1
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024:S0969-2126(24)00380-0. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Long T, Burk RD, Chan PKS, Chen Z. Non-human primate papillomavirus E6-mediated p53 degradation reveals ancient evolutionary adaptation of carcinogenic phenotype to host niche. PLoS Pathog 2022; 18:e1010444. [PMID: 35333912 PMCID: PMC8986119 DOI: 10.1371/journal.ppat.1010444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/06/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Non-human primates (NHPs) are infected with papillomaviruses (PVs) closely related to their human counterparts, but there are few studies on the carcinogenicity of NHP-PVs. Using an in vitro cell co-transfection assay, we systematically screened the biochemical activity of E6 proteins encoded by macaque PVs for their ability to bind and promote degradation of host p53 proteins. A host species barrier exists between HPV16 and MfPV3 with respect to E6-mediated p53 degradation that is reversed when p53 residue 129 is swapped between human and macaque hosts. Systematic investigation found that E6 proteins encoded by most macaque PV types in the high-risk species α12, but not other Alpha-PV clades or Beta-/Gamma-PV genera, can effectively promote monkey p53 degradation. Interestingly, two macaque PV types (MfPV10 and MmPV1) can simultaneously inhibit the expression of human and monkey p53 proteins, revealing complex cross-host interactions between PV oncogenes and host proteomes. Single point-mutant experiments revealed that E6 residue 47 directly interacts with p53 residue 129 for host-specific degradation. These findings suggest an ancient host niche adaptation toward a carcinogenic phenotype in high-risk primate PV ancestors. Following periods of primate host speciation, a loss-of-function mutation model could be responsible for the formation of a host species barrier to E6-mediated p53 degradation between HPVs and NHP-PVs. Our work lays a genetic and functional basis for PV carcinogenicity, which provides important insights into the origin and evolution of specific pathogens in host pathogenesis.
Collapse
Affiliation(s)
- Teng Long
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Robert D. Burk
- Departments of Pediatrics, Microbiology and Immunology, Epidemiology and Population Health, and Obstetrics, Gynecology and Woman’s Health, Albert Einstein College of Medicine, New York city, New York, United States of America
- * E-mail: (RDB); (ZC)
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- * E-mail: (RDB); (ZC)
| |
Collapse
|
3
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
4
|
Zhang W, Shan H, Jiang K, Huang W, Li S. A novel intracellular nanobody against HPV16 E6 oncoprotein. Clin Immunol 2021; 225:108684. [PMID: 33549834 DOI: 10.1016/j.clim.2021.108684] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Cervical cancer occurs as a result of the persistent infection of high-risk human papillomavirus (HPV). HPV16 oncoproteins E6 and E7 exert different and concerted pro-tumor actions in cell transformation and malignance maintenance in various m echanisms. Nanobody expressed as "intracellular antibodies" (intrabodies) can target intracellular antigens to hamper their function efficaciously and specifically. In this work, phage-display approach was employed to select the high affinity HPV16 E6-specific nanobody, nanobody Nb9 against HPV16 E6 was selected. Nb9 has high affinity (Kaff =6.3 × 108 M-) and can specifically bind endogenous HPV16 E6 protein in HPV16 positive CaSki and SiHa cells. In Nb9 overexpressed SiHa and CaSki cells, nucleus localization of HPV16 E6 was inhibited, p53 inactivation was prevented and increased apoptosis was observed. Moreover, tumor growth was inhibited in mouse xenograft model. Taken together, our results suggested that nanobody Nb9 could be a useful inhibitor for HPV16 E6 function and particularly appropriate for the treatment of HPV-associated disease.
Collapse
Affiliation(s)
- Wei Zhang
- The Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University Medical School, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Haitao Shan
- The Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University Medical School, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Kunpeng Jiang
- The Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University Medical School, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Wenbin Huang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Shufeng Li
- The Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University Medical School, 87 Dingjiaqiao Road, Nanjing 210009, China.
| |
Collapse
|
5
|
Young JM, Zine El Abidine A, Gómez-Martinez RA, Ozbun MA. The Known and Potential Intersections of Rab-GTPases in Human Papillomavirus Infections. Front Cell Dev Biol 2019; 7:139. [PMID: 31475144 PMCID: PMC6702953 DOI: 10.3389/fcell.2019.00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Papillomaviruses (PVs) were the first viruses recognized to cause tumors and cancers in mammalian hosts by Shope, nearly a century ago (Shope and Hurst, 1933). Over 40 years ago, zur Hausen (1976) first proposed that human papillomaviruses (HPVs) played a role in cervical cancer; in 2008, he shared the Nobel Prize in Medicine for his abundant contributions demonstrating the etiology of HPVs in genital cancers. Despite effective vaccines and screening, HPV infection and morbidity remain a significant worldwide burden, with HPV infections and HPV-related cancers expected increase through 2040. Although HPVs have long-recognized roles in tumorigenesis and cancers, our understanding of the molecular mechanisms by which these viruses interact with cells and usurp cellular processes to initiate infections and produce progeny virions is limited. This is due to longstanding challenges in both obtaining well-characterized infectious virus stocks and modeling tissue-based infection and the replicative cycles in vitro. In the last 20 years, the development of methods to produce virus-like particles (VLPs) and pseudovirions (PsV) along with more physiologically relevant cell- and tissue-based models has facilitated progress in this area. However, many questions regarding HPV infection remain difficult to address experimentally and are, thus, unanswered. Although an obligatory cellular uptake receptor has yet to be identified for any PV species, Rab-GTPases contribute to HPV uptake and transport of viral genomes toward the nucleus. Here, we provide a general overview of the current HPV infection paradigm, the epithelial differentiation-dependent HPV replicative cycle, and review the specifics of how HPVs usurp Rab-related functions during infectious entry. We also suggest other potential interactions based on how HPVs alter cellular activities to complete their replicative-cycle in differentiating epithelium. Understanding how HPVs interface with Rab functions during their complex replicative cycle may provide insight for the development of therapeutic interventions, as current viral counter-measures are solely prophylactic and therapies for HPV-positive individuals remain archaic and limited.
Collapse
Affiliation(s)
- Jesse M. Young
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Amira Zine El Abidine
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Ricardo A. Gómez-Martinez
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
- Department of Obstetrics & Gynecology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Michelle A. Ozbun
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
- Department of Obstetrics & Gynecology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| |
Collapse
|
6
|
Lai TO, Boon SS, Law PT, Chen Z, Thomas M, Banks L, Chan PK. Oncogenicitiy Comparison of Human Papillomavirus Type 52 E6 Variants. J Gen Virol 2019; 100:484-496. [PMID: 30676312 DOI: 10.1099/jgv.0.001222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human papillomavirus (HPV) infection contributes to virtually all cases of cervical cancer, the fourth most common cancer affecting women worldwide. The oncogenicity of HPV is mainly attributable to the E6 and E7 oncoproteins. HPV-52 is the seventh most common HPV type globally, but it has a remarkably high prevalence in East Asia. In previous studies it has been speculated that the oncogenicity might vary among different HPV-52 variants. In the present study, we compared the oncogenicity of E6 derived from the HPV-52 prototype and three commonly found variants, V1 (K93R), V2 (E14D/V92L) and V3 (K93R/N122K), through molecular and phenotypic approaches. We demonstrated that cells containing V1 achieved higher colony formation and showed greater cell migration ability when compared to other variants, but no difference in cell immortalization ability was observed. At the molecular level, the three variants formed complexes with E6-associated protein (E6AP) and p53 as efficiently as the prototype. They degraded p53 and PSD95/Dlg/ZO-1(PDZ) proteins, including MAGI-1c and Dlg, to a similar extent. They also exhibited a similar subcellular localization, and shared a half-life of approximately 45 min. Our findings provide a clearer picture of HPV-52 E6 variant oncogenicity, which is important for further studies aiming to understand the unusually high prevalence of HPV-52 among cervical cancers in East Asia.
Collapse
Affiliation(s)
- Tsz On Lai
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Siaw Shi Boon
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Priscilla Ty Law
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Zigui Chen
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Miranda Thomas
- 2International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- 2International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paul Ks Chan
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
7
|
Papillomaviruses and Endocytic Trafficking. Int J Mol Sci 2018; 19:ijms19092619. [PMID: 30181457 PMCID: PMC6163501 DOI: 10.3390/ijms19092619] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Endocytic trafficking plays a major role in transport of incoming human papillomavirus (HPVs) from plasma membrane to the trans Golgi network (TGN) and ultimately into the nucleus. During this infectious entry, several cellular sorting factors are recruited by the viral capsid protein L2, which plays a critical role in ensuring successful transport of the L2/viral DNA complex to the nucleus. Later in the infection cycle, two viral oncoproteins, E5 and E6, have also been shown to modulate different aspects of endocytic transport pathways. In this review, we highlight how HPV makes use of and perturbs normal endocytic transport pathways, firstly to achieve infectious virus entry, secondly to produce productive infection and the completion of the viral life cycle and, finally, on rare occasions, to bring about the development of malignancy.
Collapse
|
8
|
A novel intracellular antibody against the E6 oncoprotein impairs growth of human papillomavirus 16-positive tumor cells in mouse models. Oncotarget 2017; 7:15539-53. [PMID: 26788990 PMCID: PMC4941259 DOI: 10.18632/oncotarget.6925] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Single-chain variable fragments (scFvs) expressed as “intracellular antibodies” (intrabodies) can target intracellular antigens to hamper their function efficaciously and specifically. Here we use an intrabody targeting the E6 oncoprotein of Human papillomavirus 16 (HPV16) to address the issue of a non-invasive therapy for HPV cancer patients. A scFv against the HPV16 E6 was selected by Intracellular Antibody Capture Technology and expressed as I7nuc in the nucleus of HPV16-positive SiHa, HPV-negative C33A and 293T cells. Colocalization of I7nuc and recombinant E6 was observed in different cell compartments, obtaining evidence of E6 delocalization ascribable to I7nuc. In SiHa cells, I7nuc expressed by pLNCX retroviral vector was able to partially inhibit degradation of the main E6 target p53, and induced p53 accumulation in nucleus. When analyzing in vitro activity on cell proliferation and survival, I7nuc was able to decrease growth inducing late apoptosis and necrosis of SiHa cells. Finally, I7nuc antitumor activity was demonstrated in two pre-clinical models of HPV tumors. C57BL/6 mice were injected subcutaneously with HPV16-positive TC-1 or C3 tumor cells, infected with pLNCX retroviral vector expressing or non-expressing I7nuc. All the mice injected with I7nuc-expressing cells showed a clear delay in tumor onset; 60% and 40% of mice receiving TC-1 and C3 cells, respectively, remained tumor-free for 17 weeks of follow-up, whereas 100% of the controls were tumor-bearing 20 days post-inoculum. Our data support the therapeutic potential of E6-targeted I7nuc against HPV tumors.
Collapse
|
9
|
Songock WK, Kim SM, Bodily JM. The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res 2016; 231:56-75. [PMID: 27818212 DOI: 10.1016/j.virusres.2016.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HPVs) encode oncoproteins which manipulate gene expression patterns in the host keratinocytes to facilitate viral replication, regulate viral transcription, and promote immune evasion and persistence. In some cases, oncoprotein-induced changes in host cell behavior can cause progression to cancer, but a complete picture of the functions of the viral oncoproteins in the productive HPV life cycle remains elusive. E7 is the HPV-encoded factor most responsible for maintaining cell cycle competence in differentiating keratinocytes. Through interactions with dozens of host factors, E7 has an enormous impact on host gene expression patterns. In this review, we will examine the role of E7 specifically as a regulator of transcription. We will discuss mechanisms of regulation of cell cycle-related genes by E7 as well as genes involved in immune regulation, growth factor signaling, DNA damage responses, microRNAs, and others pathways. We will also discuss some unanswered questions about how transcriptional regulation by E7 impacts the biology of HPV in both benign and malignant conditions.
Collapse
Affiliation(s)
- William K Songock
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Seong-Man Kim
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
10
|
The high-risk HPV E6 target scribble (hScrib) is required for HPV E6 expression in cervical tumour-derived cell lines. PAPILLOMAVIRUS RESEARCH 2016; 2:70-77. [PMID: 29074188 PMCID: PMC5886876 DOI: 10.1016/j.pvr.2016.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
The ability of high-risk HPV E6 oncoproteins to target cellular proteins which harbor PDZ domains is believed to play an important role in the virus life cycle and to influence the ability of these viruses to bring about malignant transformation. Whilst many of these PDZ proteins are potential tumour suppressors, involved in the control of cell polarity and cell-contact, recent studies suggest that mislocalisation or overexpression might result in the emergence of oncogenic functions. This has been shown most clearly for two E6 targets, hDlg and hScrib. In this study we show that hScrib plays such a role in HeLa cells, where its expression is required for maintaining high levels of HPV-18 E6 protein. Loss of hScrib has no effect on E6 stability but results in lower levels of E6 transcription and a reduced rate of E6 translation. We further show that, in the context of cervical tumour-derived cell lines, both hScrib and E6 cooperate in the activation of the S6 kinase signaling pathway, and thereby contribute towards maintaining high rates of protein translation. These results indicate that the residual hScrib that is present within HPV transformed cells is pro-oncogenic, and highlights the dual functions of E6 cell polarity targets.
Collapse
|
11
|
Abstract
Viruses employ a variety of strategies to usurp and control cellular activities through the orchestrated recruitment of macromolecules to specific cytoplasmic or nuclear compartments. Formation of such specialized virus-induced cellular microenvironments, which have been termed viroplasms, virus factories, or virus replication centers, complexes, or compartments, depends on molecular interactions between viral and cellular factors that participate in viral genome expression and replication and are in some cases associated with sites of virion assembly. These virus-induced compartments function not only to recruit and concentrate factors required for essential steps of the viral replication cycle but also to control the cellular mechanisms of antiviral defense. In this review, we summarize characteristic features of viral replication compartments from different virus families and discuss similarities in the viral and cellular activities that are associated with their assembly and the functions they facilitate for viral replication.
Collapse
|
12
|
McKee CH, Onder Z, Ashok A, Cardoso R, Moroianu J. Characterization of the transport signals that mediate the nucleocytoplasmic traffic of low risk HPV11 E7. Virology 2013; 443:113-22. [PMID: 23725695 PMCID: PMC3758764 DOI: 10.1016/j.virol.2013.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/21/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
We previously discovered that nuclear import of low risk HPV11 E7 is mediated by its zinc-binding domain via a pathway that is independent of karyopherins/importins (Piccioli et al., 2010. Virology 407, 100-109). In this study we mapped and characterized a leucine-rich nuclear export signal (NES), 76IRQLQDLLL84, within the zinc-binding domain that mediates the nuclear export of HPV11 E7 in a CRM1-dependent manner. We also identified a mostly hydrophobic patch 65VRLVV69 within the zinc-binding domain that mediates nuclear import of HPV11 E7 via hydrophobic interactions with the FG-repeats domain of Nup62. Substitutions of hydrophobic residues to alanine within the 65VRLVV69 sequence disrupt the nuclear localization of 11E7, whereas the R66A mutation has no effect. Overall the data support a model of nuclear entry of HPV11 E7 protein via hydrophobic interactions with FG nucleoporins at the nuclear pore complex.
Collapse
Affiliation(s)
- Courtney H. McKee
- Biology Department, Boston College, Chestnut Hill, MA 02467, United States
| | - Zeynep Onder
- Biology Department, Boston College, Chestnut Hill, MA 02467, United States
| | - Aditya Ashok
- Biology Department, Boston College, Chestnut Hill, MA 02467, United States
| | - Rebeca Cardoso
- Biology Department, Boston College, Chestnut Hill, MA 02467, United States
| | - Junona Moroianu
- Biology Department, Boston College, Chestnut Hill, MA 02467, United States
| |
Collapse
|
13
|
Abstract
E7 is an accessory protein that is not encoded by all papillomaviruses. The E7 amino terminus contains two regions of similarity to conserved regions 1 and 2 of the adenovirus E1A protein, which are also conserved in the simian vacuolating virus 40 large tumor antigen. The E7 carboxyl terminus consists of a zinc-binding motif, which is related to similar motifs in E6 proteins. E7 proteins play a central role in the human papillomavirus life cycle, reprogramming the cellular environment to be conducive to viral replication. E7 proteins encoded by the cancer-associated alpha human papillomaviruses have potent transforming activities, which together with E6, are necessary but not sufficient to render their host squamous epithelial cell tumorigenic. This article strives to provide a comprehensive summary of the published research studies on human papillomavirus E7 proteins.
Collapse
|
14
|
Klingelhutz AJ, Roman A. Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 2012; 424:77-98. [PMID: 22284986 DOI: 10.1016/j.virol.2011.12.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/17/2011] [Accepted: 12/27/2011] [Indexed: 12/19/2022]
Abstract
The oncogenic potential of papillomaviruses (PVs) has been appreciated since the 1930s yet the mechanisms of virally-mediated cellular transformation are still being revealed. Reasons for this include: a) the oncoproteins are multifunctional, b) there is an ever-growing list of cellular interacting proteins, c) more than one cellular protein may bind to a given region of the oncoprotein, and d) there is only limited information on the proteins encoded by the corresponding non-oncogenic PVs. The perspective of this review will be to contrast the activities of the viral E6 and E7 proteins encoded by the oncogenic human PVs (termed high-risk HPVs) to those encoded by their non-oncogenic counterparts (termed low-risk HPVs) in an attempt to sort out viral life cycle-related functions from oncogenic functions. The review will emphasize lessons learned from the cell culture studies of the HPVs causing mucosal/genital tract cancers.
Collapse
|
15
|
Muschik D, Braspenning-Wesch I, Stockfleth E, Rösl F, Hofmann TG, Nindl I. Cutaneous HPV23 E6 prevents p53 phosphorylation through interaction with HIPK2. PLoS One 2011; 6:e27655. [PMID: 22110707 PMCID: PMC3218003 DOI: 10.1371/journal.pone.0027655] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 10/21/2011] [Indexed: 01/01/2023] Open
Abstract
Ultraviolet irradiation (UV) is the major risk factor for the development of skin cancer. Moreover, increasing evidence suggests cutaneotropic human papillomaviruses (HPV) from the beta genus to play a causal role as a co-factor in the development of cutaneous squamous cell carcinoma. Homeodomain-interacting protein kinase 2 (HIPK2) operates as a potential suppressor in skin tumorigenesis and is stabilized by UV-damage. HIPK2 is an important regulator of apoptosis, which forms a complex with the tumor suppressor p53, mediating p53 phosphorylation at Ser 46 and thus promoting pro-apoptotic gene expression. In our study, we demonstrate that cutaneous HPV23 E6 protein directly targets HIPK2 function. Accordingly, HPV23 E6 interacts with HIPK2 both in vitro and in vivo. Furthermore, upon massive UVB-damage HPV23 E6 co-localizes with endogenous HIPK2 at nuclear bodies. Functionally, we demonstrate that HPV23 E6 inhibits HIPK2-mediated p53 Ser 46 phosphorylation through enforcing dissociation of the HIPK2/p53 complex. In addition, HPV23 E6 co-accumulates with endogenous HIPK2 upon UV damage suggesting a mechanism by which HPV23 E6 keeps HIPK2 in check after UV damage. Thus, cutaneous HPV23 E6 prevents HIPK2-mediated p53 Ser 46 phosphorylation, which may favour survival of UV-damaged keratinocytes and skin carcinogenesis by apoptosis evasion.
Collapse
Affiliation(s)
- Dorothea Muschik
- Viral Skin Carcinogenesis Group, Division Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), DKFZ–Charité, Heidelberg, Germany
| | - Ilona Braspenning-Wesch
- Viral Skin Carcinogenesis Group, Division Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), DKFZ–Charité, Heidelberg, Germany
| | - Eggert Stockfleth
- Department of Dermatology, Venereology and Allergy, Skin Cancer Center Charité, Charité, University Hospital of Berlin, Berlin, Germany
| | - Frank Rösl
- Viral Skin Carcinogenesis Group, Division Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), DKFZ–Charité, Heidelberg, Germany
| | - Thomas G. Hofmann
- Cellular Senescence Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ingo Nindl
- Viral Skin Carcinogenesis Group, Division Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), DKFZ–Charité, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergy, Skin Cancer Center Charité, Charité, University Hospital of Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
16
|
p53 degradation activity, expression, and subcellular localization of E6 proteins from 29 human papillomavirus genotypes. J Virol 2011; 86:94-107. [PMID: 22013048 DOI: 10.1128/jvi.00751-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPVs) are the etiological agents of cervical cancer and other human malignancies. HPVs are classified into high- and low-risk genotypes according to their association with cancer. Host cell transformation by high-risk HPVs relies in part on the ability of the viral E6 protein to induce the degradation of p53. We report the development of a cellular assay that accurately quantifies the p53 degradation activity of E6 in vivo, based on the fusion of p53 to Renilla luciferase (RLuc-p53). This assay was used to measure the p53 degradation activities of E6 proteins from 29 prevalent HPV types and variants of HPV type 16 (HPV16) and HPV33 by determining the amount of E6 expression vector required to reduce by half the levels of RLuc-p53 (50% effective concentration [EC₅₀]). These studies revealed an unexpected variability in the p53 degradation activities of different E6 proteins, even among active types whose EC₅₀s span more than 2 log units. Differences in activity were greater between types than between variants and did not correlate with differences in the intracellular localization of E6, with most being predominantly nuclear. Protein and mRNA expression of the 29 E6 proteins was also examined. For 16 high-risk types, spliced transcripts that encode shorter E6*I proteins of variable sizes and abundances were detected. Mutation of the splice donor site in five different E6 proteins increased their p53 degradation activity, suggesting that mRNA splicing can limit the activity of some high-risk E6 types. The quantification of p53 degradation in vivo represents a novel tool to systematically compare the oncogenic potentials of E6 proteins from different HPV types and variants.
Collapse
|
17
|
The nuclear localization of low risk HPV11 E7 protein mediated by its zinc binding domain is independent of nuclear import receptors. Virology 2010; 407:100-9. [PMID: 20800258 DOI: 10.1016/j.virol.2010.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/13/2010] [Accepted: 07/28/2010] [Indexed: 12/13/2022]
Abstract
We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE7(39-98) localized mostly to the nucleus. The GST-11E7 and GST-11cE7(39-98) were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated by a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc binding domain is essential for nuclear localization of 11E7.
Collapse
|
18
|
Esmaeili M, Mohabatkar H, Mohsenzadeh S. Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses. J Theor Biol 2010; 263:203-9. [DOI: 10.1016/j.jtbi.2009.11.016] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 11/18/2009] [Accepted: 11/20/2009] [Indexed: 01/25/2023]
|
19
|
Low- and high-risk human papillomavirus E7 proteins regulate p130 differently. Virology 2010; 400:233-9. [PMID: 20189212 DOI: 10.1016/j.virol.2010.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/17/2009] [Accepted: 01/27/2010] [Indexed: 11/23/2022]
Abstract
The E7 protein of high-risk human papillomaviruses (HR HPVs) targets pRb family members (pRb, p107 and p130) for degradation; low-risk (LR) HPV E7 only targets p130 for degradation. The effect of HR HPV 16 E7 and LR HPV 6 E7 on p130 intracellular localization and half-life was examined. Nuclear/cytoplasmic fractionation and immunofluorescence showed that, in contrast to control and HPV 6 E7-expressing cells, a greater amount of p130 was present in the cytoplasm in the presence of HPV 16 E7. The half-life of p130, relative to control cells, was decreased in the cytoplasm in the presence of HPV 6 E7 or HPV 16 E7, but only decreased by HPV 6 E7 in the nucleus. Inhibition of proteasomal degradation extended the half-life of p130, regardless of intracellular localization. These results suggest that there may be divergent mechanisms by which LR and HR HPV E7 target p130 for degradation.
Collapse
|
20
|
Spardy N, Duensing A, Hoskins EE, Wells SI, Duensing S. HPV-16 E7 reveals a link between DNA replication stress, fanconi anemia D2 protein, and alternative lengthening of telomere-associated promyelocytic leukemia bodies. Cancer Res 2009; 68:9954-63. [PMID: 19047177 DOI: 10.1158/0008-5472.can-08-0224] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Expression of the high-risk human papillomavirus (HPV-16) E7 oncoprotein extends the life span of primary human keratinocytes and partially restores telomere length in the absence of telomerase. The molecular basis of this activity is incompletely understood. Here, we show that HPV-16 E7 induces an increased formation of alternative lengthening of telomeres (ALT)-associated promyelocytic leukemia bodies (APBs) in early passage primary human keratinocytes as well as HPV-negative tumor cells. This activity was found to require sequences of HPV-16 E7 involved in degradation of the retinoblastoma tumor suppressor protein as well as regions in the COOH terminus. HPV-16 E7-induced APBs contained ssDNA and several proteins that are involved in the response to DNA replication stress, most notably the Fanconi anemia D2 protein (FANCD2) as well as BRCA2 and MUS81. In line with these results, we found that FANCD2-containing APBs form in an ATR-dependent manner in HPV-16 E7-expressing cells. To directly show a role of FANCD2 in ALT, we provide evidence that knockdown of FANCD2 rapidly causes telomere dysfunction in cells that rely on ALT to maintain telomeres. Taken together, our results suggest a novel link between replication stress and recombination-based telomere maintenance that may play a role in HPV-16 E7-mediated extension of host cell life span and immortalization.
Collapse
Affiliation(s)
- Nicole Spardy
- Biochemistry and Molecular Genetics Graduate Program, and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
21
|
Knapp AA, McManus PM, Bockstall K, Moroianu J. Identification of the nuclear localization and export signals of high risk HPV16 E7 oncoprotein. Virology 2008; 383:60-8. [PMID: 18996550 DOI: 10.1016/j.virol.2008.09.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 07/21/2008] [Accepted: 09/25/2008] [Indexed: 12/16/2022]
Abstract
The E7 oncoprotein of high risk human papillomavirus type 16 (HPV16) binds and inactivates the retinoblastoma (RB) family of proteins. Our previous studies suggested that HPV16 E7 enters the nucleus via a novel Ran-dependent pathway independent of the nuclear import receptors (Angeline, M., Merle, E., and Moroianu, J. (2003). The E7 oncoprotein of high-risk human papillomavirus type 16 enters the nucleus via a nonclassical Ran-dependent pathway. Virology 317(1), 13-23.). Here, analysis of the localization of specific E7 mutants revealed that the nuclear localization of E7 is independent of its interaction with pRB or of its phosphorylation by CKII. Fluorescence microscopy analysis of enhanced green fluorescent protein (EGFP) and 2xEGFP fusions with E7 and E7 domains in HeLa cells revealed that E7 contains a novel nuclear localization signal (NLS) in the N-terminal domain (aa 1-37). Interestingly, treatment of transfected HeLa cells with two specific nuclear export inhibitors, Leptomycin B and ratjadone, changed the localization of 2xEGFP-E7(38-98) from cytoplasmic to mostly nuclear. These data suggest the presence of a leucine-rich nuclear export signal (NES) and a second NLS in the C-terminal domain of E7 (aa 38-98). Mutagenesis of critical amino acids in the putative NES sequence ((76)IRTLEDLLM(84)) changed the localization of 2xEGFP-E7(38-98) from cytoplasmic to mostly nuclear suggesting that this is a functional NES. The presence of both NLSs and an NES suggests that HPV16 E7 shuttles between the cytoplasm and nucleus which is consistent with E7 having functions in both of these cell compartments.
Collapse
Affiliation(s)
- Alixandra A Knapp
- Biology Department, Boston College, Higgins Hall, Room 578, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
22
|
Tavalai N, Stamminger T. New insights into the role of the subnuclear structure ND10 for viral infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2207-21. [PMID: 18775455 DOI: 10.1016/j.bbamcr.2008.08.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 12/12/2022]
Abstract
Nuclear domains 10 (ND10), alternatively termed PML nuclear bodies (PML-NBs) or PML oncogenic domains (PODs), have been discovered approximately 15 years ago as a nuclear substructure that is targeted by a variety of viruses belonging to different viral families. This review will summarize the most important structural and functional characteristics of ND10 and its major protein constituents followed by a discussion of the current view regarding the role of this subnuclear structure for various DNA and RNA viruses with an emphasis on herpesviruses. It is concluded that accumulating evidence argues for an involvement of ND10 in host antiviral defenses either via mediating an intrinsic immune response against specific viruses or via acting as a component of the cellular interferon pathway.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | | |
Collapse
|
23
|
Lin CH, Chang HS, Yu WCY. USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity. J Biol Chem 2008; 283:15681-8. [PMID: 18408009 DOI: 10.1074/jbc.m708278200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HPV-16E7 is a major transforming protein, which has been implicated in the development of cervical cancer. The stability of E7 is thus important to ensure its fully functional status. Using the yeast two-hybrid system, we found that USP11 (ubiquitin-specific protease 11), a member of a protein family that cleaves polyubiquitin chains and/or ubiquitin precursors, interacts and forms a specific complex with HPV-16E7. Our results indicate that the USP11 can greatly increase the steady state level of HPV-16E7 by reducing ubiquitination and attenuating E7 degradation. In contrast, a catalytically inactive mutant of USP11 abolished the deubiquitinating ability and returned E7 to a normal rate of degradation. Moreover, USP11 not only protected E7 from ubiquitination but also influenced E7 function as a modulator of cell growth status. These results suggest that USP11 plays an important role in regulating the levels of E7 protein and subsequently affects the biological function of E7 as well as its contribution to cell transformation by HPV-16E7.
Collapse
Affiliation(s)
- Ching-Hui Lin
- National Health Research Institutes, 35 Keyan Rd., Zhunan Town, Miaoli County 350, Taiwan
| | | | | |
Collapse
|
24
|
Massimi P, Thomas M, Bouvard V, Ruberto I, Campo MS, Tommasino M, Banks L. Comparative transforming potential of different human papillomaviruses associated with non-melanoma skin cancer. Virology 2008; 371:374-9. [DOI: 10.1016/j.virol.2007.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/07/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
|
25
|
The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity. Mol Cell Biol 2007; 27:8683-97. [PMID: 17938206 DOI: 10.1128/mcb.00157-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Net1 is a RhoA-specific guanine nucleotide exchange factor which localizes to the nucleus at steady state. A deletion in its N terminus redistributes the protein to the cytosol, where it activates RhoA and can promote transformation. Net1 contains a PDZ-binding motif at the C terminus which is essential for its transformation properties. Here, we found that Net1 interacts through its PDZ-binding motif with tumor suppressor proteins of the Dlg family, including Dlg1/SAP97, SAP102, and PSD95. The interaction between Net1 and its PDZ partners promotes the translocation of the PDZ proteins to nuclear subdomains associated with PML bodies. Interestingly, the oncogenic mutant of Net1 is unable to shuttle the PDZ proteins to the nucleus, although these proteins still associate as clusters in the cytosol. Our results suggest that the ability of oncogenic Net1 to transform cells may be in part related to its ability to sequester tumor suppressor proteins like Dlg1 in the cytosol, thereby interfering with their normal cellular function. In agreement with this, the transformation potential of oncogenic Net1 is reduced when it is coexpressed with Dlg1 or SAP102. Together, our results suggest that the interaction between Net1 and Dlg1 may contribute to the mechanism of Net1-mediated transformation.
Collapse
|
26
|
García-Alai MM, Dantur KI, Smal C, Pietrasanta L, de Prat-Gay G. High-risk HPV E6 oncoproteins assemble into large oligomers that allow localization of endogenous species in prototypic HPV-transformed cell lines. Biochemistry 2007; 46:341-9. [PMID: 17209544 DOI: 10.1021/bi602457q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The E6 oncoproteins of high-risk HPV types 16 and 18 are involved in the development of cervical cancer. Besides its determinant role in carcinogenic progression, HPV E6 oncoprotein has also been instrumental in elucidating fundamental aspects of p53 function and its ubiquitin-proteasome degradation, with counterpart activities in various DNA tumor viruses. Establishing the conformational state and cellular distribution unequivocally for the endogenous protein in HPV-transformed cell lines derived from carcinomas is essential for understanding the underlying mechanism. Recombinant E6 from high-risk strains 16 and 18 folds into soluble oligomers of approximately 1.2 MDa, which are thermostable and display cooperative loss of tertiary and secondary structure upon chemical denaturation. Antibodies raised against these assemblies locate E6 evenly distributed in the cells. By depleting the polyclonal serum by immunoblocking with monomeric E6, the nuclei of Hela and CaSki cells become completely devoid of label, indicating that monomeric species are mainly localized in the nucleus and that both monomers and oligomers share epitopes. The monomeric species promote degradation of p53 by the proteasome, which correlates with the nuclear localization we describe. In contrast, the oligomeric E6 does not promote p53 degradation, in agreement with its cytoplasmic localization inferred from the immunoneutralization experiments. Our results indicate that the cytoplasmic species contain conformational epitopes that may arise from yet undefined homo or hetero-oligomers, but its localization otherwise agrees with that of the other group of major E6 targets, those involving PDZ binding domains, which requires further investigation.
Collapse
Affiliation(s)
- María M García-Alai
- Instituto Leloir and CONICET, Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
27
|
Füle T, Máthé M, Suba Z, Csapó Z, Szarvas T, Tátrai P, Paku S, Kovalszky I. The presence of human papillomavirus 16 in neural structures and vascular endothelial cells. Virology 2006; 348:289-96. [PMID: 16499942 DOI: 10.1016/j.virol.2005.12.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 11/17/2005] [Accepted: 12/01/2005] [Indexed: 11/16/2022]
Abstract
Human papillomavirus (HPV) is known as a strictly epitheliotropic pathogen. Our results raised the possibility that HPV 16 is present in neural cells and in the vascular endothelium. By in situ hybridization, we have detected HPV 16 E6 ORF sequence in small blood vessels and peripheral nerves adjacent to oral and cervical cancers. The same structures have clearly shown immunohistochemical reactivity for the E6 oncoprotein. These results were verified by PCR applied to E6 and L1 ORFs following microscopic laser dissection of the immunohistochemically positive nerves and vessels. These observations suggest that HPV 16 DNA and protein are present in neurons and endothelial cells in the vicinity of HPV-associated tumors. The HPV 16 genome presumably exists in a non-replicating form in the neurons and constitutively produces high levels of E6 and E7 proteins with an unknown neuropathological outcome.
Collapse
Affiliation(s)
- Tibor Füle
- Department of Molecular Pathology, Joint Research Organization of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Massimi P, Narayan N, Cuenda A, Banks L. Phosphorylation of the discs large tumour suppressor protein controls its membrane localisation and enhances its susceptibility to HPV E6-induced degradation. Oncogene 2006; 25:4276-85. [PMID: 16532034 DOI: 10.1038/sj.onc.1209457] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Discs Large (Dlg) protein is intimately involved in regulating cell polarity and cell proliferation, and is targeted by the high-risk Human Papillomavirus (HPV) E6 proteins for proteasome-mediated degradation. We show here that exposure of cells to osmotic shock induces the hyperphosphorylation of Dlg and its concomitant accumulation within the cell membrane at sites of cell contact, a process that requires an intact actin filament network. In addition, hyperphosphorylation of Dlg also renders it more susceptible to degradation induced by the HPV-18 E6 oncoprotein. Mutational analysis of Dlg identifies a region within the first 185 amino acids as being important for this, with phosphorylation on residue S158 being responsible for its enhanced targeting by the E6 oncoprotein. Using specific kinase inhibitors, we show that Jun N-terminal kinase (JNK) is in part responsible for this phosphorylation, and for the subsequent Dlg accumulation at sites of cell contact. These results further support the notion of a complex phosphorylation-dependent regulation of Dlg, both with respect to its precise cellular localisation and to its susceptibility to proteasome-mediated degradation.
Collapse
Affiliation(s)
- P Massimi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | |
Collapse
|
29
|
Vaeteewoottacharn K, Chamutpong S, Ponglikitmongkol M, Angeletti PC. Differential localization of HPV16 E6 splice products with E6-associated protein. Virol J 2005; 2:50. [PMID: 15960845 PMCID: PMC1180478 DOI: 10.1186/1743-422x-2-50] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 06/16/2005] [Indexed: 12/18/2022] Open
Abstract
High-risk Human Papillomavirus (HPV) is the etiological agent associated with the majority of anogenital cancers. The primary HPV oncogenes, E6 and E7, undergo a complex splicing program resulting in protein products whose purpose is not fully understood. Previous mouse studies have confirmed the existence of a translated product corresponding to the E6*I splice product. In terms of function, the translated E6*I protein has been shown to bind to E6 protein and to E6 associated protein (E6AP). E6*I has an inhibitory effect on E6-mediated p53 degradation in E6 expressing cells. In order to analyze the relationship between E6*I and full-length E6 in relation to localization, we created a series of green fluorescent protein (GFP) fusion products. The localization of these proteins with reference to E6AP in vivo remains unclear. Therefore, we investigated the cellular distribution of different forms of E6 with reference to E6AP. E6 and E6*I proteins, expressed from a wild type E6 gene cassette, were dispersed in the nucleus and the cytoplasm. Whereas, the E6 splice donor mutant (E6MT) was primarily localized to the nucleus. E6*I protein and E6AP were found to co-localize mainly to the cytoplasm, whereas the co-localization of full-length E6 protein and E6AP, if at all, was found mainly at the perinuclear region. These results suggest a functional relationship between the E6*I and full-length E6 protein which correlates with their localization and likely is important in regulation of the E6-E6AP complex.
Collapse
Affiliation(s)
- Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Siriphatr Chamutpong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand
| | | | - Peter C Angeletti
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
30
|
Grm HS, Massimi P, Gammoh N, Banks L. Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein. Oncogene 2005; 24:5149-64. [PMID: 15856010 DOI: 10.1038/sj.onc.1208701] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human papillomaviruses are the causative agents of cervical cancer. Previous studies have shown that loss of the viral E2 protein during malignant progression is an important feature of HPV-induced malignancy due to the resulting uncontrolled expression of the viral oncoproteins E6 and E7. We now show however that the viral E2 and E6 proteins are both capable of regulating each other's activity. When coexpressed, E2 and E6 induce marked changes in the pattern of each other's expression, with preferential accumulation in nuclear speckles. The two proteins interact directly, resulting in changes in the substrate specificities of E6 and the biochemical activities of E2. Thus, while E6 efficiently degrades its PDZ domain-containing substrates in the absence of E2, this activity is greatly diminished when E2 is present. Likewise, E2 alone drives both viral DNA replication and viral gene expression. However, in the presence of E6, viral DNA replication is inhibited while the transcriptional activity of E2 is elevated. These studies define a far more complex pattern of interaction between E2 and E6 than was previously thought and redefines the possible consequences of loss of E2 with respect to uncontrolled E6 activity and consequent malignant progression.
Collapse
Affiliation(s)
- Helena Sterlinko Grm
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | | | | | |
Collapse
|
31
|
Facchinetti V, Seresini S, Longhi R, Garavaglia C, Casorati G, Protti MP. CD4+ T cell immunity against the human papillomavirus-18 E6 transforming protein in healthy donors: identification of promiscuous naturally processed epitopes. Eur J Immunol 2005; 35:806-15. [PMID: 15719368 DOI: 10.1002/eji.200425699] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infection by 'high-risk' human papillomaviruses (HPV) is associated with the development of neoplastic lesions. HPV-18 is responsible for a very aggressive form of cancer and poor survival. As for other HPV types, immune surveillance has probably a role in the control of the infection. However, very little is known on HPV-18 immunogenicity. CD4(+) T cells from 16 healthy donors were tested ex vivo for reactivity to synthetic peptides corresponding to 3 sequences on the HPV-18 E6 transforming protein predicted by bioinformatics as promiscuous HLA-DR ligands, and to the recombinant E6 protein. We found 3 donors with CD4(+) T cells that specifically proliferated in the presence of HPV-18 E6 antigens and produced IFN-gamma in the presence of the E6 protein. We then propagated CD4(+) T cell lines and clones from the responsive subjects to better characterize the recognized sequences. We show that E6(52-66) and E6(97-111) are indeed promiscuous and, most importantly, they contain naturally processed epitopes. Collectively, our data indicate that healthy donors may develop spontaneous CD4 immunity against HPV-18 E6 epitopes, thus strongly suggesting the potential for this protein to elicit in the host a natural productive immune response.
Collapse
Affiliation(s)
- Valeria Facchinetti
- Laboratory of Tumor Immunology, DIBIT, Scientific Institute H. San Raffaele, Milan, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Infection with human papillomaviruses is strongly associated with the development of multiple cancers including esophageal squamous cell carcinoma. The HPV E6 gene is essential for the oncogenic potential of HPV. The regulation of apoptosis by oncogene has been related to carcinogenesis closely; therefore, the modulation of E6 on cellular apoptosis has become a hot research topic recently. Inactivation of the pro-apoptotic tumor suppressor p53 by E6 is an important mechanism by which E6 promotes cell growth; it is expected that inactivation of p53 by E6 should lead to a reduction in cellular apoptosis, numerous studies showed that E6 could in fact sensitize cells to apoptosis. The molecular basis for apoptosis modulation by E6 is poorly understood. In this article, we will present an overview of observations and current understanding of molecular basis for E6-induced apoptosis.
Collapse
Affiliation(s)
- Ting-Ting Li
- Institute of Gastroenterology, 15 West Changle Road, Xijing Hospital Xi'an 710032, Shaanxi Province, China
| | | | | | | | | |
Collapse
|
33
|
Bischof O, Nacerddine K, Dejean A. Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Mol Cell Biol 2005; 25:1013-24. [PMID: 15657429 PMCID: PMC543993 DOI: 10.1128/mcb.25.3.1013-1024.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 04/27/2004] [Accepted: 10/29/2004] [Indexed: 11/20/2022] Open
Abstract
Cellular senescence can be triggered by a variety of signals, including loss of telomeric integrity or intense oncogenic signaling, and is considered a potent, natural tumor suppressor mechanism. Previously, it was shown that the promyelocytic leukemia protein (PML) induces cellular senescence when overexpressed in primary human fibroblasts. The mechanism by which the PML IV isoform elicits this irreversible growth arrest is believed to involve activation of the tumor suppressor pathways p21/p53 and p16/Rb; however, a requirement for either pathway has not been demonstrated unequivocally. To investigate the individual contributions of p53 and Rb to PML-induced senescence, we used oncoproteins E6 and E7 from human papillomaviruses (HPVs), which predominantly target p53 and Rb. We show that E7, but not E6, circumvents PML-induced senescence. Using different E7 mutant proteins, dominant negative cyclin-dependent kinase 4, and p16 RNA interference, we demonstrate that Rb-related and Rb-independent mechanisms of E7 are necessary for subversion of PML-induced senescence and we identify PML as a novel target for E7. Interaction between E7 and a functional prosenescence complex composed of PML, p53, and CBP perturbs transcriptional activation of p53, thus highlighting a significant effect also on the p53 tumor suppressor pathway. Given the importance of HPV in the pathogenesis of cervical cancer, our results warrant a more detailed analyses of PML in HPV infections.
Collapse
Affiliation(s)
- Oliver Bischof
- Nuclear Organisation and Oncogenesis Unit, INSERM U579, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
34
|
Guccione E, Lethbridge KJ, Killick N, Leppard KN, Banks L. HPV E6 proteins interact with specific PML isoforms and allow distinctions to be made between different POD structures. Oncogene 2004; 23:4662-72. [PMID: 15107834 DOI: 10.1038/sj.onc.1207631] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mucosal human papillomaviruses (HPVs) are the causative agents of a number of human pathologies, including benign condylomas, as well as of the majority of cervical cancers and their high-grade precursor lesions. Although the viral E6 protein is known to be essential for driving malignant progression of HPV-infected cells, there are still many uncertainties about its mode of action. In this study, we have analysed the intracellular distribution of the E6 oncoproteins from the high-risk HPV-18 and the low-risk HPV-11. We show that both E6 proteins localize within the nucleus in nuclear bodies that are confocal with the promyelocytic leukaemia (PML) protein. Using a panel of different PML isoforms, we demonstrate specific co-localization between the E6 proteins and PML isoforms I-IV, but not with PML isoforms V and VI. We also demonstrate the interaction between E6 and a subset of PML isoforms in vivo. As a consequence of this interaction, the insoluble form of PML IV is destabilized by HPV-18 E6 through a proteasome-dependent pathway. Interestingly, both HPV-11 E6 and HPV-18 E6 can readily overcome PML IV-induced cellular senescence in primary cells. These results show separable functions for different PML isoforms that are specifically targeted by the HPV E6 oncoproteins.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Antibodies, Monoclonal/metabolism
- Blotting, Western
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Transformation, Neoplastic
- Cysteine Endopeptidases/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Fibroblasts/virology
- Fluorescent Antibody Technique, Direct
- Humans
- Microscopy, Confocal
- Multienzyme Complexes/metabolism
- Oncogene Proteins, Viral/analysis
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Papillomaviridae/metabolism
- Precipitin Tests
- Proteasome Endopeptidase Complex
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
Collapse
Affiliation(s)
- Ernesto Guccione
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | | | |
Collapse
|
35
|
Elementos víricos y celulares que intervienen en el proceso de replicación del virus del papiloma humano. Clin Transl Oncol 2004. [DOI: 10.1007/bf02711833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Oh KJ, Kalinina A, Wang J, Nakayama K, Nakayama KI, Bagchi S. The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and Cullin 1- and Skp2-containing E3 ligase. J Virol 2004; 78:5338-46. [PMID: 15113913 PMCID: PMC400333 DOI: 10.1128/jvi.78.10.5338-5346.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recurrent infections with high-risk human papillomaviruses (HPVs) are associated with human cervical cancers. All HPV-associated cancer tissues express the viral oncoproteins E6 and E7, which stimulate cell growth. The expression of E7 is crucial for both the initiation and the maintenance of HPV-associated cancer. Recent studies showed that the level of E7 in cancer cells is regulated by ubiquitin-dependent proteolysis through the 26S proteasome. In this study, we characterized the enzymes involved in the ubiquitin-dependent proteolysis of E7. We show that UbcH7, an E2 ubiquitin-conjugating enzyme, is specifically involved in the ubiquitination of E7. Furthermore, we show that E7 interacts with the SCF (Skp-Cullin-F box) ubiquitin ligase complex containing Cullin 1 (Cul1) and Skp2 and can be ubiquitinated by the Cul1-containing ubiquitin ligase in vitro. Coimmunoprecipitation analyses revealed that E7 interacts with Skp2 and Cul1 in vivo. Finally, the half-life of E7 was found to be significantly longer in Skp2(-/-) mouse embryo fibroblasts (MEFs) than in wild-type MEFs. Taken together, these results suggest that the Cul1- and Skp2-containing ubiquitin ligase plays a role in the ubiquitination and proteolysis of E7. In HPV type 16-containing cervical carcinoma cell line Caski, E7 localizes to both the cytoplasm and the nucleus. Brief treatment of Caski cells with MG132 (a proteasome inhibitor) causes the accumulation of E7 in discrete nuclear bodies. These nuclear bodies are detergent insoluble and contain polyubiquitinated E7. We suggest that E7 relocates to specific nuclear bodies for proteolysis in HPV-containing epithelial cells.
Collapse
Affiliation(s)
- Kwang-Jin Oh
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
37
|
Fiedler M, Müller-Holzner E, Viertler HP, Widschwendter A, Laich A, Pfister G, Spoden GA, Jansen-Dürr P, Zwerschke W. High level HPV-16 E7 oncoprotein expression correlates with reduced pRb-levels in cervical biopsies. FASEB J 2004; 18:1120-2. [PMID: 15155561 DOI: 10.1096/fj.03-1332fje] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High-risk human papillomaviruses (HPVs) are major etiological agents of cervical cancer. Despite excellent epidemiological evidence for a direct role of HPV-16 in cervical carcinogenesis, molecular pathways underlying carcinogenesis in vivo remain obscure. The E7 gene is required for immortalization and maintenance of the transformed phenotype in vitro; however, little is known about its role for tumorigenesis in vivo. The E7 gene codes for an unstable protein the abundance of which in cervical biopsies is unknown. We show here that E7 protein levels strongly increase during cervical carcinogenesis, underlining its fundamental role in cervical cancer. The E7 protein was found predominantly in the nucleus and to a minor extent in the cytoplasm in the cervical cancer cell line Ca Ski in vitro and in invasive cervical carcinoma in situ, suggesting that nuclear resident E7 plays a major role in cervical carcinogenesis in humans. The retinoblastoma protein (pRb) is a major E7-target in vitro. We show here that pRb expression is initially upregulated in LSIL and disappears in later stages concomitant with increased E7 levels, suggesting that E7-driven degradation of pRb is involved in cervical tumorigenesis in humans.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Biopsy
- Bone Neoplasms/pathology
- Bone Neoplasms/virology
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Cell Differentiation
- Cell Line, Tumor/metabolism
- Cell Line, Tumor/virology
- Cell Nucleus/virology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral/genetics
- Cervix Uteri/pathology
- Cervix Uteri/virology
- Disease Progression
- Epithelial Cells/ultrastructure
- Epithelial Cells/virology
- Female
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, Retinoblastoma
- Humans
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/physiology
- Osteosarcoma/pathology
- Osteosarcoma/virology
- Papillomaviridae/genetics
- Papillomaviridae/pathogenicity
- Papillomavirus E7 Proteins
- Papillomavirus Infections/genetics
- Rabbits
- Retinoblastoma Protein/metabolism
- Transfection
- Tumor Virus Infections/genetics
- Uterine Cervical Neoplasms/etiology
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/pathology
- Uterine Cervical Neoplasms/virology
- Uterine Cervical Dysplasia/etiology
- Uterine Cervical Dysplasia/genetics
- Uterine Cervical Dysplasia/pathology
- Uterine Cervical Dysplasia/virology
Collapse
Affiliation(s)
- Marc Fiedler
- Tyrolean Cancer Research Institute at the University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kazemi S, Papadopoulou S, Li S, Su Q, Wang S, Yoshimura A, Matlashewski G, Dever TE, Koromilas AE. Control of alpha subunit of eukaryotic translation initiation factor 2 (eIF2 alpha) phosphorylation by the human papillomavirus type 18 E6 oncoprotein: implications for eIF2 alpha-dependent gene expression and cell death. Mol Cell Biol 2004; 24:3415-29. [PMID: 15060162 PMCID: PMC381675 DOI: 10.1128/mcb.24.8.3415-3429.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) at serine 51 inhibits protein synthesis in cells subjected to various forms of stress including virus infection. The human papillomavirus (HPV) E6 oncoprotein contributes to virus-induced pathogenicity through multiple mechanisms including the inhibition of apoptosis and the blockade of interferon (IFN) action. We have investigated a possible functional relationship between the E6 oncoprotein and eIF2alpha phosphorylation by an inducible-dimerization form of the IFN-inducible protein kinase PKR. Herein, we demonstrate that HPV type 18 E6 protein synthesis is rapidly repressed upon eIF2alpha phosphorylation caused by the conditional activation of the kinase. The remainder of E6, however, can rescue cells from PKR-mediated inhibition of protein synthesis and induction of apoptosis. E6 physically associates with GADD34/PP1 holophosphatase complex, which mediates translational recovery, and facilitates eIF2alpha dephosphorylation. Inhibition of eIF2alpha phosphorylation by E6 mitigates eIF2alpha-dependent responses to transcription and translation of proapoptotic genes. These findings demonstrate, for the first time, a role of the oncogenic E6 in apoptotic signaling induced by PKR and eIF2alpha phosphorylation. The functional interaction between E6 and the eIF2alpha phosphorylation pathway may have important implications for HPV infection and associated pathogenesis.
Collapse
Affiliation(s)
- Shirin Kazemi
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Alonso LG, García-Alai MM, Smal C, Centeno JM, Iacono R, Castaño E, Gualfetti P, de Prat-Gay G. The HPV16 E7 Viral Oncoprotein Self-Assembles into Defined Spherical Oligomers†. Biochemistry 2004; 43:3310-7. [PMID: 15035602 DOI: 10.1021/bi036037o] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the fact that E7 is a major transforming oncoprotein in papillomavirus, its structure and precise molecular mechanism of action remain puzzling to date. E7 proteins share sequence homology and proteasome targeting properties of tumor suppressors with adenovirus E1A and SV40 T antigen, two other paradigmatic oncoproteins from DNA tumor viruses. High-risk HPV16 E7, a nonglobular dimer with some properties of intrinsically disordered proteins, is capable of undergoing pH-dependent conformational transitions that expose hydrophobic surfaces to the solvent. We found that treatment with a chelating agent produced a protein that can readily assemble into homogeneous spherical particles with an average molecular mass of 790 kDa and a diameter of 50 nm, as determined from dynamic light scattering and electron microscopy. The protein undergoes a substantial conformational transition from coil to beta-sheet structure, with concomitant consolidation of tertiary structure as judged by circular dichroism and fluorescence. The assembly process is very slow, in agreement with a substantial energy barrier caused by structural rearrangements. The resulting particles are highly stable, cooperatively folded, and capable of binding both Congo Red and thioflavin T, reporters of repetitive beta-sheet structures similar to those found in amyloids, although no fibrillar or insoluble material was observed under our experimental conditions.
Collapse
Affiliation(s)
- Leonardo G Alonso
- Instituto Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Patricias Argentinas 435, (1405) Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Angeline M, Merle E, Moroianu J. The E7 oncoprotein of high-risk human papillomavirus type 16 enters the nucleus via a nonclassical Ran-dependent pathway. Virology 2004; 317:13-23. [PMID: 14675621 DOI: 10.1016/j.virol.2003.08.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
E7, the major transforming protein of high-risk human papillomavirus (HPV), type 16, binds and inactivates the retinoblastoma protein (pRb), and the Rb-related proteins p107 and p130. HPV16 E7 is a nuclear protein lacking a classical basic nuclear localization signal. In this study we investigated the nuclear import of HPV16 E7 oncoprotein in digitonin-permeabilized HeLa cells. HPV16 E7 nuclear import was independent of pRb, as an E7(DeltaDLYC) variant defective in pRb binding was imported into the nuclei of digitonin-permeabilized cells as efficiently as wild-type E7 in the presence of exogenous cytosol. Interestingly, we discovered that HPV16 E7 is imported into the nuclei via a novel pathway different from those mediated by Kap alpha2beta1 heterodimers, Kap beta1, or Kap beta2. Nuclear accumulation of E7 required Ran and was not inhibited by the RanG19V-GTP variant, an inhibitor of Kap beta mediated import pathways. Together the data suggest that HPV16 E7 translocates through the nuclear pores via a nonclassical Ran-dependent pathway, independent of the main cytosolic Kap beta import receptors.
Collapse
Affiliation(s)
- Michael Angeline
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
41
|
Tao M, Kruhlak M, Xia S, Androphy E, Zheng ZM. Signals that dictate nuclear localization of human papillomavirus type 16 oncoprotein E6 in living cells. J Virol 2004; 77:13232-47. [PMID: 14645580 PMCID: PMC296047 DOI: 10.1128/jvi.77.24.13232-13247.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus (HPV) type 16 E6 (16E6) is an oncogenic, multifunctional nuclear protein that induces p53 degradation and perturbs normal cell cycle control, leading to immortalization and transformation of infected keratinocytes and epithelial cells. Although it is unclear how 16E6 disrupts the epigenetic profile of host genes, its presence in the nucleus is a key feature. The present report describes intrinsic properties of 16E6 that influence its nuclear import in living cells. When the coding region of full-length 16E6 was inserted in frame into the C terminus of green fluorescent protein (GFP), it effectively prevented the 16E6 pre-mRNA from being spliced and led to the expression of a GFP-E6 fusion which localized predominantly to the nucleus. Further studies identified three novel nuclear localization signals (NLSs) in 16E6 that drive the protein to accumulate in the nucleus. We found that all three NLS sequences are rich in positively charged basic residues and that point mutations in these key residues could abolish the retention of 16E6 in the nucleus as well as the p53 degradation and cell immortalization activities of the protein. When inserted into corresponding regions of low-risk HPV type 6 E6, the three NLS sequences described for 16E6 functioned actively in converting the normally cytoplasmic HPV type 6 E6 into a nuclear protein. The separate NLS sequences, however, appear to play different roles in nuclear import and retention of HPV E6. The discovery of three unique NLS sequences in 16E6 provides new insights into the nuclear association of 16E6 which may reveal other novel activities of this important oncogenic protein.
Collapse
Affiliation(s)
- Mingfang Tao
- HIV and AIDS Malignancy Branch. Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
42
|
Guccione E, Pim D, Banks L. HPV-18 E6*I modulates HPV-18 full-length E6 functions in a cell cycle dependent manner. Int J Cancer 2004; 110:928-33. [PMID: 15170678 DOI: 10.1002/ijc.20184] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The E6 ORFs of the high-risk Human Papillomavirus (HPV) Types 16 and 18 have been shown to encode (besides the full-length product) several truncated forms, termed E6*. We have reported previously that the HPV-18 E6*I protein interacts with the full-length E6 protein as well as with the ubiquitin ligase E6-AP and, as a result of this, E6* can inhibit E6-mediated degradation of p53. Moreover, ectopic expression of the HPV-18 E6*I protein has an antiproliferative effect in cervical cancer-derived cell lines. These results led us to investigate further the modulatory functions of E6*I on E6. Using epitope tagged versions of the 2 proteins we have analyzed the sub-cellular distribution of the full-length HPV18 E6 and HPV18 E6*I, as well as their respective cellular abundance during the cell cycle, and show specific upregulation of E6*I during G2/M. We also investigated the effect of E6*I overexpression in cell lines derived from cervical tumors, with respect to the expression levels of E6 target proteins, such as p53, hDlg and Scribble and find a corresponding increase in p53 expression also during G2/M. In addition we show that the overexpression of E6*I reduces the amount of E6 in the insoluble nuclear and membrane fractions of the cell. E6 levels can, however, be restored by the addition of a specific proteasome inhibitor, suggesting that the interaction between E6 and E6*I leads to the destabilization of a subset of the E6 protein. These results suggest that the E6*I protein can function as a fine regulator of the full-length E6 protein by direct interaction that leads both to changes in its cellular abundance as well as its distribution during particular phases of the cell cycle.
Collapse
Affiliation(s)
- Ernesto Guccione
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | |
Collapse
|
43
|
Bernat A, Avvakumov N, Mymryk JS, Banks L. Interaction between the HPV E7 oncoprotein and the transcriptional coactivator p300. Oncogene 2003; 22:7871-81. [PMID: 12970734 DOI: 10.1038/sj.onc.1206896] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection with high-risk human papillomaviruses (HPV) can lead to the development of cervical cancer. This process depends on the interaction of the virus-encoded oncoproteins, E6 and E7, with a variety of host regulatory proteins. As E7 shares both functional and structural similarities with the Adenovirus E1a (Ad E1a) protein, we were interested in investigating the possible interactions between E7 and the transcriptional coactivator p300, since it was originally identified as a target of Ad E1a. Using a variety of assays, we show that E7s from both high- and low-risk HPV types interact with p300. Mutational analysis of E7 maps the site of the interaction to a region spanning the pRb-binding domain and the CKII phosphorylation site. We also map the site of interaction on p300 largely to the CH1 domain. In addition, we demonstrate that the binding between 16E7 and p300 is direct, and can be detected in vivo by coimmunoprecipitation and mammalian two-hybrid assays. Finally, we show that E7 can abolish the p300-mediated E2 transactivation function, suggesting that complex formation between E7 and p300 may contribute to the regulation of E2 transcriptional activity.
Collapse
Affiliation(s)
- Agnieszka Bernat
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | |
Collapse
|
44
|
Masson M, Hindelang C, Sibler AP, Schwalbach G, Travé G, Weiss E. Preferential nuclear localization of the human papillomavirus type 16 E6 oncoprotein in cervical carcinoma cells. J Gen Virol 2003; 84:2099-2104. [PMID: 12867640 DOI: 10.1099/vir.0.18961-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The E6 protein of the high-risk human papillomavirus type 16 (HPV-16) is involved in the tumorigenesis of human cervical cells by targeting numerous cellular proteins. We characterized new anti-E6 monoclonal antibodies and used them for precise localization of the E6 oncoprotein within carcinoma cells. Overexpressed E6 protein was predominantly detected in the nucleus of transiently transfected HaCaT cells. While mostly localized at the periphery of condensed chromatin, E6 was also associated with nuclear ribonucleoproteic ultrastructures and with some ribosomal areas in the cytoplasm of SiHa and CaSki cells. The chimeric beta-galactosidase-E6 protein expressed in transfected HeLa cells was essentially localized in the nuclear compartment. Together, these data indicate that the E6 sequence of HPV-16 may encode a nuclear localization signal. The preferential nuclear distribution of this viral oncoprotein in HPV-transformed cells correlates with its activities at the transcriptional level.
Collapse
Affiliation(s)
- Murielle Masson
- UMR 7100, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, 67412 Illkirch cedex, France
| | - Colette Hindelang
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Service de Microscopie Electronique, 1 rue Laurent Fries, 67400 Illkirch cedex, France
| | - Annie-Paule Sibler
- UMR 7100, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, 67412 Illkirch cedex, France
| | - Georges Schwalbach
- UMR 7100, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, 67412 Illkirch cedex, France
| | - Gilles Travé
- UMR 7100, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, 67412 Illkirch cedex, France
| | - Etienne Weiss
- UMR 7100, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, 67412 Illkirch cedex, France
| |
Collapse
|
45
|
O'Brien PM, Campo MS. Papillomaviruses: a correlation between immune evasion and oncogenicity? Trends Microbiol 2003; 11:300-5. [PMID: 12875812 DOI: 10.1016/s0966-842x(03)00145-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Philippa M O'Brien
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow G61 1QH, Scotland, UK
| | | |
Collapse
|
46
|
Cid-Arregui A, Juárez V, zur Hausen H. A synthetic E7 gene of human papillomavirus type 16 that yields enhanced expression of the protein in mammalian cells and is useful for DNA immunization studies. J Virol 2003; 77:4928-37. [PMID: 12663798 PMCID: PMC152128 DOI: 10.1128/jvi.77.8.4928-4937.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A synthetic E7 gene of human papillomavirus (HPV) type 16 was generated that consists entirely of preferred human codons. Expression analysis of the synthetic E7 gene in human and animal cells showed levels of E7 protein 20- to 100-fold higher than those obtained with wild-type E7. Enhanced expression of E7 protein resulted from highly efficient translation, as well as increased stability of the E7 mRNA due to its codon optimization. Higher levels of E7 protein in cells transfected with synthetic E7 correlated with significant loss of cell viability in various human cell lines. In contrast, lower E7 protein expression driven by the wild-type gene resulted in a slight induction of cell proliferation. Furthermore, mice inoculated with plasmids expressing the synthetic E7 gene produced significantly higher levels of E7 antibodies than littermates injected with wild-type E7, suggesting that synthetic E7 may be useful for DNA immunization studies and the development of genetic vaccines against HPV-16. In view of these results, we hypothesize that HPVs may have retained a pattern of G + C content and codon usage distinct from that of their host cells in response to selective pressure. Thus, the nonhuman codon bias may have been conserved by HPVs to prevent compromising viability of the host cells by excessive viral early protein expression, as well as to evade the immune system.
Collapse
Affiliation(s)
- Angel Cid-Arregui
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
47
|
Roberts S, Hillman ML, Knight GL, Gallimore PH. The ND10 component promyelocytic leukemia protein relocates to human papillomavirus type 1 E4 intranuclear inclusion bodies in cultured keratinocytes and in warts. J Virol 2003; 77:673-84. [PMID: 12477870 PMCID: PMC140640 DOI: 10.1128/jvi.77.1.673-684.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human papillomavirus type 1 (HPV1) E4 protein is associated with cytoplasmic and nuclear inclusions in productively infected keratinocytes. Here we have used transient expression of HPV1 E4 (also known as E1E4) protein in keratinocytes to reproduce formation of E4 inclusions. Immunofluorescence analysis showed that progressive formation of inclusions correlated with diminished colocalization between E4 and keratin intermediate filaments (IFs). Our results support a model in which the HPV1 E4-keratin IF association is transient, occurring only at an early stage of inclusion formation. We also demonstrate that E4 induces relocation of the promyelocytic leukemia protein (PML) from multiple intranuclear speckles (ND10 bodies) to the periphery of nuclear E4 inclusions and that this activity is specific to full-length E4 protein. Analysis of HPV1-induced warts demonstrated that nuclear PML-E4 inclusions were present in productively infected keratinocytes, indicating that reorganization of PML occurs during the virus's replication cycle. It has been suggested that ND10 bodies are the sites for papillomavirus genome replication and virion assembly. Our finding that E4 induces reorganization of ND10 bodies in vitro and in vivo is further strong evidence that these domains play an important role in the papillomavirus life cycle. This study indicates that HPV1 is analogous to other DNA viruses that disrupt or reorganize ND10 domains, possibly to increase efficiency of virus infection. We hypothesize that HPV1 E4-induced reorganization of PML is necessary for efficient replication of the virus during the virus-producing phase.
Collapse
Affiliation(s)
- Sally Roberts
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, United Kingdom.
| | | | | | | |
Collapse
|
48
|
Finzer P, Aguilar-Lemarroy A, Rösl F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett 2002; 188:15-24. [PMID: 12406543 DOI: 10.1016/s0304-3835(02)00431-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The oncogenic potential of 'high risk' human papillomaviruses can be mainly attributed to two small proteins called E6 and E7. Even these oncoproteins have a low molecular size, they are highly promiscuous and are capable to interact with a whole variety of host cellular regulator proteins to elicit cellular immortalization and ultimately complete malignant transformation. To avoid reiterations in summarizing the biochemical and molecular biological properties of E6/E7 in terms of their influence on cell cycle control, the present review is mainly an attempt to describe some regulatory principles by which human papillomavirus (HPV) oncoproteins can interfere with apoptosis in order to escape immunological surveillance during progression to cervical cancer. The models derived from these basic cellular and molecular studies are relevant to our understanding of HPV-induced carcinogenesis. Conversely, experimental procedures aimed at relieving apoptosis resistance, can facilitate the eradication of immunologically suspicious cells and may prevent the accumulation of cervical intraepithelial cell abnormalities in future prophylactic or therapeutic approaches.
Collapse
Affiliation(s)
- Patrick Finzer
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Abteilung Tumorvirusimmunologie, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | | | | |
Collapse
|