1
|
The Apical Region of the Herpes Simplex Virus Major Capsid Protein Promotes Capsid Maturation. J Virol 2018; 92:JVI.00821-18. [PMID: 29976665 DOI: 10.1128/jvi.00821-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023] Open
Abstract
The herpesvirus capsid assembles in the nucleus as an immature procapsid precursor built around viral scaffold proteins. The event that initiates procapsid maturation is unknown, but it is dependent upon activation of the VP24 internal protease. Scaffold cleavage triggers angularization of the shell and its decoration with the VP26 and pUL25 capsid-surface proteins. In both the procapsid and mature angularized capsid, the apical region of the major capsid protein (VP5) is surface exposed. We investigated whether the VP5 apical region contributes to intracellular transport dynamics following entry into primary sensory neurons and also tested the hypothesis that conserved negatively charged amino acids in the apical region contribute to VP26 acquisition. To our surprise, neither hypothesis proved true. Instead, mutation of glutamic acid residues in the apical region delayed viral propagation and induced focal capsid accumulations in nuclei. Examination of capsid morphogenesis based on epitope unmasking, capsid composition, and ultrastructural analysis indicated that these clusters consisted of procapsids. The results demonstrate that, in addition to established events that occur inside the capsid, the exterior capsid shell promotes capsid morphogenesis and maturation.IMPORTANCE Herpesviruses assemble capsids and encapsidate their genomes by a process that is unlike those of other mammalian viruses but is similar to those of some bacteriophage. Many important aspects of herpesvirus morphogenesis remain enigmatic, including how the capsid shell matures into a stable angularized configuration. Capsid maturation is triggered by activation of a protease that cleaves an internal protein scaffold. We report on the fortuitous discovery that a region of the major capsid protein that is exposed on the outer surface of the capsid also contributes to capsid maturation, demonstrating that the morphogenesis of the capsid shell from its procapsid precursor to the mature angularized form is dependent upon internal and external components of the megastructure.
Collapse
|
2
|
Highly specific salt bridges govern bacteriophage P22 icosahedral capsid assembly: identification of the site in coat protein responsible for interaction with scaffolding protein. J Virol 2014; 88:5287-97. [PMID: 24600011 DOI: 10.1128/jvi.00036-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Icosahedral virus assembly requires a series of concerted and highly specific protein-protein interactions to produce a proper capsid. In bacteriophage P22, only coat protein (gp5) and scaffolding protein (gp8) are needed to assemble a procapsid-like particle, both in vivo and in vitro. In scaffolding protein's coat binding domain, residue R293 is required for procapsid assembly, while residue K296 is important but not essential. Here, we investigate the interaction of scaffolding protein with acidic residues in the N-arm of coat protein, since this interaction has been shown to be electrostatic. Through site-directed mutagenesis of genes 5 and 8, we show that changing coat protein N-arm residue 14 from aspartic acid to alanine causes a lethal phenotype. Coat protein residue D14 is shown by cross-linking to interact with scaffolding protein residue R293 and, thus, is intimately involved in proper procapsid assembly. To a lesser extent, coat protein N-arm residue E18 is also implicated in the interaction with scaffolding protein and is involved in capsid size determination, since a cysteine mutation at this site generated petite capsids. The final acidic residue in the N-arm that was tested, E15, is shown to only weakly interact with scaffolding protein's coat binding domain. This work supports growing evidence that surface charge density may be the driving force of virus capsid protein interactions. IMPORTANCE Bacteriophage P22 infects Salmonella enterica serovar Typhimurium and is a model for icosahedral viral capsid assembly. In this system, coat protein interacts with an internal scaffolding protein, triggering the assembly of an intermediate called a procapsid. Previously, we determined that there is a single amino acid in scaffolding protein required for P22 procapsid assembly, although others modulate affinity. Here, we identify partners in coat protein. We show experimentally that relatively weak interactions between coat and scaffolding proteins are capable of driving correctly shaped and sized procapsids and that the lack of these proper protein-protein interfaces leads to aberrant structures. The present work represents an important contribution supporting the hypothesis that virus capsid assembly is governed by seemingly simple interactions. The highly specific nature of the subunit interfaces suggests that these could be good targets for antivirals.
Collapse
|
3
|
Yang K, Wills E, Baines JD. A herpes simplex virus scaffold peptide that binds the portal vertex inhibits early steps in viral replication. J Virol 2013; 87:6876-87. [PMID: 23576509 PMCID: PMC3676109 DOI: 10.1128/jvi.00421-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022] Open
Abstract
Previous experiments identified a 12-amino-acid (aa) peptide that was sufficient to interact with the herpes simplex virus 1 (HSV-1) portal protein and was necessary to incorporate the portal into capsids. In the present study, cells were treated at various times postinfection with peptides consisting of a portion of the Drosophila antennapedia protein, previously shown to enter cells efficiently, fused to either wild-type HSV-1 scaffold peptide (YPYYPGEARGAP) or a control peptide that contained changes at positions 4 and 5. These 4-tyrosine and 5-proline residues are highly conserved in herpesvirus scaffold proteins and were previously shown to be critical for the portal interaction. Treatment early in infection with subtoxic levels of wild-type peptide reduced viral infectivity by over 1,000-fold, while the mutant peptide had little effect on viral yields. In cells infected for 3 h in the presence of wild-type peptide, capsids were observed to transit to the nuclear rim normally, as viewed by fluorescence microscopy. However, observation by electron microscopy in thin sections revealed an aberrant and significant increase of DNA-containing capsids compared to infected cells treated with the mutant peptide. Early treatment with peptide also prevented formation of viral DNA replication compartments. These data suggest that the antiviral peptide stabilizes capsids early in infection, causing retention of DNA within them, and that this activity correlates with peptide binding to the portal protein. The data are consistent with the hypothesis that the portal vertex is the conduit through which DNA is ejected to initiate infection.
Collapse
Affiliation(s)
- Kui Yang
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|
4
|
Xiang Z, He Y. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC Bioinformatics 2013; 14 Suppl 4:S2. [PMID: 23514126 PMCID: PMC3599071 DOI: 10.1186/1471-2105-14-s4-s2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Herpes simplex virus (HSV) types 1 and 2 (HSV-1 and HSV-2) are the most common infectious agents of humans. No safe and effective HSV vaccines have been licensed. Reverse vaccinology is an emerging and revolutionary vaccine development strategy that starts with the prediction of vaccine targets by informatics analysis of genome sequences. Vaxign (http://www.violinet.org/vaxign) is the first web-based vaccine design program based on reverse vaccinology. In this study, we used Vaxign to analyze 52 herpesvirus genomes, including 3 HSV-1 genomes, one HSV-2 genome, 8 other human herpesvirus genomes, and 40 non-human herpesvirus genomes. The HSV-1 strain 17 genome that contains 77 proteins was used as the seed genome. These 77 proteins are conserved in two other HSV-1 strains (strain F and strain H129). Two envelope glycoproteins gJ and gG do not have orthologs in HSV-2 or 8 other human herpesviruses. Seven HSV-1 proteins (including gJ and gG) do not have orthologs in all 40 non-human herpesviruses. Nineteen proteins are conserved in all human herpesviruses, including capsid scaffold protein UL26.5 (NP_044628.1). As the only HSV-1 protein predicted to be an adhesin, UL26.5 is a promising vaccine target. The MHC Class I and II epitopes were predicted by the Vaxign Vaxitop prediction program and IEDB prediction programs recently installed and incorporated in Vaxign. Our comparative analysis found that the two programs identified largely the same top epitopes but also some positive results predicted from one program might not be positive from another program. Overall, our Vaxign computational prediction provides many promising candidates for rational HSV vaccine development. The method is generic and can also be used to predict other viral vaccine targets.
Collapse
Affiliation(s)
- Zuoshuang Xiang
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
5
|
Identification of a varicella-zoster virus replication inhibitor that blocks capsid assembly by interacting with the floor domain of the major capsid protein. J Virol 2012; 86:12198-207. [PMID: 22933294 DOI: 10.1128/jvi.01280-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel anti-varicella-zoster virus compound, a derivative of pyrazolo[1,5-c]1,3,5-triazin-4-one (coded as 35B2), was identified from a library of 9,600 random compounds. This compound inhibited both acyclovir (ACV)-resistant and -sensitive strains. In a plaque reduction assay under conditions in which the 50% effective concentration of ACV against the vaccine Oka strain (V-Oka) in human fibroblasts was 4.25 μM, the 50% effective concentration of 35B2 was 0.75 μM. The selective index of the compound was more than 200. Treatment with 35B2 inhibited neither immediate-early gene expression nor viral DNA synthesis. Twenty-four virus clones resistant to 35B2 were isolated, all of which had a mutation(s) in the amino acid sequence of open reading frame 40 (ORF40), which encodes the major capsid protein (MCP). Most of the mutations were located in the regions corresponding to the "floor" domain of the MCP of herpes simplex virus 1. Treatment with 35B2 changed the localization of MCP in the fibroblasts infected with V-Oka but not in the fibroblasts infected with the resistant clones, although it did not affect steady-state levels of MCP. Overexpression of the scaffold proteins restored the normal MCP localization in the 35B2-treated infected cells. The compound did not inhibit the scaffold protein-mediated translocation of MCP from the cytoplasm to the nucleus. Electron microscopic analysis demonstrated the lack of capsid formation in the 35B2-treated infected cells. These data indicate the feasibility of developing a new class of antivirals that target the herpesvirus MCPs and inhibit normal capsid formation by a mechanism that differs from those of the known protease and encapsidation inhibitors. Further biochemical studies are required to clarify the precise antiviral mechanism.
Collapse
|
6
|
Yang K, Wills EG, Baines JD. Release of the herpes simplex virus 1 protease by self cleavage is required for proper conformation of the portal vertex. Virology 2012; 429:63-73. [PMID: 22543049 DOI: 10.1016/j.virol.2012.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/11/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
We identify an NLS within herpes simplex virus scaffold proteins that is required for optimal nuclear import of these proteins into infected or uninfected nuclei, and is sufficient to mediate nuclear import of GFP. A virus lacking this NLS replicated to titers reduced by 1000-fold, but was able to make capsids containing both scaffold and portal proteins suggesting that other functions can complement the NLS in infected cells. We also show that Vp22a, the major scaffold protein, is sufficient to mediate the incorporation of portal protein into capsids, whereas proper portal immunoreactivity in the capsid requires the larger scaffold protein pU(L)26. Finally, capsid angularization in infected cells did not require the HSV-1 protease unless full length pU(L)26 was expressed. These data suggest that the HSV-1 portal undergoes conformational changes during capsid maturation, and reveal that full length pU(L)26 is required for this conformational change.
Collapse
Affiliation(s)
- Kui Yang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
7
|
Luna E, Rodríguez-Huete A, Rincón V, Mateo R, Mateu MG. Systematic study of the genetic response of a variable virus to the introduction of deleterious mutations in a functional capsid region. J Virol 2009; 83:10140-51. [PMID: 19625409 PMCID: PMC2748030 DOI: 10.1128/jvi.00903-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/11/2009] [Indexed: 11/20/2022] Open
Abstract
We have targeted the intersubunit interfaces in the capsid of foot-and-mouth disease virus to investigate the genetic response of a variable virus when individual deleterious mutations are systematically introduced along a functionally defined region of its genome. We had previously found that the individual truncation (by mutation to alanine) of 28 of the 42 amino acid side chains per protomer involved in interactions between capsid pentameric subunits severely impaired infectivity. We have now used viral RNAs individually containing each of those 28 deleterious mutations (or a few others) to carry out a total of 96 transfections of susceptible cells, generally followed by passage(s) of the viral progeny in cell culture. The results revealed a very high frequency of fixation in the capsid of second-site, stereochemically diverse substitutions that compensated for the detrimental effect of primary substitutions at many different positions. Most second-site substitutions occurred at or near the capsid interpentamer interfaces and involved residues that are spatially very close to the originally substituted residue. However, others occurred far from the primary substitution, and even from the interpentamer interfaces. Remarkably, most second-site substitutions involved only a few capsid residues, which acted as "second-site hot spots." Substitutions at these hot spots compensated for the deleterious effects of many different replacements at diverse positions. The remarkable capacity of the virus to respond to the introduction of deleterious mutations in the capsid with the frequent fixation of diverse second-site mutations, and the existence of second-site hot spots, may have important implications for virus evolution.
Collapse
Affiliation(s)
- Eva Luna
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
8
|
Tryptophan residues in the portal protein of herpes simplex virus 1 critical to the interaction with scaffold proteins and incorporation of the portal into capsids. J Virol 2009; 83:11726-33. [PMID: 19740984 DOI: 10.1128/jvi.01463-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Incorporation of the herpes simplex virus 1 (HSV-1) portal vertex into the capsid requires interaction with a 12-amino-acid hydrophobic domain within capsid scaffold proteins. The goal of this work was to identify domains and residues in the UL6-encoded portal protein pUL6 critical to the interaction with scaffold proteins. We show that whereas the wild-type portal and scaffold proteins readily coimmunoprecipitated with one another in the absence of other viral proteins, truncation beyond the first 18 or last 36 amino acids of the portal protein precluded this coimmunoprecipitation. The coimmunoprecipitation was also precluded by mutation of conserved tryptophan (W) residues to alanine (A) at positions 27, 90, 127, 163, 241, 262, 532, and 596 of UL6. All of these W-to-A mutations precluded the rescue of a viral deletion mutant lacking UL6, except W163A, which supported replication poorly, and W596A, which fully rescued replication. A recombinant virus bearing the W596A mutation replicated and packaged DNA normally, and scaffold proteins readily coimmunoprecipitated with portal protein from lysates of infected cells. Thus, viral functions compensated for the W596A mutation's detrimental effects on the portal-scaffold interaction seen during transient expression of portal and scaffold proteins. In contrast, the W27A mutation precluded portal-scaffold interactions in infected cell lysates, reduced the solubility of pUL6, decreased incorporation of the portal into capsids, and abrogated viral-DNA cleavage and packaging.
Collapse
|
9
|
Huang E, Perkins EM, Desai P. Structural features of the scaffold interaction domain at the N terminus of the major capsid protein (VP5) of herpes simplex virus type 1. J Virol 2007; 81:9396-407. [PMID: 17581992 PMCID: PMC1951396 DOI: 10.1128/jvi.00986-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein-protein interactions drive the assembly of the herpes simplex virus type 1 capsid. A key interaction occurs between the C terminus of the scaffold protein and the N terminus of the major capsid protein (VP5). Results from alanine-scanning mutagenesis of hydrophobic residues in the N terminus of VP5 revealed seven residues (I27, L35, F39, L58, L65, L67, and L71) that reside in two predicted alpha helices (helix 1(22-42) and helix 2(58-72)) that are important for this bimolecular interaction. The goal of the present study was to further characterize the VP5 scaffold interaction domain (SID). Amino acids at the seven positions were replaced with L, M, V or P (I27); I, M, V, or P (L35, L58, L65, L67, and L71); and H, W, Y, or L (F39). Replacement with a hydrophobic side chain did not affect the interaction with scaffold protein in yeast cells or the ability of a virus specifying the mutation from replicating in cells. The mutation to the proline side chain abolished the interaction in all cases and was lethal for virus replication. Mutant viruses with proline substitutions in helix 1(22-42) at positions 27 and 35 assembled large open capsid shells that did not attain closure. Proline substitutions in helix 2(58-72) at either position 59, 65, or 67 abolished the accumulation of VP5 protein, and, at 58 and 71, although VP5 did accumulate, capsid shells were not assembled. Thus, the second SID, SID2, is highly structured, and this alpha helix (helix 2(58-72)) is likely involved in capsomere-capsomere interactions during shell accretion. Conserved glycine G59 in helix 2(58-72) was also mutated. G59 may act as a flexible "hinge" in helix 2(58-72) because decreasing the movement of this side chain by replacement with valine impaired capsid assembly. Thus, the N terminus of VP5 and the alpha helices embedded in this domain, as in the capsid shell proteins of some double-stranded DNA phages, are a key regulator of shell accretion and stabilization.
Collapse
Affiliation(s)
- Eugene Huang
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
10
|
Affiliation(s)
- Bentley A Fane
- Department of Veterinary Sciences and Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
11
|
Walters JN, Sexton GL, McCaffery JM, Desai P. Mutation of single hydrophobic residue I27, L35, F39, L58, L65, L67, or L71 in the N terminus of VP5 abolishes interaction with the scaffold protein and prevents closure of herpes simplex virus type 1 capsid shells. J Virol 2003; 77:4043-59. [PMID: 12634364 PMCID: PMC150648 DOI: 10.1128/jvi.77.7.4043-4059.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein-protein interactions drive the assembly of the herpes simplex virus type 1 (HSV-1) capsid. A key interaction occurs between the C-terminal tail of the scaffold protein (pre-22a) and the major capsid protein (VP5). Previously (Z. Hong, M. Beaudet-Miller, J. Durkin, R. Zhang, and A. D. Kwong, J. Virol. 70:533-540, 1996) it was shown that the minimal domain in the scaffold protein necessary for this interaction was composed of a hydrophobic amphipathic helix. The goal of this study was to identify the hydrophobic residues in VP5 important for this bimolecular interaction. Results from the genetic analysis of second-site revertant virus mutants identified the importance of the N terminus of VP5 for the interaction with the scaffold protein. This allowed us to focus our efforts on a small region of this large polypeptide. Twenty-four hydrophobic residues, starting at L23 and ending at F84, were mutated to alanine. All the mutants were first screened for interaction with pre-22a in the yeast two-hybrid assay. From this in vitro assay, seven residues, I27, L35, F39, L58, L65, L67, and L71, that eliminated the interaction when mutated were identified. All 24 mutants were introduced into the virus genome with a genetic marker rescue/marker transfer system. For this system, viruses and cell lines that greatly facilitated the introduction of the mutants into the genome were made. The same seven mutants that abolished interaction of VP5 with pre-22a resulted in an absolute requirement for wild-type VP5 for growth of the viruses. The viruses encoding these mutations in VP5 were capable of forming capsid shells comprised of VP5, VP19C, VP23, and VP26, but the closure of these shells into an icosahedral structure was prevented. Mutation at L75 did not affect the ability of this protein to interact with pre-22a, as judged from the in vitro assay, but this mutation specified a lethal effect for virus growth and abolished the formation of any detectable assembled structure. Thus, it appears that the L75 residue is important for another essential interaction of VP5 with the capsid shell proteins. The congruence of the data from the previous and present studies demonstrates the key roles of two regions in the N terminus of this large protein that are crucial for this bimolecular interaction. Thus, residues I27, L35, and F39 comprise the first subdomain and residues L58, L65, L67 and L71 comprise a second subdomain of VP5. These seven hydrophobic residues are important for the interaction of VP5 with the scaffold protein and consequently the formation of an icosahedral shell structure that encloses the viral genome.
Collapse
Affiliation(s)
- Jewell N Walters
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
12
|
Warner SC, Chytrova G, Desai P, Person S. Mutations in the N-terminus of VP5 alter its interaction with the scaffold proteins of herpes simplex virus type 1. Virology 2001; 284:308-16. [PMID: 11384229 DOI: 10.1006/viro.2001.0925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the assembly process of herpes simplex virus type 1 capsids, there is an essential interaction between the C-terminal tail of the scaffold proteins (22a and 21) and the major capsid protein (VP5). Recent studies of spontaneous revertant viruses that overcome a blocked maturation cleavage site of the scaffold proteins have shown that the N-terminus of VP5 is important for this interaction. One of the revertant viruses, PR7, encodes a second-site mutation at residue 69 of VP5 which unlike wild-type VP5 fails to interact with 22a and thus gives white colonies in the yeast two-hybrid assay. In the present study a small DNA fragment, encoding residues 1 to 85 of wild-type and PR7 VP5, was mutagenized using error-prone PCR. Mutagenized DNA was used in the yeast two-hybrid assay to identify mutations in wild-type VP5 that resulted in loss of 22a binding (white colonies), or in PR7 VP5 that resulted in a gain of function (blue colonies). For the loss of function experiments, using KOS VP5, a row of eight thymidine nucleotides (codons 37-40) resulted in many frameshift mutations, which led us to terminate the study without reaching a statistically significant result. For the PR7 experiment, 30 clones were identified that had single amino acid substitutions, and these mutations were localized to amino acids 27-45 and 63-84 of VP5. The most frequent mutation was a reversion back to wild-type. The next most frequent were E28K and N63S, and these gave the highest beta-galactosidase enzyme activities (indicative of PR7VP5-22a interaction), 30 and 20% of wild-type, respectively. When E28K and N63S were transferred into the wild-type VP5 background, that is, in the absence of the PR7 mutation, they gave rise to different phenotypes. The E28K mutation lost its ability to interact with the scaffold proteins as judged by this assay. Therefore, it may be acting as a compensatory mutation whose phenotype is only expressed in the presence of the original PR7 mutation. However, the N63S mutation in the wild-type VP5 background increased the interaction, as judged by the beta-galactosidase activity, by a factor of 9 relative to when the PR7 mutation was present. Even more surprising, in the absence of the PR7 mutation the enzyme activity was still greater, by a factor of 2, than that observed for wild-type VP5. This study provides further evidence that the N-terminus of VP5 is in intimate association with the C-terminus of the scaffold proteins.
Collapse
Affiliation(s)
- S C Warner
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|