1
|
Jafarzade M, Ramezani M, Hedayati F, Mokhtarzade Z, Zare B, Sabet MS, Norouzi P, Malboobi MA. Antibody-Mediated Resistance to Rhizomania Disease in Sugar Beet Hairy Roots. THE PLANT PATHOLOGY JOURNAL 2019; 35:692-697. [PMID: 31832049 PMCID: PMC6901245 DOI: 10.5423/ppj.oa.04.2018.0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 06/10/2023]
Abstract
Agrobacterium rhizogenes-mediated transformation of sugar beet hairy roots expressing single-chain variable fragment (scFv) was exploited to evaluate the efficacy of four antibody-based constructs for interfering with the Beet necrotic yellow vein virus infection. The scFv specific to a major coat protein of virus, p21, was targeted to various cellular compartments including the cytosol (pIC and pICC constructs), apoplast (pIA), and mitochondrion (pIM). After mechanical virus inoculation, most of the hairy root clones expressing scFv in the cytosol displayed low virus titers while the majority of transgenic hairy root clones accumulated antibody in outer membrane of mitochondria or apoplast were infected. This hairy root system provided an efficient and rapid approach to initially investigating root disease resistance like rhizomania prior to transform whole recalcitrant plants such as sugar beet.
Collapse
Affiliation(s)
- M. Jafarzade
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 14965-161,
Iran
| | - M. Ramezani
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 14965-161,
Iran
| | - F. Hedayati
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 14965-161,
Iran
| | - Z. Mokhtarzade
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 14965-161,
Iran
| | - B. Zare
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 14965-161,
Iran
| | - M. S. Sabet
- Department of Agriculture, Tarbiat Modares University, Tehran 14115-336,
Iran
| | - P. Norouzi
- Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31585-4114,
Iran
| | - M. A. Malboobi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 14965-161,
Iran
| |
Collapse
|
2
|
Laufer M, Mohammad H, Christ DS, Riedel D, Maiss E, Varrelmann M, Liebe S. Fluorescent labelling of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus for co- and superinfection experiments in Nicotiana benthamiana. J Gen Virol 2018; 99:1321-1330. [PMID: 30058995 DOI: 10.1099/jgv.0.001122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Infectious full-length clones of Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV), both genus Benyvirus, were used for fluorescent labelling with the objective to study their interaction in coinfection and superinfection experiments. Fluorescent labelling was achieved by replacing a part of the RNA2 encoded coat protein read-through domain with either GFP or mRFP fluorescent marker proteins. This resulted in a translational fusion comprising the coat and the fluorescent protein. The labelled viruses were infectious and moved systemically in Nicotiana benthamiana, producing wild-type-like symptoms. Virus particles could be observed by electron microscopy, demonstrating that the viral read-through domain is dispensable for particle formation. Coinfection experiments revealed a spatial separation of differentially labelled populations of both identical and different Benyvirus species after N. benthamiana agro-inoculation. Identical observations were obtained when Tobacco rattle virus (TRV) was differentially labelled and used for coinfection. In contrast, coinfections of BSBMV with Potato virus X (PVX) or TRV resulted in many co-infected cells lacking spatial separation. Micro-projectile co-bombardment of N. benthamiana leaves revealed that two differently labelled populations of the same virus co-infected only a few cells before starting to separate. In superinfection experiments with N. benthamiana, BSBMV and BNYVV were unable to establish a secondary infection in plants that were previously infected with BNYVV or BSBMV. Taken together, this is the first work to describe the interaction between two economically important Benyviruses using fluorescence-labelled full-length clones.
Collapse
Affiliation(s)
- Marlene Laufer
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| | - Hamza Mohammad
- 2Department of Phytomedicine, Plant Virology, Institute of Horticultural Production Systems, Leibniz University, 30419 Hannover, Germany
| | - Daniela S Christ
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| | - Dietmar Riedel
- 3Laboratory of Electron Microscopy, Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Edgar Maiss
- 2Department of Phytomedicine, Plant Virology, Institute of Horticultural Production Systems, Leibniz University, 30419 Hannover, Germany
| | - Mark Varrelmann
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| | - Sebastian Liebe
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| |
Collapse
|
3
|
Almasi MA, Almasi G. Development and evaluation of a reverse transcription loop-mediated isothermal amplification assay for detection of beet necrotic yellow vein virus. Arch Virol 2016; 162:495-500. [PMID: 27738843 DOI: 10.1007/s00705-016-3116-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
Abstract
Sugar beet can be infected by many different viruses that can reduce yield; beet necrotic yellow vein virus (BNYVV) is one of the most economically important viruses of this crop plant. This report describes a new reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for identification of BNYVV. In addition, a novel immunocapture (IC) RT-LAMP assay for rapid and easy detection (without RNA extraction) of BNYVV was developed here and compared with DAS-ELISA and RT-LAMP assays. Our results show that the IC-RT-LAMP assay is a highly reliable alternative assay for identification of BNYVV.
Collapse
Affiliation(s)
- Mohammad Amin Almasi
- Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Galavizh Almasi
- Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Yang J, Zhang F, Xie L, Song XJ, Li J, Chen JP, Zhang HM. Functional identification of two minor capsid proteins from Chinese wheat mosaic virus using its infectious full-length cDNA clones. J Gen Virol 2016; 97:2441-2450. [PMID: 27357465 DOI: 10.1099/jgv.0.000532] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Full-length cDNA clones of Chinese wheat mosaic virus (CWMV) RNA1 and RNA2 were produced from single reverse transcription PCR reactions and transcripts were shown to be infectious in both wheat and Nicotiana benthamiana. An efficient and reliable agro-infiltration method was then developed for reverse genetic assays in N. benthamiana. Inoculation of infectious cDNA clones resulted in obvious chlorotic symptoms, and CWMV viral genomic RNAs, capsid protein (CP)-related proteins, and typical rod-shaped particles were detectable on the inoculated and upper leaves, similar to those of WT virus. The optimal temperature for virus multiplication was 12 °C, but the optimum for systematic infection in plants was 17 °C. Mutant clones that abolished the N- or C-terminal extensions of the major CP did not inhibit systemic infection or the formation of rod-shaped particles but sometimes modified the symptoms in inoculated plants. These results suggest that the two minor CP-related proteins of CWMV are dispensable for viral infection, replication, systemic movement and virion assembly in plants.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Fen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Li Xie
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xi-Jiao Song
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Jian-Ping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Heng-Mu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| |
Collapse
|
5
|
Dall'Ara M, Ratti C, Bouzoubaa SE, Gilmer D. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread. Viruses 2016; 8:E228. [PMID: 27548199 PMCID: PMC4997590 DOI: 10.3390/v8080228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the "life aspects" of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.
Collapse
Affiliation(s)
- Mattia Dall'Ara
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Claudio Ratti
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Salah E Bouzoubaa
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
6
|
Hull R. Replication of Plant Viruses. PLANT VIROLOGY 2014. [PMCID: PMC7184227 DOI: 10.1016/b978-0-12-384871-0.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses co-infecting cells. Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses coinfecting cells.
Collapse
|
7
|
Wei T, Miyazaki N, Uehara-Ichiki T, Hibino H, Shimizu T, Netsu O, Kikuchi A, Sasaya T, Iwasaki K, Omura T. Three-dimensional analysis of the association of viral particles with mitochondria during the replication of Rice gall dwarf virus. J Mol Biol 2011; 410:436-46. [PMID: 21635897 DOI: 10.1016/j.jmb.2011.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Examination of cultured insect vector cells that had been infected with Rice gall dwarf virus (RGDV), using transmission electron microscopy and confocal microscopy, revealed the presence of clusters of virus-coated mitochondria around viroplasms in which replication and assembly of RGDV occurred, suggesting a role for mitochondria in supplying the energy required for viral morphogenetic processes. Electron tomography revealed that RGDV particles on the surface of mitochondria are arrayed in an orderly but loose manner, unlike tightly packaged particles in vesicular compartments, suggesting the presence of counterpart molecules on the surface of mitochondria. The viral particles in close proximity to mitochondria were aligned along intermediate filaments, which might serve as scaffolds for the anchorage of these particles. RGDV has a putative mitochondrion-targeting sequence on the outer surface of the outer-capsid protein P8. The arrangement of RGDV particles around mitochondria suggests that the region of the P8 protein containing the mitochondrion-targeting sequence might attach to a molecule like a receptor on the outer mitochondrial membrane. Our analysis demonstrates the three-dimensional arrangement and molecular basis for the mitochondrial proximity of RGDV particles during viral replication.
Collapse
Affiliation(s)
- Taiyun Wei
- National Agricultural Research Center, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
McGrann GRD, Grimmer MK, Mutasa-Göttgens ES, Stevens M. Progress towards the understanding and control of sugar beet rhizomania disease. MOLECULAR PLANT PATHOLOGY 2009; 10:129-41. [PMID: 19161359 PMCID: PMC6640442 DOI: 10.1111/j.1364-3703.2008.00514.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rhizomania is a soil-borne disease that occurs throughout the major sugar beet growing regions of the world, causing severe yield losses in the absence of effective control measures. It is caused by Beet necrotic yellow vein virus (BNYVV), which is transmitted by the obligate root-infecting parasite Polymyxa betae. BNYVV has a multipartite RNA genome with all natural isolates containing four RNA species, although some isolates have a fifth RNA. The larger RNA1 and RNA2 contain the housekeeping genes of the virus and are always required for infection, whereas the smaller RNAs are involved in pathogenicity and vector transmission. RNA5-containing isolates are restricted to Asia and some parts of Europe, and these isolates tend to be more aggressive. With no acceptable pesticides available to restrict the vector, the control of rhizomania is now achieved almost exclusively through the use of resistant cultivars. A single dominant resistance gene, Rz1, has been used to manage the disease worldwide in recent years, although this gene confers only partial resistance. More recently, new variants of BNYVV have evolved (both with and without RNA5) that are able to cause significant yield penalties on resistant cultivars. These isolates are not yet widespread, but their appearance has resulted in accelerated searches for new sources of resistance to both the virus and the vector. Combined virus and vector resistance, achieved either by conventional or transgenic breeding, offers the sugar beet industry a new approach in its continuing struggle against rhizomania.
Collapse
Affiliation(s)
- Graham R D McGrann
- Broom's Barn Research Centre, Rothamsted Research, Department of Applied Crop Sciences, Higham, Bury St Edmunds, Suffolk IP28 6NP, UK
| | | | | | | |
Collapse
|
9
|
Jiang H, Zhang JM, Wang JP, Yang B, Liu CF, Lu J, Hu YY. Genetic engineering of Periplaneta fuliginosa densovirus as an improved biopesticide. Arch Virol 2006; 152:383-94. [PMID: 17057943 DOI: 10.1007/s00705-006-0844-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
The smoky-brown cockroach (Periplaneta fuliginosa) densovirus (PfDNV) has previously shown potential in urban pest control. To improve its efficacy as a biopesticide, the genome of PfDNV was engineered by inserting the insect-specific toxin gene BmKIT1 in the open reading frame encoding the major structural proteins. A green fluorescent protein (GFP) marker was tagged to the BmKIT1 at its C-terminus for in vivo imaging using Confocal laser scanning microscopy (CFSM). Using a virion rescue strategy, the genomes of recombinant and wild-type (wt) PfDNV were then cotransfected in P. fuliginosa nymphs. Reverse transcription PCR (RT-PCR) showed that the inserted BmkIT1 genes were expressed in the P. fuliginosa nymphs 48 h after cotransfection. CFSM and transmission electron microscopy also confirmed the generation of virus particles and expression of BmKIT1-GFP fusion protein in the cotransfected nymphs. The recombinant viruses remained infective to P. fuliginosa nymphs in feeding tests. Using the LT(50) bioassay method, the coninfection of the recombinant and wt PfDNV killed the P. fuliginosa nymphs approximate 32% faster than wt PfDNV only. This is the first report showing the improvement of engineered densovirus for the potential application of biopesticide.
Collapse
Affiliation(s)
- H Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Erhardt M, Vetter G, Gilmer D, Bouzoubaa S, Richards K, Jonard G, Guilley H. Subcellular localization of the Triple Gene Block movement proteins of Beet necrotic yellow vein virus by electron microscopy. Virology 2005; 340:155-66. [PMID: 16023167 DOI: 10.1016/j.virol.2005.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 06/01/2005] [Accepted: 06/07/2005] [Indexed: 11/16/2022]
Abstract
The Triple Gene Block proteins TGBp1, TGBp2, and TGBp3 of Beet necrotic yellow vein virus (BNYVV) are required for efficient cell-to-cell spread of the infection. The TGB proteins can drive cell-to-cell movement of BNYVV in trans when expressed from a co-inoculated BNYVV RNA 3-based 'replicon'. TGBp2 and TGBp3 expressed from the replicon were nonfunctional in this assay if they were fused to the green fluorescent protein (GFP), but addition of a hemagglutinin (HA) tag to their C-termini did not incapacitate movement. Immunogold labeling of ultrathin sections treated with HA-specific antibodies localized TGBp2-HA and TGBp3-HA to what are probably structurally modified plasmodesmata (Pd) in infected cells. A similar subcellular localization was observed for TGBp1. Large gold-decorated membrane-rich bodies containing what appear to be short fragments of endoplasmic reticulum were observed near the cell periphery. The modified gold-decorated Pd and the membrane-rich bodies were not observed when the TGB proteins were produced individually in infections using the Tobacco mosaic virus P30 protein to drive cell-to-cell movement, indicating that these modifications are specific for TGB-mediated movement.
Collapse
Affiliation(s)
- M Erhardt
- Institut de Biologie Moléculaire des Plantes du CNRS et de l'Université Louis Pasteur, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Valentin C, Dunoyer P, Vetter G, Schalk C, Dietrich A, Bouzoubaa S. Molecular basis for mitochondrial localization of viral particles during beet necrotic yellow vein virus infection. J Virol 2005; 79:9991-10002. [PMID: 16014959 PMCID: PMC1181617 DOI: 10.1128/jvi.79.15.9991-10002.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Accepted: 04/16/2005] [Indexed: 11/20/2022] Open
Abstract
During infection, Beet necrotic yellow vein virus (BNYVV) particles localize transiently to the cytosolic surfaces of mitochondria. To understand the molecular basis and significance of this localization, we analyzed the targeting and membrane insertion properties of the viral proteins. ORF1 of BNYVV RNA-2 encodes the 21-kDa major coat protein, while ORF2 codes for a 75-kDa minor coat protein (P75) by readthrough of the ORF1 stop codon. Bioinformatic analysis highlighted a putative mitochondrial targeting sequence (MTS) as well as a major (TM1) and two minor (TM3 and TM4) transmembrane regions in the N-terminal part of the P75 readthrough domain. Deletion and gain-of-function analyses based on the localization of green fluorescent protein (GFP) fusions showed that the MTS was able to direct a reporter protein to mitochondria but that the protein was not persistently anchored to the organelles. GFP fused either to MTS and TM1 or to MTS and TM3-TM4 efficiently and specifically associated with mitochondria in vivo. The actual role of the individual domains in the interaction with the mitochondria seemed to be determined by the folding of P75. Anchoring assays to the outer membranes of isolated mitochondria, together with in vivo data, suggest that the TM3-TM4 domain is the membrane anchor in the context of full-length P75. All of the domains involved in mitochondrial targeting and anchoring were also indispensable for encapsidation, suggesting that the assembly of BNYVV particles occurs on mitochondria. Further data show that virions are subsequently released from mitochondria and accumulate in the cytosol.
Collapse
Affiliation(s)
- Clarisse Valentin
- Institut de Biologie Moléculaire des Plantes du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|