIV-1 infection induces Hsp70 in target cells. Overexpression of Hsp70 reduced the Vpr-dependent G2 arrest and apoptosis and also reduced replication of the Vpr-positive, but not Vpr-deficient, HIV-1. Suppression of Hsp70 expression by RNA interference (RNAi) resulted in increased apoptosis of cells infected with a Vpr-positive, but not Vpr-defective, HIV-1. Replication of the Vpr-positive HIV-1 was also increased when Hsp70 expression was diminished. Vpr and Hsp70 coimmunoprecipitated from HIV-infected cells. Together, these results identify Hsp70 as a novel anti-HIV innate immunity factor that targets HIV-1 Vpr.
Collapse
Affiliation(s)
- Sergey Iordanskiy
- The George Washington University, Ross Hall Rm. 734, 2300 Eye St. N.W., Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Waldhuber MG, Bateson M, Tan J, Greenway AL, McPhee DA. Studies with GFP-Vpr fusion proteins: induction of apoptosis but ablation of cell-cycle arrest despite nuclear membrane or nuclear localization. Virology 2003; 313:91-104. [PMID: 12951024 DOI: 10.1016/s0042-6822(03)00258-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein is known to arrest the cell cycle in G(2)/M and induce apoptosis following arrest. The functions of Vpr relative to its location in the cell remain unresolved. We now demonstrate that the location and function of Vpr are dependent on the makeup of fusion proteins and that the functions of G(2)/M arrest and apoptosis are separable. Using green fluorescence protein mutants (EGFP or EYFP), we found that fusion at either the N- or C-terminus compromised the ability of Vpr to arrest cell cycling, relative to that of His-Vpr or wild-type protein. Additionally, utilizing the ability to specifically identify cells expressing the fusion proteins, we confirm that Vpr can induce apoptosis, but appears to be independent of cell-cycle arrest in G(2)/M. Both N- and C-terminal Vpr/EYFP fusion proteins induced apoptosis but caused minimal G(2)/M arrest. These studies with Vpr fusion proteins indicate that the functions of Vpr leading to G(2)/M arrest and apoptosis are separable and that fusion of Vpr to EGFP or EYFP affected the localization of the protein. Our findings suggest that nuclear membrane localization and nuclear import and export are strongly governed by modification of the N-terminus of Vpr.
Collapse
Affiliation(s)
- Megan G Waldhuber
- Department of Microbiology, Monash University, Clayton, Victoria, 3168, Australia
| | | | | | | | | |
Collapse
|
37
|
Yao XJ, Lemay J, Rougeau N, Clément M, Kurtz S, Belhumeur P, Cohen EA. Genetic selection of peptide inhibitors of human immunodeficiency virus type 1 Vpr. J Biol Chem 2002; 277:48816-26. [PMID: 12379652 DOI: 10.1074/jbc.m207982200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) encodes a gene product, Vpr, that facilitates the nuclear uptake of the viral pre-integration complex in non-dividing cells and causes infected cells to arrest in the G(2) phase of the cell cycle. Vpr was also shown to cause mitochondrial dysfunction in human cells and budding yeasts, an effect that was proposed to lead to growth arrest and cell killing in budding yeasts and apoptosis in human cells. In this study, we used a genetic selection in Saccharomyces cerevisiae to identify hexameric peptides that suppress the growth arrest phenotype mediated by Vpr. Fifteen selected glutathione S-transferase (GST)-fused peptides were found to overcome to different extents Vpr-mediated growth arrest. Amino acid analysis of the inhibitory peptide sequences revealed the conservation of a di-tryptophan (diW) motif. DiW-containing GST-peptides interacted with Vpr in GST pull-down assays, and their level of interaction correlated with their ability to overcome Vpr-mediated growth arrest. Importantly, Vpr-binding GST-peptides were also found to alleviate Vpr-mediated apoptosis and G(2) arrest in HIV-1-producing CD4(+) T cell lines. Furthermore, they co-localized with Vpr and interfered with its nuclear translocation. Overall, this study defines a class of diW-containing peptides that inhibit HIV-1 Vpr biological activities most likely by interacting with Vpr and interfering with critical protein interactions.
Collapse
Affiliation(s)
- Xiao-Jian Yao
- Laboratoire de Rétrovirologie Humaine, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Mueller SM, Lang SM. The first HxRxG motif in simian immunodeficiency virus mac239 Vpr is crucial for G(2)/M cell cycle arrest. J Virol 2002; 76:11704-9. [PMID: 12388729 PMCID: PMC136740 DOI: 10.1128/jvi.76.22.11704-11709.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly conserved Vpr protein mediates cell cycle arrest, transcriptional transactivation, and nuclear import of the preintegration complex in human immunodeficiency virus type 1. To identify functional domains in simian immunodeficiency virus (SIV) mac239 Vpr, we mutagenized selected motifs within an alpha-helical region and two C-terminal HxRxG motifs. All Vpr mutants located to the nucleus. Substitution of four amino acids in the alpha-helical domain did not interfere with cell cycle arrest, while a single substitution abolished cell cycle arrest function. Mutation of the first HxRxG motif to AxAxA also resulted in loss of cell cycle arrest, while mutation of the second motif had no effect. Interestingly, both Vpr mutants impaired in cell cycle arrest function also showed reduced transactivation of the SIV long terminal repeat, suggesting that arrest of cells at G(2)/M mediates or contributes to transactivation by Vpr.
Collapse
Affiliation(s)
- Sandra M Mueller
- Institut für Klinische und Molekulare Virologie, University of Erlangen-Nuernberg, D-91054 Erlangen, Germany
| | | |
Collapse
|