1
|
Fox CR, Kedarinath K, Neal CJ, Sheiber J, Kolanthai E, Kumar U, Drake C, Seal S, Parks GD. Broad-Spectrum, Potent, and Durable Ceria Nanoparticles Inactivate RNA Virus Infectivity by Targeting Virion Surfaces and Disrupting Virus-Receptor Interactions. Molecules 2023; 28:5190. [PMID: 37446852 DOI: 10.3390/molecules28135190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is intense interest in developing long-lasting, potent, and broad-spectrum antiviral disinfectants. Ceria nanoparticles (CNPs) can undergo surface redox reactions (Ce3+ ↔ Ce4+) to generate ROS without requiring an external driving force. Here, we tested the mechanism behind our prior finding of potent inactivation of enveloped and non-enveloped RNA viruses by silver-modified CNPs, AgCNP1 and AgCNP2. Treatment of human respiratory viruses, coronavirus OC43 and parainfluenza virus type 5 (PIV5) with AgCNP1 and 2, respectively, prevented virus interactions with host cell receptors and resulted in virion aggregation. Rhinovirus 14 (RV14) mutants were selected to be resistant to inactivation by AgCNP2. Sequence analysis of the resistant virus genomes predicted two amino acid changes in surface-located residues D91V and F177L within capsid protein VP1. Consistent with the regenerative properties of CNPs, surface-applied AgCNP1 and 2 inactivated a wide range of structurally diverse viruses, including enveloped (OC43, SARS-CoV-2, and PIV5) and non-enveloped RNA viruses (RV14 and feline calicivirus; FCV). Remarkably, a single application of AgCNP1 and 2 potently inactivated up to four sequential rounds of virus challenge. Our results show broad-spectrum and long-lasting anti-viral activity of AgCNP nanoparticles, due to targeting of viral surface proteins to disrupt interactions with cellular receptors.
Collapse
Affiliation(s)
- Candace R Fox
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kritika Kedarinath
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jeremy Sheiber
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | | | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Nano Science Technology Center, University of Central Florida, Orlando, FL 32816, USA
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
2
|
Fox CR, Parks GD. Histone Deacetylase Inhibitors Enhance Cell Killing and Block Interferon-Beta Synthesis Elicited by Infection with an Oncolytic Parainfluenza Virus. Viruses 2019; 11:E431. [PMID: 31083335 PMCID: PMC6563284 DOI: 10.3390/v11050431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Previous results have shown that infection with the cytoplasmic-replicating parainfluenza virus 5 mutant P/V-CPI- sensitizes cells to DNA damaging agents, resulting in the enhanced killing of airway cancer cells. Here, we have tested the hypothesis that histone deacetylase (HDAC) inhibitors can also act with P/V-CPI- infection to enhance cancer cell killing. Using human small cell lung cancer and laryngeal cancer cell lines, 10 HDAC inhibitors were tested for their effect on viability of P/V-CPI- infected cells. HDAC inhibitors such as scriptaid enhanced caspase-3/7, -8 and -9 activity induced by P/V-CPI- and overall cell toxicity. Scriptaid-mediated enhanced killing was eliminated in lung cancer cells that were engineered to express a protein which sequesters double stranded RNA. Scriptaid also enhanced cancer cell killing by two other negative strand RNA viruses - the La Crosse virus and vesicular stomatitis virus. Scriptaid treatment enhanced the spread of the P/V-CPI- virus through a population of cancer cells, and suppressed interferon-beta induction through blocking phosphorylation and nuclear translocation of Interferon Regulatory Factor 3 (IRF-3). Taken together, these data support a role for combinations of a cytoplasmic-replicating RNA virus such as the P/V-CPI- mutant along with chemotherapeutic agents.
Collapse
Affiliation(s)
- Candace R Fox
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|
3
|
Clark KM, Johnson JB, Kock ND, Mizel SB, Parks GD. Parainfluenza virus 5-based vaccine vectors expressing vaccinia virus (VACV) antigens provide long-term protection in mice from lethal intranasal VACV challenge. Virology 2011; 419:97-106. [PMID: 21885079 PMCID: PMC3177979 DOI: 10.1016/j.virol.2011.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 11/21/2022]
Abstract
To test the potential for parainfluenza virus 5 (PIV5)-based vectors to provide protection from vaccinia virus (VACV) infection, PIV5 was engineered to express secreted VACV L1R and B5R proteins, two important antigens for neutralization of intracellular mature (IMV) and extracellular enveloped (EEV) virions, respectively. Protection of mice from lethal intranasal VACV challenge required intranasal immunization with PIV5-L1R/B5R in a prime-boost protocol, and correlated with low VACV-induced pathology in the respiratory tract and anti-VACV neutralizing antibody. Mice immunized with PIV5-L1R/B5R showed some disease symptoms following VACV challenge such as loss of weight and hunching, but these symptoms were delayed and less severe than with unimmunized control mice. While immunization with PIV5 expressing B5R alone conferred at least some protection, the most effective immunization included the PIV5 vector expressing L1R alone or in combination with PIV5-B5R. PIV5-L1R/B5R vectors elicited protection from VACV challenge even when CD8+ cells were depleted, but not in the case of mice that were defective in B cell production. Mice were protected from VACV challenge out to at least 1.5 years after immunization with PIV5-L1R/B5R vectors, and showed significant levels of anti-VACV neutralizing antibodies. These results demonstrate the potential for PIV5-based vectors to provide long lasting protection against complex human respiratory pathogens such as VACV, but also highlight the need to understand mechanisms for the generation of strong immune responses against poorly immunogenic viral proteins.
Collapse
Affiliation(s)
- Kimberly M. Clark
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1064, USA
| | - John B. Johnson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1064, USA
| | - Nancy D. Kock
- Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1064, USA
| | - Steven B. Mizel
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1064, USA
| | - Griffith D. Parks
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1064, USA
- Corresponding author at: Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1064, USA. Fax: +1 336 716 9928.
| |
Collapse
|
4
|
A hyperfusogenic F protein enhances the oncolytic potency of a paramyxovirus simian virus 5 P/V mutant without compromising sensitivity to type I interferon. J Virol 2008; 82:9369-80. [PMID: 18667520 DOI: 10.1128/jvi.01054-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral fusogenic membrane proteins have been proposed as tools to increase the potency of oncolytic viruses, but there is a need for mechanisms to control the spread of fusogenic viruses in normal versus tumor cells. We have previously shown that a mutant of the paramyxovirus simian virus 5 (SV5) that harbors mutations in the P/V gene from the canine parainfluenza virus (P/V-CPI(-)) is a potent inducer of type I interferon (IFN) and apoptosis and is restricted for spread through normal but not tumor cells in vitro. Here, we have used the cytopathic P/V-CPI(-) as a backbone vector to test the hypothesis that a virus expressing a hyperfusogenic glycoprotein will be a more effective oncolytic vector but will retain sensitivity to IFN. A P/V mutant virus expressing an F protein with a glycine-to-alanine substitution in the fusion peptide (P/V-CPI(-)-G3A) was more fusogenic than the parental P/V-CPI(-) mutant. In two model prostate tumor cell lines which are defective in IFN production (LNCaP and DU145), the hyperfusogenic P/V-CPI(-)-G3A mutant had normal growth properties at low multiplicities of infection and was more effective than the parental P/V-CPI(-) mutant at cell killing in vitro. However, in PC3 cells which produce and respond to IFN, the hyperfusogenic P/V-CPI(-)-G3A mutant was attenuated for growth and spread. Killing of PC3 cells was equivalent between the parental P/V-CPI(-) mutant and the hyperfusogenic P/V-CPI(-)-G3A mutant. In a nude mouse model using LNCaP cells, the hyperfusogenic P/V-CPI(-)-G3A mutant was more effective than P/V-CPI(-) at reducing tumor burden. In the case of DU145 tumors, the two vectors based on P/V-CPI(-) were equally effective at limiting tumor growth. Together, our results provide proof of principle that a cytopathic SV5 P/V mutant can serve as an oncolytic virus and that the oncolytic effectiveness of P/V mutants can be enhanced by a fusogenic membrane protein without compromising sensitivity to IFN. The potential advantages of SV5-based oncolytic vectors are discussed.
Collapse
|
5
|
Capraro GA, Johnson JB, Kock ND, Parks GD. Virus growth and antibody responses following respiratory tract infection of ferrets and mice with WT and P/V mutants of the paramyxovirus Simian Virus 5. Virology 2008; 376:416-28. [PMID: 18456301 PMCID: PMC2574746 DOI: 10.1016/j.virol.2008.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 03/19/2008] [Accepted: 03/27/2008] [Indexed: 11/29/2022]
Abstract
P/V gene substitutions convert the non-cytopathic paramyxovirus Simian Virus 5 (SV5), which is a poor inducer of host cell responses in human tissue culture cells, into a mutant (P/V-CPI−) that induces high levels of apoptosis, interferon (IFN)-beta, and proinflammatory cytokines. However, the effect of SV5-P/V gene mutations on virus growth and adaptive immune responses in animals has not been determined. Here, we used two distinct animal model systems to test the hypothesis that SV5-P/V mutants which are more potent activators of innate responses in tissue culture will also elicit higher antiviral antibody responses. In mouse cells, in vitro studies identified a panel of SV5-P/V mutants that ranged in their ability to limit IFN responses. Intranasal infection of mice with these WT and P/V mutant viruses elicited equivalent anti-SV5 IgG responses at all doses tested, and viral titers recovered from the respiratory tract were indistinguishable. In primary cultures of ferret lung fibroblasts, WT rSV5 and P/V-CPI− viruses had phenotypes similar to those established in human cell lines, including differential induction of IFN secretion, IFN signaling and apoptosis. Intranasal infection of ferrets with a low dose of WT rSV5 elicited ~ 500 fold higher anti-SV5 serum IgG responses compared to the P/V-CPI− mutant, and this correlated with overall higher viral titers for the WT virus in tracheal tissues. There was a dose-dependent increase in antibody response to infection of ferrets with P/V-CPI−, but not with WT rSV5. Together our data indicate that WT rSV5 and P/V mutants can elicit distinct innate and adaptive immunity phenotypes in the ferret animal model system, but not in the mouse system. We present a model for the effect of P/V gene substitutions on SV5 growth and immune responses in vivo.
Collapse
Affiliation(s)
- Gerald A Capraro
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1064, USA
| | | | | | | |
Collapse
|
6
|
Johnson JB, Capraro GA, Parks GD. Differential mechanisms of complement-mediated neutralization of the closely related paramyxoviruses simian virus 5 and mumps virus. Virology 2008; 376:112-23. [PMID: 18440578 DOI: 10.1016/j.virol.2008.03.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/18/2008] [Accepted: 03/19/2008] [Indexed: 11/18/2022]
Abstract
The complement system is an important component of the innate immune response to virus infection. The role of human complement pathways in the in vitro neutralization of three closely related paramyxoviruses, Simian Virus 5 (SV5), Mumps virus (MuV) and Human Parainfluenza virus type 2 (HPIV2) was investigated. Sera from ten donors showed high levels of neutralization against HPIV2 that was largely complement-independent, whereas nine of ten donor sera were found to neutralize SV5 and MuV only in the presence of active complement pathways. SV5 and MuV neutralization proceeded through the alternative pathway of the complement cascade. Electron microscopy studies and biochemical analyses showed that treatment of purified SV5 with human serum resulted in C3 deposition on virions and the formation of massive aggregates, but there was relatively little evidence of virion lysis. Treatment of MuV with human serum also resulted in C3 deposition on virions, however in contrast to SV5, MuV particles were lysed by serum complement and there was relatively little aggregation. Assays using serum depleted of complement factors showed that SV5 and MuV neutralization in vitro was absolutely dependent on complement factor C3, but was not dependent on downstream complement factors C5 or C8. Our results indicate that even though antibodies exist that recognize both SV5 and MuV, they are mostly non-neutralizing and viral inactivation in vitro occurs through the alternative pathway of complement. The implications of our work for development of paramyxovirus vectors and vaccines are discussed.
Collapse
Affiliation(s)
- John B Johnson
- Department of Microbiology and Immunology, Wake Forest University, School of Medicine, Winston-Salem, NC 27157-1064, USA
| | | | | |
Collapse
|
7
|
Dillon PJ, Parks GD. Role for the phosphoprotein P subunit of the paramyxovirus polymerase in limiting induction of host cell antiviral responses. J Virol 2007; 81:11116-27. [PMID: 17686837 PMCID: PMC2045556 DOI: 10.1128/jvi.01360-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Six amino acid substitutions in the shared N-terminal region of the P subunit of the viral polymerase and the accessory V protein convert the noncytopathic paramyxovirus simian virus 5 (SV5), which is a poor inducer of host cell responses, into a P/V mutant (P/V-CPI-) that induces high levels of apoptosis, interferon-beta (IFN-beta), and proinflammatory cytokines. In this study, we addressed the question of whether these new mutant phenotypes are due to the presence of an altered P protein or of an altered V protein or of both proteins. By the use of the P/V-CPI- mutant as a backbone, new mutant viruses were engineered to express the wild-type (WT) V protein (+V-wt) or WT P protein (+P-wt) from an additional gene inserted between the HN and L genes. In human epithelial cell lines, the +V-wt virus showed reduced activation of apoptosis and lower secretion of IFN-beta and proinflammatory cytokines compared to the parental P/V-CPI- virus. The presence of a V protein lacking the C-terminal cysteine-rich domain (corresponding to the SV5 I protein) did not reduce these host cell responses to P/V-CPI- infection. Unexpectedly, the +P-wt virus, which expressed a WT P subunit of the viral polymerase, also induced much lower levels of host cell responses than the parental P/V-CPI- mutant. For both +V-wt and +P-wt viruses, reduced levels of IFN-beta synthesis correlated with reduced IRF-3 dimerization and nuclear localization of IRF-3 and NF-kappaB, suggesting that the WT P and V proteins acted at an early stage in antiviral pathways. Host cell responses induced by the various P/V mutants directly correlated with levels of viral mRNA accumulation but not with steady-state levels of genomic RNA. Our results support the hypothesis that WT P and V proteins limit induction of antiviral responses by controlling the production of key viral inducers. A model is presented for the mechanism by which both the P subunit of the viral polymerase and the V accessory protein contribute to the ability of a paramyxovirus to limit activation of antiviral responses.
Collapse
Affiliation(s)
- Patrick J Dillon
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1064, USA
| | | |
Collapse
|
8
|
Vähä-Koskela MJ, Heikkilä JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254:178-216. [PMID: 17383089 PMCID: PMC7126325 DOI: 10.1016/j.canlet.2007.02.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 12/26/2022]
Abstract
Oncolytic virotherapy is a promising form of gene therapy for cancer, employing nature’s own agents to find and destroy malignant cells. The purpose of this review is to provide an introduction to this very topical field of research and to point out some of the current observations, insights and ideas circulating in the literature. We have strived to acknowledge as many different oncolytic viruses as possible to give a broader picture of targeting cancer using viruses. Some of the newest additions to the panel of oncolytic viruses include the avian adenovirus, foamy virus, myxoma virus, yaba-like disease virus, echovirus type 1, bovine herpesvirus 4, Saimiri virus, feline panleukopenia virus, Sendai virus and the non-human coronaviruses. Although promising, virotherapy still faces many obstacles that need to be addressed, including the emergence of virus-resistant tumor cells.
Collapse
Affiliation(s)
- Markus J.V. Vähä-Koskela
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
- Turku Graduate School of Biomedical Sciences, Turku, Finland
- Corresponding author. Address: Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland. Tel.: +358 2 215 4018; fax: +358 2 215 4745.
| | - Jari E. Heikkilä
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| | - Ari E. Hinkkanen
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| |
Collapse
|
9
|
Dillon PJ, Wansley EK, Young VA, Alexander-Miller MA, Parks GD. Exchange of P/V genes between two non-cytopathic simian virus 5 variants results in a recombinant virus that kills cells through death pathways that are sensitive to caspase inhibitors. J Gen Virol 2006; 87:3643-3648. [PMID: 17098980 DOI: 10.1099/vir.0.82242-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The paramyxovirus Simian virus 5 (SV5) is largely non-cytopathic in human epithelial and fibroblast cells. WF-PIV has been described previously as a naturally occurring SV5 variant that encodes P and V proteins differing from the wild-type (WT) SV5 proteins in eight and five amino acid positions, respectively. In this study, it is shown that WF-PIV is like WT SV5 by being largely non-cytopathic in A549 lung epithelial cells. However, substitution of the WF-PIV P/V gene into the background of WT SV5 resulted in a hybrid virus (P/V-WF) that induced apoptotic cell death not seen with either of the parental viruses. The kinetics of HeLa cell killing and induction of apoptosis by the P/V-WF chimera differed from those of the previously described P/V-CPI- chimera by being slower and less extensive. HeLa cell killing by the P/V-WF chimera was effectively reduced by inhibitors of caspase-9, but not of caspase-8. These results demonstrate that an exchange of P/V genes from two non-cytopathic SV5 variants can produce apoptosis-inducing chimeras, and that the role of the SV5 P/V gene products in limiting apoptosis can be dependent on expression in the context of a native viral genome.
Collapse
Affiliation(s)
- Patrick J Dillon
- Department of Microbiology and Immunology, Wake Forest University, School of Medicine, Winston-Salem, NC 27157-1064, USA
| | - Elizabeth K Wansley
- Department of Microbiology and Immunology, Wake Forest University, School of Medicine, Winston-Salem, NC 27157-1064, USA
| | - Virginia A Young
- Department of Microbiology and Immunology, Wake Forest University, School of Medicine, Winston-Salem, NC 27157-1064, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest University, School of Medicine, Winston-Salem, NC 27157-1064, USA
| | - Griffith D Parks
- Department of Microbiology and Immunology, Wake Forest University, School of Medicine, Winston-Salem, NC 27157-1064, USA
| |
Collapse
|
10
|
Read ML, Stevenson M, Farrow PJ, Barrett LB, Seymour LW. RNA-based therapeutic strategies for cancer. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.5.627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Wansley EK, Grayson JM, Parks GD. Apoptosis induction and interferon signaling but not IFN-beta promoter induction by an SV5 P/V mutant are rescued by coinfection with wild-type SV5. Virology 2003; 316:41-54. [PMID: 14599789 DOI: 10.1016/s0042-6822(03)00584-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Infection of human cells with the paramyxovirus simian virus 5 (SV5) results in minimal cytopathic effect, and host interferon (IFN) and apoptotic pathways are not activated. We have previously shown that an rSV5 containing six naturally occurring P/V gene substitutions (rSV5-P/V-CPI-) displays premature and elevated expression of viral RNA and protein. In addition, cells infected with rSV5-P/V-CPI- show induction of the IFN-beta promoter as well as activation of IFN signaling and apoptotic pathways. In this article, we have tested the hypothesis that rSV5-WT can supply trans-acting factors that prevent host cell antiviral responses induced by rSV5-P/V-CPI-. During coinfection of human A549 cells, rSV5-WT blocked cell rounding, loss of cell volume, and DNA fragmentation induced by rSV5-P/V-CPI-, three later events in the apoptotic pathway, but was not able to block the loss of mitochondrial membrane potential (DeltaPsi(m)), an early event in the cell death process. As expected, IFN signaling was blocked during coinfections, and this was attributed to the loss of STAT1 induced by the rSV5-WT V protein. Surprisingly, simultaneous infection with rSV5-WT could not suppress the activation of the IFN-beta promoter by rSV5-P/V-CPI- infection. However, the IFN-beta promoter was not activated in cells that were first preinfected for 1 h with rSV5-WT and then subsequently infected with rSV5-P/V-CPI-. A model is proposed for activation of host responses to infection with the rSV5-P/V-CPI- mutant and the steps that are blocked by rSV5-WT.
Collapse
Affiliation(s)
- Elizabeth K Wansley
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1064, USA
| | | | | |
Collapse
|
12
|
Wansley EK, Parks GD. Naturally occurring substitutions in the P/V gene convert the noncytopathic paramyxovirus simian virus 5 into a virus that induces alpha/beta interferon synthesis and cell death. J Virol 2002; 76:10109-21. [PMID: 12239285 PMCID: PMC136585 DOI: 10.1128/jvi.76.20.10109-10121.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The V protein of the paramyxovirus simian virus 5 (SV5) is responsible for targeted degradation of STAT1 and the block in alpha/beta interferon (IFN-alpha/beta) signaling that occurs after SV5 infection of human cells. We have analyzed the growth properties of a recombinant SV5 that was engineered to be defective in targeting STAT1 degradation. A recombinant SV5 (rSV5-P/V-CPI-) was engineered to contain six naturally occurring P/V protein mutations, three of which have been shown in previous transfection experiments to disrupt the V-mediated block in IFN-alpha/beta signaling. In contrast to wild-type (WT) SV5, human cells infected with rSV5-P/V-CPI- had STAT1 levels similar to those in mock-infected cells. Cells infected with rSV5-P/V-CPI- were found to express higher-than-WT levels of viral proteins and mRNA, suggesting that the P/V mutations had disrupted the regulation of viral RNA synthesis. Despite the inability to target STAT1 for degradation, single-step growth assays showed that the rSV5-P/V-CPI- mutant virus grew better than WT SV5 in all cell lines tested. Unexpectedly, cells infected with rSV5-P/V-CPI- but not WT SV5 showed an activation of a reporter gene that was under control of the IFN-beta promoter. The secretion of IFN from cells infected with rSV5-P/V-CPI- but not WT SV5 was confirmed by a bioassay for IFN. The rSV5-P/V-CPI- mutant grew to higher titers than did WT rSV5 at early times in multistep growth assays. However, rSV5-P/V-CPI- growth quickly reached a final plateau while WT rSV5 continued to grow and produced a final titer higher than that of rSV5-P/V-CPI- by late times postinfection. In contrast to WT rSV5, infection of a variety of cell lines with rSV5-P/V-CPI- induced cell death pathways with characteristics of apoptosis. Our results confirm a role for the SV5 V protein in blocking IFN signaling but also suggest new roles for the P/V gene products in controlling viral gene expression, the induction of IFN-alpha/beta synthesis, and virus-induced apoptosis.
Collapse
Affiliation(s)
- Elizabeth K Wansley
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1064, USA
| | | |
Collapse
|