1
|
Zhou Y, Routh AL. Bipartite viral RNA genome heterodimerization influences genome packaging and virion thermostability. J Virol 2024; 98:e0182023. [PMID: 38329331 PMCID: PMC10949487 DOI: 10.1128/jvi.01820-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Multi-segmented viruses often multimerize their genomic segments to ensure efficient and stoichiometric packaging of the correct genetic cargo. In the bipartite Nodaviridae family, genome heterodimerization is also observed and conserved among different species. However, the nucleotide composition and biological function for this heterodimer remain unclear. Using Flock House virus as a model system, we developed a next-generation sequencing approach ("XL-ClickSeq") to probe heterodimer site sequences. We identified an intermolecular base-pairing site which contributed to heterodimerization in both wild-type and defective virus particles. Mutagenic disruption of this heterodimer site exhibited significant deficiencies in genome packaging and encapsidation specificity to viral genomic RNAs. Furthermore, the disruption of this intermolecular interaction directly impacts the thermostability of the mature virions. These results demonstrate that the intermolecular RNA-RNA interactions within the encapsidated genome of an RNA virus have an important role on virus particle integrity and thus may impact its transmission to a new host.IMPORTANCEFlock House virus is a member of Nodaviridae family of viruses, which provides a well-studied model virus for non-enveloped RNA virus assembly, cell entry, and replication. The Flock House virus genome consists of two separate RNA molecules, which can form a heterodimer upon heating of virus particles. Although similar RNA dimerization is utilized by other viruses (such as retroviruses) as a packaging mechanism and is conserved among Nodaviruses, the role of heterodimerization in the Nodavirus replication cycle is unclear. In this research, we identified the RNA sequences contributing to Flock House virus genome heterodimerization and discovered that such RNA-RNA interaction plays an essential role in virus packaging efficiency and particle integrity. This provides significant insight into how the interaction of packaged viral RNA may have a broader impact on the structural and functional properties of virus particles.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Ortega-del Campo S, Díaz-Martínez L, Moreno P, García-Rosado E, Alonso MC, Béjar J, Grande-Pérez A. The genetic variability and evolution of red-spotted grouper nervous necrosis virus quasispecies can be associated with its virulence. Front Microbiol 2023; 14:1182695. [PMID: 37396376 PMCID: PMC10308047 DOI: 10.3389/fmicb.2023.1182695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Nervous necrosis virus, NNV, is a neurotropic virus that causes viral nervous necrosis disease in a wide range of fish species, including European sea bass (Dicentrarchus labrax). NNV has a bisegmented (+) ssRNA genome consisting of RNA1, which encodes the RNA polymerase, and RNA2, encoding the capsid protein. The most prevalent NNV species in sea bass is red-spotted grouper nervous necrosis virus (RGNNV), causing high mortality in larvae and juveniles. Reverse genetics studies have associated amino acid 270 of the RGNNV capsid protein with RGNNV virulence in sea bass. NNV infection generates quasispecies and reassortants able to adapt to various selective pressures, such as host immune response or switching between host species. To better understand the variability of RGNNV populations and their association with RGNNV virulence, sea bass specimens were infected with two RGNNV recombinant viruses, a wild-type, rDl956, highly virulent to sea bass, and a single-mutant virus, Mut270Dl965, less virulent to this host. Both viral genome segments were quantified in brain by RT-qPCR, and genetic variability of whole-genome quasispecies was studied by Next Generation Sequencing (NGS). Copies of RNA1 and RNA2 in brains of fish infected with the low virulent virus were 1,000-fold lower than those in brains of fish infected with the virulent virus. In addition, differences between the two experimental groups in the Ts/Tv ratio, recombination frequency and genetic heterogeneity of the mutant spectra in the RNA2 segment were found. These results show that the entire quasispecies of a bisegmented RNA virus changes as a consequence of a single point mutation in the consensus sequence of one of its segments. Sea bream (Sparus aurata) is an asymptomatic carrier for RGNNV, thus rDl965 is considered a low-virulence isolate in this species. To assess whether the quasispecies characteristics of rDl965 were conserved in another host showing different susceptibility, juvenile sea bream were infected with rDl965 and analyzed as above described. Interestingly, both viral load and genetic variability of rDl965 in seabream were similar to those of Mut270Dl965 in sea bass. This result suggests that the genetic variability and evolution of RGNNV mutant spectra may be associated with its virulence.
Collapse
Affiliation(s)
- Sergio Ortega-del Campo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Luis Díaz-Martínez
- Centro de Supercomputación y Bioinnovación (SCBI), Universidad de Málaga, Málaga, Spain
| | - Patricia Moreno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul, IBYDA, Universidad de Málaga, Málaga, Spain
| | - Esther García-Rosado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul, IBYDA, Universidad de Málaga, Málaga, Spain
| | - M. Carmen Alonso
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul, IBYDA, Universidad de Málaga, Málaga, Spain
| | - Julia Béjar
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul, IBYDA, Universidad de Málaga, Málaga, Spain
| | - Ana Grande-Pérez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga- Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
3
|
den Boon JA, Zhan H, Unchwaniwala N, Horswill M, Slavik K, Pennington J, Navine A, Ahlquist P. Multifunctional Protein A Is the Only Viral Protein Required for Nodavirus RNA Replication Crown Formation. Viruses 2022; 14:v14122711. [PMID: 36560715 PMCID: PMC9788154 DOI: 10.3390/v14122711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Positive-strand RNA virus RNA genome replication occurs in membrane-associated RNA replication complexes (RCs). Nodavirus RCs are outer mitochondrial membrane invaginations whose necked openings to the cytosol are "crowned" by a 12-fold symmetrical proteinaceous ring that functions as the main engine of RNA replication. Similar protein crowns recently visualized at the openings of alphavirus and coronavirus RCs highlight their broad conservation and functional importance. Using cryo-EM tomography, we earlier showed that the major nodavirus crown constituent is viral protein A, whose polymerase, RNA capping, membrane interaction and multimerization domains drive RC formation and function. Other viral proteins are strong candidates for unassigned EM density in the crown. RNA-binding RNAi inhibitor protein B2 co-immunoprecipitates with protein A and could form crown subdomains that protect nascent viral RNA and dsRNA templates. Capsid protein may interact with the crown since nodavirus virion assembly has spatial and other links to RNA replication. Using cryoelectron tomography and complementary approaches, we show that, even when formed in mammalian cells, nodavirus RC crowns generated without B2 and capsid proteins are functional and structurally indistinguishable from mature crowns in infected Drosophila cells expressing all viral proteins. Thus, the only nodaviral factors essential to form functional RCs and crowns are RNA replication protein A and an RNA template. We also resolve apparent conflicts in prior results on B2 localization in infected cells, revealing at least two distinguishable pools of B2. The results have significant implications for crown structure, assembly, function and control as an antiviral target.
Collapse
Affiliation(s)
- Johan A. den Boon
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Hong Zhan
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Nuruddin Unchwaniwala
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mark Horswill
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Kailey Slavik
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Janice Pennington
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Amanda Navine
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paul Ahlquist
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
4
|
Campbell AJ, Anderson JR, Wilusz J. A plant-infecting subviral RNA associated with poleroviruses produces a subgenomic RNA which resists exonuclease XRN1 in vitro. Virology 2022; 566:1-8. [PMID: 34808564 PMCID: PMC9832584 DOI: 10.1016/j.virol.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/13/2023]
Abstract
Subviral agents are nucleic acids which lack the features for classification as a virus. Tombusvirus-like associated RNAs (tlaRNAs) are subviral positive-sense, single-stranded RNAs that replicate autonomously, yet depend on a coinfecting virus for encapsidation and transmission. TlaRNAs produce abundant subgenomic RNA (sgRNA) upon infection. Here, we investigate how the well-studied tlaRNA, ST9, produces sgRNA and its function. We found ST9 is a noncoding RNA, due to its lack of protein coding capacity. We used resistance assays with eukaryotic Exoribonuclease-1 (XRN1) to investigate sgRNA production via incomplete degradation of genomic RNA. The ST9 3' untranslated region stalled XRN1 very near the 5' sgRNA end. Thus, the XRN family of enzymes drives sgRNA accumulation in ST9-infected tissue by incomplete degradation of ST9 RNA. This work suggests tlaRNAs are not just parasites of viruses with compatible capsids, but also mutually beneficial partners that influence host cell RNA biology.
Collapse
Affiliation(s)
- A J Campbell
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
5
|
Overexpression of an insect virus encoded silencing suppressor does not enhance plants' susceptibility to its natural virus. Virusdisease 2021; 32:338-342. [PMID: 34350319 DOI: 10.1007/s13337-020-00644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/27/2020] [Indexed: 10/21/2022] Open
Abstract
RNA silencing plays a key role in shielding plant and animal hosts against viral invasion and infection. Viruses encode RNA silencing suppressors (RSS) to block small RNA guided silencing of viral transcripts. The B2 protein encoded by Flock House virus (FHV) is a well-characterized RSS that facilitates infection in insects. It has been shown to act as a functional RSS in plants. FHVB2 over-expressing tobacco plants were used to study the effect of RSS on plant susceptibility to Tobacco mosaic virus (TMV), its natural pathogen. The major symptoms observed in TMV-infected transgenic plants were greenish mosaic, puckering and distortion of leaves, but the infected transgenic leaves were able to resist chlorophyll loss. The infected leaves of transgenic plants showed no significant difference in accumulation of virus when compared with that of the wild type plants. FHVB2 plants showed higher levels of H2O2 and the ROS scavenging enzymes, APX and SOD. This suggests that interference of FHVB2 with RNA silencing machinery may activate alternative defense pathways in the plants so that they are not overly sensitive to TMV infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-020-00644-5.
Collapse
|
6
|
Souto S, Olveira JG, Dopazo CP, Borrego JJ, Bandín I. Modification of betanodavirus virulence by substitutions in the 3' terminal region of RNA2. J Gen Virol 2018; 99:1210-1220. [PMID: 30041710 PMCID: PMC6230769 DOI: 10.1099/jgv.0.001112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Betanodaviruses have bi-segmented positive-sense RNA genomes, consisting of RNAs 1 and 2. For some members of the related genus alphanodavirus, the 3' terminal 50 nucleotides (nt) of RNA2, including a predicted stem-loop structure (3'SL), are essential for replication. We investigate the possible existence and role of a similar structure in a reassortant betanodavirus strain (RGNNV/SJNNV). In this study, we developed three recombinant strains containing nucleotide changes at positions 1408 and 1412. Predictive models showed stem-loop structures involving nt 1398-1421 of the natural reassortant whereas this structure is modified in the recombinant viruses harbouring point mutations r1408 and r1408-1412, but not in r1412. Results obtained from infectivity assays showed differences between the reference strains and the mutants in both RNA1 and RNA2 synthesis. Moreover, an imbalance between the synthesis of both segments was demonstrated, mainly with the double mutant. All these results suggest an interaction between RNA1 and the 3' non-coding regions (3'NCR) of RNA2. In addition, the significant attenuation of the virulence for Senegalese sole and the delayed replication of r1408-1412 in brain tissues may point to an interaction of RNA2 with host cellular proteins.
Collapse
Affiliation(s)
- Sandra Souto
- 1Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - José G Olveira
- 1Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Carlos P Dopazo
- 1Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan J Borrego
- 2Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Isabel Bandín
- 1Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Low CF, Syarul Nataqain B, Chee HY, Rozaini MZH, Najiah M. Betanodavirus: Dissection of the viral life cycle. JOURNAL OF FISH DISEASES 2017; 40:1489-1496. [PMID: 28449248 DOI: 10.1111/jfd.12638] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 05/27/2023]
Abstract
Progressive research has been recently made in dissecting the molecular biology of Betanodavirus life cycle, the causative pathogen of viral encephalopathy and retinopathy in economic important marine fish species. Establishment of betanodavirus infectious clone allows the manipulation of virus genome for functional genomic study, which elucidates the biological event of the viral life cycle at molecular level. The betanodavirus strategizes its replication by expressing anti-apoptosis/antinecrotic proteins to maintain the cell viability during early infection. Subsequently utilizes and controls the biological machinery of the infected cells for viral genome replication. Towards the late phase of infection, mass production of capsid protein for virion assembly induces the activation of host apoptosis pathway. It eventually leads to the cell lysis and death, which the lysis of cell contributes to the accomplishment of viral shedding that completes a viral life cycle. The recent efforts to dissect the entire betanodavirus life cycle are currently reviewed.
Collapse
Affiliation(s)
- C-F Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - B Syarul Nataqain
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - H-Y Chee
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M Z H Rozaini
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - M Najiah
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
8
|
Ertel KJ, Benefield D, Castaño-Diez D, Pennington JG, Horswill M, den Boon JA, Otegui MS, Ahlquist P. Cryo-electron tomography reveals novel features of a viral RNA replication compartment. eLife 2017; 6. [PMID: 28653620 PMCID: PMC5515581 DOI: 10.7554/elife.25940] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Positive-strand RNA viruses, the largest genetic class of viruses, include numerous important pathogens such as Zika virus. These viruses replicate their RNA genomes in novel, membrane-bounded mini-organelles, but the organization of viral proteins and RNAs in these compartments has been largely unknown. We used cryo-electron tomography to reveal many previously unrecognized features of Flock house nodavirus (FHV) RNA replication compartments. These spherular invaginations of outer mitochondrial membranes are packed with electron-dense RNA fibrils and their volumes are closely correlated with RNA replication template length. Each spherule’s necked aperture is crowned by a striking cupped ring structure containing multifunctional FHV RNA replication protein A. Subtomogram averaging of these crowns revealed twelve-fold symmetry, concentric flanking protrusions, and a central electron density. Many crowns were associated with long cytoplasmic fibrils, likely to be exported progeny RNA. These results provide new mechanistic insights into positive-strand RNA virus replication compartment structure, assembly, function and control. DOI:http://dx.doi.org/10.7554/eLife.25940.001
Collapse
Affiliation(s)
- Kenneth J Ertel
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
| | - Desirée Benefield
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| | | | - Janice G Pennington
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
| | - Mark Horswill
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| | - Johan A den Boon
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, United States.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, United States
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
9
|
Jaworski E, Routh A. Parallel ClickSeq and Nanopore sequencing elucidates the rapid evolution of defective-interfering RNAs in Flock House virus. PLoS Pathog 2017; 13:e1006365. [PMID: 28475646 PMCID: PMC5435362 DOI: 10.1371/journal.ppat.1006365] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/17/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022] Open
Abstract
Defective-Interfering RNAs (DI-RNAs) have long been known to play an important role in virus replication and transmission. DI-RNAs emerge during virus passaging in both cell-culture and their hosts as a result of non-homologous RNA recombination. However, the principles of DI-RNA emergence and their subsequent evolution have remained elusive. Using a combination of long- and short-read Next-Generation Sequencing, we have characterized the formation of DI-RNAs during serial passaging of Flock House virus (FHV) in cell-culture over a period of 30 days in order to elucidate the pathways and potential mechanisms of DI-RNA emergence and evolution. For short-read RNAseq, we employed 'ClickSeq' due to its ability to sensitively and confidently detect RNA recombination events with nucleotide resolution. In parallel, we used the Oxford Nanopore Technologies's (ONT) MinION to resolve full-length defective and wild-type viral genomes. Together, these accurately resolve both rare and common RNA recombination events, determine the correlation between recombination events, and quantifies the relative abundance of different DI-RNAs throughout passaging. We observe the formation of a diverse pool of defective RNAs at each stage of viral passaging. However, many of these 'intermediate' species, while present in early stages of passaging, do not accumulate. After approximately 9 days of passaging we observe the rapid accumulation of DI-RNAs with a correlated reduction in specific infectivity and with the Nanopore data find that DI-RNAs are characterized by multiple RNA recombination events. This suggests that intermediate DI-RNA species are not competitive and that multiple recombination events interact epistatically to confer 'mature' DI-RNAs with their selective advantage allowing for their rapid accumulation. Alternatively, it is possible that mature DI-RNA species are generated in a single event involving multiple RNA rearrangements. These insights have important consequences for our understanding of the mechanisms, determinants and limitations in the emergence and evolution of DI-RNAs.
Collapse
Affiliation(s)
- Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States of America.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
10
|
Jungfleisch J, Blasco-Moreno B, Díez J. Use of Cellular Decapping Activators by Positive-Strand RNA Viruses. Viruses 2016; 8:v8120340. [PMID: 28009841 PMCID: PMC5192400 DOI: 10.3390/v8120340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/06/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Positive-strand RNA viruses have evolved multiple strategies to not only circumvent the hostile decay machinery but to trick it into being a priceless collaborator supporting viral RNA translation and replication. In this review, we describe the versatile interaction of positive-strand RNA viruses and the 5′-3′ mRNA decay machinery with a focus on the viral subversion of decapping activators. This highly conserved viral trickery is exemplified with the plant Brome mosaic virus, the animal Flock house virus and the human hepatitis C virus.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Bernat Blasco-Moreno
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Juana Díez
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
11
|
Routh A, Head SR, Ordoukhanian P, Johnson JE. ClickSeq: Fragmentation-Free Next-Generation Sequencing via Click Ligation of Adaptors to Stochastically Terminated 3'-Azido cDNAs. J Mol Biol 2015; 427:2610-6. [PMID: 26116762 DOI: 10.1016/j.jmb.2015.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
We present a simple method called "ClickSeq" for NGS (next-generation sequencing) library synthesis that uses click chemistry rather than enzymatic reactions for the ligation of Illumina sequencing adaptors. In ClickSeq, randomly primed reverse transcription reactions are supplemented with azido-2',3'-dideoxynucleotides that randomly terminate DNA synthesis and release 3'-azido-blocked cDNA fragments in a process akin to dideoxy-Sanger sequencing. Purified fragments are "click ligated" via copper-catalyzed alkyne-azide cycloaddition to DNA oligos modified with a 5'-alkyne group. This generates ssDNA molecules containing an unnatural triazole-linked DNA backbone that is sufficiently biocompatible for PCR amplification to generate a cDNA library for RNAseq. Here, we analyze viral RNAs and mRNA to demonstrate that ClickSeq produces unbiased NGS libraries with low error rates comparable to standard methods. Importantly, ClickSeq is robust against common artifacts of NGS such as chimera formation and artifactual recombination with fewer than 3 aberrant events detected per million reads.
Collapse
Affiliation(s)
- Andrew Routh
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Steven R Head
- The Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Phillip Ordoukhanian
- The Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Cytoplasmic granule formation and translational inhibition of nodaviral RNAs in the absence of the double-stranded RNA binding protein B2. J Virol 2013; 87:13409-21. [PMID: 24089564 DOI: 10.1128/jvi.02362-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Flock House virus (FHV) is a positive-sense RNA insect virus with a bipartite genome. RNA1 encodes the RNA-dependent RNA polymerase, and RNA2 encodes the capsid protein. A third protein, B2, is translated from a subgenomic RNA3 derived from the 3' end of RNA1. B2 is a double-stranded RNA (dsRNA) binding protein that inhibits RNA silencing, a major antiviral defense pathway in insects. FHV is conveniently propagated in Drosophila melanogaster cells but can also be grown in mammalian cells. It was previously reported that B2 is dispensable for FHV RNA replication in BHK21 cells; therefore, we chose this cell line to generate a viral mutant that lacked the ability to produce B2. Consistent with published results, we found that RNA replication was indeed vigorous but the yield of progeny virus was negligible. Closer inspection revealed that infected cells contained very small amounts of coat protein despite an abundance of RNA2. B2 mutants that had reduced affinity for dsRNA produced analogous results, suggesting that the dsRNA binding capacity of B2 somehow played a role in coat protein synthesis. Using fluorescence in situ hybridization of FHV RNAs, we discovered that RNA2 is recruited into large cytoplasmic granules in the absence of B2, whereas the distribution of RNA1 remains largely unaffected. We conclude that B2, by binding to double-stranded regions in progeny RNA2, prevents recruitment of RNA2 into cellular structures, where it is translationally silenced. This represents a novel function of B2 that further contributes to successful completion of the nodaviral life cycle.
Collapse
|
13
|
Qiu Y, Wang Z, Liu Y, Qi N, Si J, Xiang X, Xia X, Hu Y, Zhou X. Newly discovered insect RNA viruses in China. SCIENCE CHINA-LIFE SCIENCES 2013; 56:711-4. [PMID: 23917843 DOI: 10.1007/s11427-013-4520-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/17/2013] [Indexed: 02/02/2023]
Abstract
Insects are a group of arthropods and the largest group of animals on Earth, with over one million species described to date. Like other life forms, insects suffer from viruses that cause disease and death. Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture. In contrast, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. All of these factors have led to an explosion in the amount of research into insect viruses in recent years, generating impressive quantities of information on the molecular and cellular biology of these viruses. Due to the wide variety of insect viruses, a better understanding of these viruses will expand our overall knowledge of their virology. Here, we review studies of several newly discovered RNA insect viruses in China.
Collapse
Affiliation(s)
- Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The cellular decapping activators LSm1, Pat1, and Dhh1 control the ratio of subgenomic to genomic Flock House virus RNAs. J Virol 2013; 87:6192-200. [PMID: 23536653 DOI: 10.1128/jvi.03327-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Positive-strand RNA viruses depend on recruited host factors to control critical replication steps. Previously, it was shown that replication of evolutionarily diverse positive-strand RNA viruses, such as hepatitis C virus and brome mosaic virus, depends on host decapping activators LSm1-7, Pat1, and Dhh1 (J. Diez et al., Proc. Natl. Acad. Sci. U. S. A. 97:3913-3918, 2000; A. Mas et al., J. Virol. 80:246 -251, 2006; N. Scheller et al., Proc. Natl. Acad. Sci. U. S. A. 106:13517-13522, 2009). By using a system that allows the replication of the insect Flock House virus (FHV) in yeast, here we show that LSm1-7, Pat1, and Dhh1 control the ratio of subgenomic RNA3 to genomic RNA1 production, a key feature in the FHV life cycle mediated by a long-distance base pairing within RNA1. Depletion of LSM1, PAT1, or DHH1 dramatically increased RNA3 accumulation during replication. This was not caused by differences between RNA1 and RNA3 steady-state levels in the absence of replication. Importantly, coimmunoprecipitation assays indicated that LSm1-7, Pat1, and Dhh1 interact with the FHV RNA genome and the viral polymerase. By using a strategy that allows dissecting different stages of the replication process, we found that LSm1-7, Pat1, and Dhh1 did not affect the early replication steps of RNA1 recruitment to the replication complex or RNA1 synthesis. Furthermore, their function on RNA3/RNA1 ratios was independent of the membrane compartment, where replication occurs and requires ATPase activity of the Dhh1 helicase. Together, these results support that LSm1-7, Pat1, and Dhh1 control RNA3 synthesis. Their described function in mediating cellular mRNP rearrangements suggests a parallel role in mediating key viral RNP transitions, such as the one required to maintain the balance between the alternative FHV RNA1 conformations that control RNA3 synthesis.
Collapse
|
15
|
Sztuba-Solińska J, Stollar V, Bujarski JJ. Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology 2011; 412:245-55. [PMID: 21377709 PMCID: PMC7111999 DOI: 10.1016/j.virol.2011.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/14/2010] [Accepted: 02/04/2011] [Indexed: 12/12/2022]
Abstract
Many (+)-strand RNA viruses use subgenomic (SG) RNAs as messengers for protein expression, or to regulate their viral life cycle. Three different mechanisms have been described for the synthesis of SG RNAs. The first mechanism involves internal initiation on a (−)-strand RNA template and requires an internal SGP promoter. The second mechanism makes a prematurely terminated (−)-strand RNA which is used as template to make the SG RNA. The third mechanism uses discontinuous RNA synthesis while making the (−)-strand RNA templates. Most SG RNAs are translated into structural proteins or proteins related to pathogenesis: however other SG RNAs regulate the transition between translation and replication, function as riboregulators of replication or translation, or support RNA–RNA recombination. In this review we discuss these functions of SG RNAs and how they influence viral replication, translation and recombination.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, De Kalb, IL 60115, USA
| | | | | |
Collapse
|
16
|
Internal initiation is responsible for synthesis of Wuhan nodavirus subgenomic RNA. J Virol 2011; 85:4440-51. [PMID: 21325414 DOI: 10.1128/jvi.02410-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nodaviruses are small nonenveloped spherical viruses with a bipartite genome of RNAs. In nodaviruses, subgenomic RNA3 (sgRNA3) plays a critical role in viral replication and survival, as it coordinates the replication of two viral genomic RNAs (RNA1 and RNA2) and encodes protein B2, which is a potent RNA-silencing inhibitor. Despite its importance, the molecular mechanism of nodaviral sgRNA3 synthesis is still poorly understood. Here, we propose that sgRNA3 of Wuhan nodavirus (WhNV) is internally initiated from a promoter on the negative template of genomic RNA1. Serial deletion and mutation analyses further revealed that the core promoter of WhNV sgRNA3 is between nucleotide positions -22 and +6 of its transcription start site. Besides, a stem-loop structure of WhNV sgRNA3 was computationally predicted upstream of sgRNA3's transcription start site. Both the secondary structure and the primary sequence were determined to be required for promoter activity. Furthermore, our results show that the synthesis of WhNV sgRNA3 is counterregulated by the replication of WhNV genomic RNA2, which encodes a viral capsid precursor protein. And this sgRNA3 synthesis is also able to trans-activate the replication of RNA2. Altogether, findings in this study indicate that there is a newly discovered internal initiation model for the synthesis of nodaviral sgRNA.
Collapse
|
17
|
Identification of RNA regions that determine temperature sensitivities in betanodaviruses. Arch Virol 2010; 155:1597-606. [PMID: 20582605 DOI: 10.1007/s00705-010-0736-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
Abstract
Betanodaviruses, the causative agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNA genomes. The larger genomic segment, RNA1 (~3.1 kb), encodes an RNA-dependent RNA polymerase (protein A), and the smaller genomic segment RNA2 (~1.4 kb) codes for the coat protein. These viruses can be classified into four genotypes, designated striped jack nervous necrosis virus (SJNNV), redspotted grouper nervous necrosis virus (RGNNV), tiger puffer nervous necrosis virus (TPNNV), and barfin flounder nervous necrosis virus (BFNNV), based on similarities in their partial RNA2 sequences. The optimal temperatures for the growth of these viruses are 20-25°C (SJNNV), 25-30°C (RGNNV), 20°C (TPNNV), and 15-20°C (BFNNV). However, little is known about the mechanisms underlying the temperature sensitivity of these viruses. We first constructed two reassortants between SJNNV and RGNNV to test their temperature sensitivity. The levels of viral growth and RNA replication of these reassortants and parental viruses in cultured fish cells were similar at 25°C. However, the levels of all of the viruses but RGNNV were markedly reduced at 30°C. These results indicate that both RNA1 and RNA2 control the temperature sensitivity of betanodaviruses by modulating RNA replication or earlier viral growth processes. We then constructed ten mutated RGNNVs, the RNA1 segments of which were chimeric between SJNNV and RGNNV, and showed that only chimeric viruses bearing the RGNNV RNA1 region, encoding amino acid residues 1-445, grew similarly to the parental RGNNV at 30°C. This portion of protein A is known to serve as a mitochondrial-targeting signal rather than functioning as an enzymatic domain.
Collapse
|
18
|
Chérif N, Gagné N, Groman D, Kibenge F, Iwamoto T, Yason C, Hammami S. Complete sequencing of Tunisian redspotted grouper nervous necrosis virus betanodavirus capsid gene and RNA-dependent RNA polymerase gene. JOURNAL OF FISH DISEASES 2010; 33:231-240. [PMID: 19912455 DOI: 10.1111/j.1365-2761.2009.01116.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Finfish nodaviruses (betanodaviruses) can cause highly destructive infections in numerous species of farmed marine fish larvae and juveniles worldwide. The betanodavirus genome consists of two single-stranded positive-sense RNA molecules (RNA1 and RNA2). The virus can be classified into four genotypes based on the partial sequences of the coat protein (CP) gene (T2 and T4 regions). Currently, genomic sequence information for RNA1 regions of RNA2 outside of T2 and T4 is less well documented. This study reports on the characterization of the full RNA2 sequence of a Tunisian betanodavirus with a length of 1433 nt, containing a 339 amino acid open-reading frame encoding the CP, and typing to the redspotted grouper nervous necrosis virus Ia genotype following phylogenetic analysis. The homology of the capsid protein to other betanodaviruses or alphanodaviruses was compared. In addition, a full length RNA1 sequence of 3104 nt encoding a 982 amino acid RNA-dependent RNA polymerase was obtained.
Collapse
Affiliation(s)
- N Chérif
- Virology laboratory, Institut de la Recherche Vétérinaire de Tunisie, La Rabta, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:495-517. [PMID: 19781674 PMCID: PMC2783963 DOI: 10.1016/j.bbagrm.2009.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/09/2009] [Accepted: 09/13/2009] [Indexed: 02/08/2023]
Abstract
The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5'- and 3'-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.
Collapse
Affiliation(s)
- Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
20
|
Chen LJ, Su YC, Hong JR. Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 2009; 385:444-54. [PMID: 19136133 DOI: 10.1016/j.virol.2008.11.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/03/2008] [Accepted: 11/25/2008] [Indexed: 12/30/2022]
Abstract
The functions of the Betanodavirus non-structural protein B1 is still unknown. We examined B1 expression patterns and investigated novel cell death regulatory functions for this viral protein following RGNNV infection in fish cells. The B1 gene (336 nt) was cloned from the redspotted grouper nervous necrosis virus (RGNNV) genome. B1 mRNA was rapidly expressed in the fish cells from viral RNA3 at 12 h post-infection (p.i.). At the protein level, expression was low at 12 h p.i., and then increased rapidly between 24 h and 72 h p.i. In RGNNV-infected, B1-containing fish cells, over expression of RGNNV B1 reduced Annexin-V positive cells by 50% and 65% at 48 h and 72 h p.i., respectively, and decreased loss of mitochondrial membrane potential (MMP) by 20% and 70% at 48 h and 72 h p.i., respectively. Finally, B1 knockdown during RGNNV infection using anti-sense RNA increased necrotic cell death and reduced cell viability during the early replication cycle (24 h p.i.). Our results suggest that B1 is an early expression protein that has an anti-necrotic cell death function which reduces the MMP loss and enhances viral host cell viability. This finding provides new insights into RNA viral pathogenesis and disease control.
Collapse
Affiliation(s)
- Lei-Jia Chen
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology; National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
21
|
Iwakawa HO, Mizumoto H, Nagano H, Imoto Y, Takigawa K, Sarawaneeyaruk S, Kaido M, Mise K, Okuno T. A viral noncoding RNA generated by cis-element-mediated protection against 5'->3' RNA decay represses both cap-independent and cap-dependent translation. J Virol 2008; 82:10162-74. [PMID: 18701589 PMCID: PMC2566255 DOI: 10.1128/jvi.01027-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 08/05/2008] [Indexed: 11/20/2022] Open
Abstract
Positive-strand RNA viruses use diverse mechanisms to regulate viral and host gene expression for ensuring their efficient proliferation or persistence in the host. We found that a small viral noncoding RNA (0.4 kb), named SR1f, accumulated in Red clover necrotic mosaic virus (RCNMV)-infected plants and protoplasts and was packaged into virions. The genome of RCNMV consists of two positive-strand RNAs, RNA1 and RNA2. SR1f was generated from the 3' untranslated region (UTR) of RNA1, which contains RNA elements essential for both cap-independent translation and negative-strand RNA synthesis. A 58-nucleotide sequence in the 3' UTR of RNA1 (Seq1f58) was necessary and sufficient for the generation of SR1f. SR1f was neither a subgenomic RNA nor a defective RNA replicon but a stable degradation product generated by Seq1f58-mediated protection against 5'-->3' decay. SR1f efficiently suppressed both cap-independent and cap-dependent translation both in vitro and in vivo. SR1f trans inhibited negative-strand RNA synthesis of RCNMV genomic RNAs via repression of replicase protein production but not via competition of replicase proteins in vitro. RCNMV seems to use cellular enzymes to generate SR1f that might play a regulatory role in RCNMV infection. Our results also suggest that Seq1f58 is an RNA element that protects the 3'-side RNA sequences against 5'-->3' decay in plant cells as reported for the poly(G) tract and stable stem-loop structure in Saccharomyces cerevisiae.
Collapse
|
22
|
Venter PA, Schneemann A. Recent insights into the biology and biomedical applications of Flock House virus. Cell Mol Life Sci 2008; 65:2675-87. [PMID: 18516498 PMCID: PMC2536769 DOI: 10.1007/s00018-008-8037-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Flock House virus (FHV) is a nonenveloped, icosahedral insect virus whose genome consists of two molecules of single-stranded, positive-sense RNA. FHV is a highly tractable system for studies on a variety of basic aspects of RNA virology. In this review, recent studies on the replication of FHV genomic and subgenomic RNA are discussed, including a landmark study on the ultrastructure and molecular organization of FHV replication complexes. In addition, we show how research on FHV B2, a potent suppressor of RNA silencing, resulted in significant insights into antiviral immunity in insects. We also explain how the specific packaging of the bipartite genome of this virus is not only controlled by specific RNA-protein interactions but also by coupling between RNA replication and genome recognition. Finally, applications for FHV as an epitopepresenting system are described with particular reference to its recent use for the development of a novel anthrax antitoxin and vaccine.
Collapse
Affiliation(s)
- P. A. Venter
- Department of Molecular Biology, CB262, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 USA
| | - A. Schneemann
- Department of Molecular Biology, CB262, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
23
|
Hu B, Pillai-Nair N, Hemenway C. Long-distance RNA-RNA interactions between terminal elements and the same subset of internal elements on the potato virus X genome mediate minus- and plus-strand RNA synthesis. RNA (NEW YORK, N.Y.) 2007; 13:267-80. [PMID: 17185361 PMCID: PMC1781375 DOI: 10.1261/rna.243607] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Potexvirus genomes contain conserved terminal elements that are complementary to multiple internal octanucleotide elements. Both local sequences and structures at the 5' terminus and long-distance interactions between this region and internal elements are important for accumulation of potato virus X (PVX) plus-strand RNA in vivo. In this study, the role of the conserved hexanucleotide motif within SL3 of the 3' NTR and internal conserved octanucleotide elements in minus-strand RNA synthesis was analyzed using both a template-dependent, PVX RNA-dependent RNA polymerase (RdRp) extract and a protoplast replication system. Template analyses in vitro indicated that 3' terminal templates of 850 nucleotides (nt), but not 200 nt, supported efficient, minus-strand RNA synthesis. Mutational analyses of the longer templates indicated that optimal transcription requires the hexanucleotide motif in SL3 within the 3' NTR and the complementary CP octanucleotide element 747 nt upstream. Additional experiments to disrupt interactions between one or more internal conserved elements and the 3' hexanucleotide element showed that long-distance interactions were necessary for minus-strand RNA synthesis both in vitro and in vivo. Additionally, multiple internal octanucleotide elements could serve as pairing partners with the hexanucleotide element in vivo. These cis-acting elements and interactions correlate in several ways to those previously observed for plus-strand RNA accumulation in vivo, suggesting that dynamic interactions between elements at both termini and the same subset of internal octanucleotide elements are required for both minus- and plus-strand RNA synthesis and potentially other aspects of PVX replication.
Collapse
Affiliation(s)
- Bin Hu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | | | |
Collapse
|
24
|
Shen R, Rakotondrafara AM, Miller WA. trans regulation of cap-independent translation by a viral subgenomic RNA. J Virol 2006; 80:10045-54. [PMID: 17005682 PMCID: PMC1617300 DOI: 10.1128/jvi.00991-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many positive-strand RNA viruses generate 3'-coterminal subgenomic mRNAs to allow translation of 5'-distal open reading frames. It is unclear how viral genomic and subgenomic mRNAs compete with each other for the cellular translation machinery. Translation of the uncapped Barley yellow dwarf virus genomic RNA (gRNA) and subgenomic RNA1 (sgRNA1) is driven by the powerful cap-independent translation element (BTE) in their 3' untranslated regions (UTRs). The BTE forms a kissing stem-loop interaction with the 5' UTR to mediate translation initiation at the 5' end. Here, using reporter mRNAs that mimic gRNA and sgRNA1, we show that the abundant sgRNA2 inhibits translation of gRNA, but not sgRNA1, in vitro and in vivo. This trans inhibition requires the functional BTE in the 5' UTR of sgRNA2, but no translation of sgRNA2 itself is detectable. The efficiency of translation of the viral mRNAs in the presence of sgRNA2 is determined by proximity to the mRNA 5' end of the stem-loop that kisses the 3' BTE. Thus, the gRNA and sgRNA1 have "tuned" their expression efficiencies via the site in the 5' UTR to which the 3' BTE base pairs. We conclude that sgRNA2 is a riboregulator that switches off translation of replication genes from gRNA while permitting translation of structural genes from sgRNA1. These results reveal (i) a new level of control of subgenomic-RNA gene expression, (ii) a new role for a viral subgenomic RNA, and (iii) a new mechanism for RNA-mediated regulation of translation.
Collapse
Affiliation(s)
- Ruizhong Shen
- Plant Pathology Department, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
25
|
Wierzchoslawski R, Urbanowicz A, Dzianott A, Figlerowicz M, Bujarski JJ. Characterization of a novel 5' subgenomic RNA3a derived from RNA3 of Brome mosaic bromovirus. J Virol 2006; 80:12357-66. [PMID: 17005659 PMCID: PMC1676258 DOI: 10.1128/jvi.01207-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The synthesis of 3' subgenomic RNA4 (sgRNA4) by initiation from an internal sg promoter in the RNA3 segment was first described for Brome mosaic bromovirus (BMV), a model tripartite positive-sense RNA virus (W. A. Miller, T. W. Dreher, and T. C. Hall, Nature 313:68-70, 1985). In this work, we describe a novel 5' sgRNA of BMV (sgRNA3a) that we propose arises by premature internal termination and that encapsidates in BMV virions. Cloning and sequencing revealed that, unlike any other BMV RNA segment, sgRNA3a carries a 3' oligo(A) tail, in which respect it resembles cellular mRNAs. Indeed, both the accumulation of sgRNA3a in polysomes and the synthesis of movement protein 3a in in vitro systems suggest active functions of sgRNA3a during protein synthesis. Moreover, when copied in the BMV replicase in vitro reaction, the minus-strand RNA3 template generated the sgRNA3a product, likely by premature termination at the minus-strand oligo(U) tract. Deletion of the oligo(A) tract in BMV RNA3 inhibited synthesis of sgRNA3a during infection. We propose a model in which the synthesis of RNA3 is terminated prematurely near the sg promoter. The discovery of 5' sgRNA3a sheds new light on strategies viruses can use to separate replication from the translation functions of their genomic RNAs.
Collapse
Affiliation(s)
- Rafal Wierzchoslawski
- Plant Molecular Biology Center and the Department of Biological Sciences, Montgomery Hall, Northern Illinois University, De Kalb, IL 60115, USA
| | | | | | | | | |
Collapse
|
26
|
Toffolo V, Negrisolo E, Maltese C, Bovo G, Belvedere P, Colombo L, Dalla Valle L. Phylogeny of betanodaviruses and molecular evolution of their RNA polymerase and coat proteins. Mol Phylogenet Evol 2006; 43:298-308. [PMID: 16990016 DOI: 10.1016/j.ympev.2006.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 01/01/2023]
Abstract
The betanodaviruses are the causative agent of the disease viral nervous necrosis in fishes. Betanodavirus genome consists of two single-stranded positive-sense RNA molecules (RNA1 and RNA2). RNA1 gene encodes the RNA polymerase, named also protein A, while RNA2 encodes the coat protein precursor, the CPp protein. We investigated the evolutionary relationships among betanodaviruses working on partial sequences of both RNA1 and RNA2. Phylogenetic analyses were performed by applying a maximum likelihood approach. The phylogenetic relationships among the major betanodavirus clades SJNNV-IV, TPNNV-III, BFNNV-II and RGNNV-I were resolved differently in the trees obtained, respectively, from RNA1 and RNA2 multiple alignments. The alternative topologies were corroborated by strong bootstrap values. The molecular evolution of proteins A and CPp was also investigated. Protein A appeared to have evolved under strong purifying selection while the CPp protein was subject to both purifying and neutral selection in different amino acid residues. Intragenic recombination in RNA1 and RNA2 genes was investigated by applying several methods and was not detected. Conversely reassortment of RNA1 and RNA2 genes was demonstrated in some isolates. Finally RNA1 and RNA2 genes substitution rates do not follow a clock-like behavior thus impeding estimation of a possible origin time for Betanodavirus genus.
Collapse
Affiliation(s)
- Vania Toffolo
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhang G, Zhang J, George AT, Baumstark T, Simon AE. Conformational changes involved in initiation of minus-strand synthesis of a virus-associated RNA. RNA (NEW YORK, N.Y.) 2006; 12:147-62. [PMID: 16301603 PMCID: PMC1370894 DOI: 10.1261/rna.2166706] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Synthesis of wild-type levels of turnip crinkle virus (TCV)-associated satC complementary strands by purified, recombinant TCV RNA-dependent RNA polymerase (RdRp) in vitro was previously determined to require 3' end pairing to the large symmetrical internal loop of a phylogenetically conserved hairpin (H5) located upstream from the hairpin core promoter. However, wild-type satC transcripts, which fold into a single detectable conformation in vitro as determined by temperature-gradient gel electrophoresis, do not contain either the phylogenetically inferred H5 structure or the 3' end/H5 interaction. This implies that conformational changes are required to produce the phylogenetically inferred H5 structure for its pairing with the 3' end, which takes place subsequent to the initial conformation assumed by the RNA and prior to transcription initiation. The DR region, located 140 nucleotides upstream from the 3' end and previously determined to be important for transcription in vitro and replication in vivo, is proposed to have a role in the conformational switch, since stabilizing the phylogenetically inferred H5 structure decreases the negative effects of a DR mutation in vivo. In addition, high levels of aberrant transcription correlate with a specific conformational change in the Pr while maintaining the same conformation of the 3' terminus. These results suggest that a series of events that promote conformational changes is needed to expose the 3' terminus to the RdRp for accurate synthesis of wild-type levels of complementary strands in vitro.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
28
|
Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori KI, Arimoto M, Okuno T, Nakai T. Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 2005; 86:2807-2816. [PMID: 16186236 DOI: 10.1099/vir.0.80902-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Striped jack nervous necrosis virus (SJNNV), which infects fish, is the type species of the genus Betanodavirus. This virus has a bipartite genome of positive-strand RNAs, designated RNAs 1 and 2. A small RNA (ca. 0.4 kb) has been detected from SJNNV-infected cells, which was newly synthesized and corresponded to the 3'-terminal region of RNA1. Rapid amplification of cDNA ends analysis showed that the 5' end of this small RNA (designated RNA3) initiated at nt 2730 of the corresponding RNA1 sequence and contained a 5' cap structure. Substitution of the first nucleotide of the subgenomic RNA sequence within RNA1 selectively inhibited production of the positive-strand RNA3 but not of the negative-strand RNA3, which suggests that RNA3 may be synthesized via a premature termination model. The single RNA3-encoded protein (designated protein B2) was expressed in Escherichia coli, purified and used to immunize a rabbit to obtain an anti-protein B2 polyclonal antibody. An immunological test showed that the antigen was specifically detected in the central nervous system and retina of infected striped jack larvae (Pseudocaranx dentex), and in the cytoplasm of infected cultured E-11 cells. These results indicate that SJNNV produces subgenomic RNA3 from RNA1 and synthesizes protein B2 during virus multiplication, as reported for alphanodaviruses. In addition, an Agrobacterium co-infiltration assay established in transgenic plants that express green fluorescent protein showed that SJNNV protein B2 has a potent RNA silencing-suppression activity, as discovered for the protein B2 of insect-infecting alphanodaviruses.
Collapse
Affiliation(s)
- Tokinori Iwamoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Kazuyuki Mise
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Takeda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yasushi Okinaka
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Koh-Ichiro Mori
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Misao Arimoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Tetsuro Okuno
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Toshihiro Nakai
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| |
Collapse
|
29
|
Dye BT, Miller DJ, Ahlquist P. In vivo self-interaction of nodavirus RNA replicase protein a revealed by fluorescence resonance energy transfer. J Virol 2005; 79:8909-19. [PMID: 15994785 PMCID: PMC1168736 DOI: 10.1128/jvi.79.14.8909-8919.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Flock house virus (FHV) is the best-characterized member of the Nodaviridae, a family of small, positive-strand RNA viruses. Unlike most RNA viruses, FHV encodes only a single polypeptide, protein A, that is required for RNA replication. Protein A contains a C-proximal RNA-dependent RNA polymerase domain and localizes via an N-terminal transmembrane domain to the outer mitochondrial membrane, where FHV RNA replication takes place in association with invaginations referred to as spherules. We demonstrate here that protein A self-interacts in vivo by using flow cytometric analysis of fluorescence resonance energy transfer (FRET), spectrofluorometric analysis of bioluminescence resonance energy transfer, and coimmunoprecipitation. Several nonoverlapping protein A sequences were able to independently direct protein-protein interaction, including an N-terminal region previously shown to be sufficient for localization to the outer mitochondrial membrane (D. J. Miller and P. Ahlquist, J. Virol. 76:9856-9867, 2000). Mutations in protein A that diminished FRET also diminished FHV RNA replication, a finding consistent with an important role for protein A self-interaction in FHV RNA synthesis. Thus, the results imply that FHV protein A functions as a multimer rather than as a monomer at one or more steps in RNA replication.
Collapse
Affiliation(s)
- Billy T Dye
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
30
|
Venter PA, Krishna NK, Schneemann A. Capsid protein synthesis from replicating RNA directs specific packaging of the genome of a multipartite, positive-strand RNA virus. J Virol 2005; 79:6239-48. [PMID: 15858008 PMCID: PMC1091714 DOI: 10.1128/jvi.79.10.6239-6248.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flock house virus (FHV) is a bipartite, positive-strand RNA insect virus that encapsidates its two genomic RNAs in a single virion. It provides a convenient model system for studying the principles underlying the copackaging of multipartite viral RNA genomes. In this study, we used a baculovirus expression system to determine if the uncoupling of viral protein synthesis from RNA replication affected the packaging of FHV RNAs. We found that neither RNA1 (which encodes the viral replicase) nor RNA2 (which encodes the capsid protein) were packaged efficiently when capsid protein was supplied in trans from nonreplicating RNA. However, capsid protein synthesized in cis from replicating RNA2 packaged RNA2 efficiently in the presence and absence of RNA1. These results demonstrated that capsid protein translation from replicating RNA2 is required for specific packaging of the FHV genome. This type of coupling between genome replication and translation and RNA packaging has not been observed previously. We hypothesize that RNA2 replication and translation must be spatially coordinated in FHV-infected cells to facilitate retrieval of the viral RNAs for encapsidation by newly synthesized capsid protein. Spatial coordination of RNA and capsid protein synthesis may be key to specific genome packaging and assembly in other RNA viruses.
Collapse
Affiliation(s)
- P Arno Venter
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
31
|
Zhang J, Simon AE. Importance of sequence and structural elements within a viral replication repressor. Virology 2005; 333:301-15. [PMID: 15721364 DOI: 10.1016/j.virol.2004.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/17/2004] [Accepted: 12/09/2004] [Indexed: 11/21/2022]
Abstract
Efficient replication of plus-strand RNA viruses requires a 3' proximal core promoter and an increasingly diverse inventory of supporting elements such as enhancers, repressors, and 5' terminal sequences. While core promoters have been well characterized, much less is known about structure-functional relationships of these supporting elements. Members of the genus Carmovirus family Tombusviridae contain a hairpin (H5) proximal to the core promoter that functions as a repressor of minus-strand synthesis in vitro through an interaction between its large symmetrical internal loop (LSL) and 3' terminal bases. Turnip crinkle virus satellite RNA satC with the H5 of carmovirus Japanese iris necrosis virus or Cardamine chlorotic fleck virus (CCFV) did not accumulate to detectable levels even though 3' end base-pairing would be maintained. Replacement of portions of the satC H5 with analogous portions from CCFV revealed that the cognate LSL and lower stem were of greater importance for satC accumulation than the upper stem. In vivo selex of the H5 upper stem and terminal GNRA tetraloop revealed considerable plasticity in the upper stem, including the presence of three- to six-base terminal loops, allowed for H5 function. In vivo selex of the lower stem revealed that both a stable stem and specific base pairs contributed to satC fitness. Surprisingly, mutations in H5 had a disproportionate effect on plus-strand accumulation that was unrelated to the stability of the mutant plus-strands. In addition, fitness to accumulate in plants did not always correlate with enhanced ability to accumulate in protoplasts, suggesting that H5 may be multifunctional.
Collapse
Affiliation(s)
- Jiuchun Zhang
- Department of Cell Biology and Molecular Genetics, 1109 Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
32
|
Price BD, Eckerle LD, Ball LA, Johnson KL. Nodamura virus RNA replication in Saccharomyces cerevisiae: heterologous gene expression allows replication-dependent colony formation. J Virol 2005; 79:495-502. [PMID: 15596842 PMCID: PMC538723 DOI: 10.1128/jvi.79.1.495-502.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nodamura virus (NoV) and Flock House virus (FHV) are members of the family Nodaviridae. The nodavirus genome is composed of two positive-sense RNA segments: RNA1 encodes the viral RNA-dependent RNA polymerase and RNA2 encodes the capsid protein precursor. A small subgenomic RNA3, which encodes nonstructural proteins B1 and B2, is transcribed from RNA1 during RNA replication. Previously, FHV was shown to replicate both of its genomic RNAs and to transcribe RNA3 in transiently transfected yeast cells. FHV RNAs and their derivatives could also be expressed from plasmids containing RNA polymerase II promoters. Here we show that all of these features can be recapitulated for NoV, the only nodavirus that productively infects mammals. Inducible plasmid-based systems were used to characterize the RNA replication requirements for NoV RNA1 and RNA2 in Saccharomyces cerevisiae. Induced NoV RNA1 replication was robust. Three previously described NoV RNA1 mutants behaved in yeast as they had in mammalian cells. Yeast colonies were selected from cells expressing NoV RNA1, and RNA2 replicons that encoded yeast nutritional markers, from plasmids. Unexpectedly, these NoV RNA replication-dependent yeast colonies were recovered at frequencies 10(4)-fold lower than in the analogous FHV system. Molecular analysis revealed that some of the NoV RNA replication-dependent colonies contained mutations in the NoV B2 open reading frame in the replicating viral RNA. In addition, we found that NoV RNA1 could support limited replication of a deletion derivative of the heterologous FHV RNA2 that expressed the yeast HIS3 selectable marker, resulting in formation of HIS+ colonies.
Collapse
Affiliation(s)
- B Duane Price
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
33
|
Rubino L, Pantaleo V, Navarro B, Russo M. Expression of tombusvirus open reading frames 1 and 2 is sufficient for the replication of defective interfering, but not satellite, RNA. J Gen Virol 2004; 85:3115-3122. [PMID: 15448375 DOI: 10.1099/vir.0.80296-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yeast cells co-expressing the replication proteins p36 and p95 of Carnation Italian ringspot virus (CIRV) support the RNA-dependent replication of several defective interfering (DI) RNAs derived from either the genome of CIRV or the related Cymbidium ringspot virus (CymRSV), but not the replication of a satellite RNA (sat RNA) originally associated with CymRSV. DI, but not sat RNA, was replicated in yeast cells co-expressing both DI and sat RNA. Using transgenic Nicotiana benthamiana plants constitutively expressing CymRSV replicase proteins (p33 and p92), or transiently expressing either these proteins or CIRV p36 and p95, it was shown that expression of replicase proteins alone was also not sufficient for the replication of sat RNA in plant cells. However, it was also shown that replicating CIRV genomic RNA deletion mutants encoding only replicase proteins could sustain replication of sat RNA in plant cells. These results suggest that sat RNA has a replication strategy differing from that of genomic and DI RNAs, for it requires the presence of a cis-replicating genome acting as a trans-replication enhancer.
Collapse
Affiliation(s)
- Luisa Rubino
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Vitantonio Pantaleo
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Beatriz Navarro
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Marcello Russo
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
34
|
Shen R, Miller WA. Subgenomic RNA as a riboregulator: negative regulation of RNA replication by Barley yellow dwarf virus subgenomic RNA 2. Virology 2004; 327:196-205. [PMID: 15351207 DOI: 10.1016/j.virol.2004.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022]
Abstract
Barley yellow dwarf virus (BYDV) generates three 3'-coterminal subgenomic RNAs (sgRNAs) in infected cells. Translation of BYDV genomic RNA (gRNA) and sgRNA1 is mediated by the BYDV cap-independent translation element (BTE) in the 3' untranslated region. sgRNAs 2 and 3 are unlikely to be mRNAs. We proposed that accumulation of sgRNA2, which contains the BTE in its 5' UTR, regulates BYDV replication by trans-inhibiting translation of the viral polymerase from genomic RNA (gRNA). Here, we tested this hypothesis and found that: (i) co-inoculation of the BTE or sgRNA2 with BYDV RNA inhibits BYDV RNA accumulation in protoplasts; (ii) Brome mosaic virus (BMV), engineered to contain the BTE, trans-inhibits BYDV replication; and (iii) sgRNA2 generated during BYDV infection trans-inhibits both GFP expression from BMV RNA and translation of a non-viral reporter mRNA. We conclude that sgRNA2, via its BTE, functions as a riboregulator to inhibit translation of gRNA. This may make gRNA available as a replicase template and for encapsidation. Thus, BYDV sgRNA2 joins a growing list of trans-acting regulatory RNAs.
Collapse
Affiliation(s)
- Ruizhong Shen
- Interdepartmental Genetics Program and Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
35
|
Johnson KL, Price BD, Eckerle LD, Ball LA. Nodamura virus nonstructural protein B2 can enhance viral RNA accumulation in both mammalian and insect cells. J Virol 2004; 78:6698-704. [PMID: 15163762 PMCID: PMC416532 DOI: 10.1128/jvi.78.12.6698-6704.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During infection of both vertebrate and invertebrate cell lines, the alphanodavirus Nodamura virus (NoV) expresses two nonstructural proteins of different lengths from the B2 open reading frame. The functions of these proteins have yet to be determined, but B2 of the related Flock House virus suppresses RNA interference both in Drosophila cells and in transgenic plants. To examine whether the NoV B2 proteins had similar functions, we compared the replication of wild-type NoV RNA with that of mutants unable to make the B2 proteins. We observed a defect in the accumulation of mutant viral RNA that varied in extent from negligible in some cell lines (e.g., baby hamster kidney cells) to severe in others (e.g., human HeLa and Drosophila DL-1 cells). These results are consistent with the notion that the NoV B2 proteins act to circumvent an innate antiviral response such as RNA interference that differs in efficacy among different host cells.
Collapse
Affiliation(s)
- Kyle L Johnson
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St. South, Birmingham, AL 35294-2170, USA.
| | | | | | | |
Collapse
|
36
|
Guenther RH, Sit TL, Gracz HS, Dolan MA, Townsend HL, Liu G, Newman WH, Agris PF, Lommel SA. Structural characterization of an intermolecular RNA-RNA interaction involved in the transcription regulation element of a bipartite plant virus. Nucleic Acids Res 2004; 32:2819-28. [PMID: 15155850 PMCID: PMC419593 DOI: 10.1093/nar/gkh585] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 34-nucleotide trans-activator (TA) located within the RNA-2 of Red clover necrotic mosaic virus folds into a simple hairpin. The eight-nucleotide TA loop base pairs with eight complementary nucleotides in the TA binding sequence (TABS) of the capsid protein subgenomic promoter on RNA-1 and trans-activates subgenomic RNA synthesis. Short synthetic oligoribonucleotide mimics of the RNA-1 TABS and the RNA-2 TA form a weak 1:1 bimolecular complex in vitro with a K(a) of 5.3 x 10(4) M(-1). K(a) determination for a series of RNA-1 and RNA-2 mimic variants indicated optimum stability is obtained with seven-base complementarity. Thermal denaturation and NMR show that the RNA-1 TABS 8mers are weakly ordered in solution while RNA-2 TA oligomers form the predicted hairpin. NMR diffusion studies confirmed RNA-1 and RNA-2 oligomer complex formation in vitro. MC-Sym generated structural models suggest that the bimolecular complex is composed of two stacked helices, one being the stem of the RNA-2 TA hairpin and the other formed by the intermolecular base pairing between RNA-1 and RNA-2. The RCNMV TA structural model is similar to those for the Simian retrovirus frameshifting element and the Human immunodeficiency virus-1 dimerization kissing hairpins, suggesting a conservation of form and function.
Collapse
Affiliation(s)
- Richard H Guenther
- Department of Plant Pathology, Box 7616, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen MH, Icenogle JP. Rubella virus capsid protein modulates viral genome replication and virus infectivity. J Virol 2004; 78:4314-22. [PMID: 15047844 PMCID: PMC374250 DOI: 10.1128/jvi.78.8.4314-4322.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The structural proteins (SP) of the Togaviridae can be deleted in defective interfering RNAs. The dispensability of viral SP has allowed construction of noninfectious viral expression vectors and replicons from viruses of the Alphavirus and Rubivirus genera. Nevertheless, in this study, we found that the SP of rubella virus (RUB) could enhance expression of reporter genes from RUB replicons in trans. SP enhancement required capsid protein (CP) expression and was not due to RNA-RNA recombination. Accumulation of minus- and plus-strand RNAs from replicons was observed in the presence of SP, suggesting that SP specifically affects RNA synthesis. By using replicons containing an antibiotic resistance gene, we found 2- to 50-fold increases in the number of cells surviving selection in the presence of SP. The increases depended significantly on the amount of transfected RNA. Small amounts of RNA or templates that replicated inefficiently showed more enhancement. The infectivity of infectious RNA was increased by at least 10-fold in cells expressing CP. Moreover, virus infectivity was greatly enhanced in such cells. In other cells that expressed higher levels of CP, RNA replication of replicons was inhibited. Thus, depending on conditions, CP can markedly enhance or inhibit RUB RNA replication.
Collapse
Affiliation(s)
- Min-Hsin Chen
- Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | |
Collapse
|
38
|
Iwamoto T, Okinaka Y, Mise K, Mori KI, Arimoto M, Okuno T, Nakai T. Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. J Virol 2004; 78:1256-62. [PMID: 14722280 PMCID: PMC321384 DOI: 10.1128/jvi.78.3.1256-1262.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Betanodaviruses, the causal agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNAs as genomes. The larger genomic segment, RNA1 (3.1 kb), encodes an RNA-dependent RNA polymerase, and the smaller genomic segment, RNA2 (1.4 kb), codes for the coat protein. Betanodaviruses have marked host specificity, although the primary structures of the viral RNAs and encoded proteins are similar among betanodaviruses. However, no mechanism underlying the host specificity has yet been reported. To evaluate viral factors that control host specificity, we first constructed a cDNA-mediated infectious RNA transcription system for sevenband grouper nervous necrosis virus (SGNNV) in addition to that for striped jack nervous necrosis virus (SJNNV), which was previously established by us. We then tested two reassortants between SJNNV and SGNNV for infectivity in the host fish from which they originated. When striped jack and sevenband grouper larvae were bath challenged with the reassortant virus comprising SJNNV RNA1 and SGNNV RNA2, sevenband groupers were killed exclusively, similar to inoculation with SGNNV. Conversely, inoculations with the reassortant virus comprising SGNNV RNA1 and SJNNV RNA2 killed striped jacks but did not affect sevenband groupers. Immunofluorescence microscopic studies using anti-SJNNV polyclonal antibodies revealed that both of the reassortants multiplied in the brains, spinal cords, and retinas of infected fish, similar to infections with parental virus inoculations. These results indicate that viral RNA2 and/or encoded coat protein controls host specificity in SJNNV and SGNNV.
Collapse
Affiliation(s)
- Tokinori Iwamoto
- Kamiura Station, Japan Sea-Farming Association, Oita 879-2602, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Eckerle LD, Albariño CG, Ball LA. Flock House virus subgenomic RNA3 is replicated and its replication correlates with transactivation of RNA2. Virology 2004; 317:95-108. [PMID: 14675628 DOI: 10.1016/j.virol.2003.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The nodavirus Flock House virus has a bipartite genome composed of RNAs 1 and 2, which encode the catalytic component of the RNA-dependent RNA polymerase (RdRp) and the capsid protein precursor, respectively. In addition to catalyzing replication of the viral genome, the RdRp also transcribes from RNA1 a subgenomic RNA3, which is both required for and suppressed by RNA2 replication. Here, we show that in the absence of RNA1 replication, FHV RdRp replicated positive-sense RNA3 transcripts fully and copied negative-sense RNA3 transcripts into positive strands. The two nonstructural proteins encoded by RNA3 were dispensable for replication, but sequences in the 3'-terminal 58 nucleotides were required. RNA3 variants that failed to replicate also failed to transactivate RNA2. These results imply that RNA3 is naturally produced both by transcription from RNA1 and by subsequent RNA1-independent replication and that RNA3 replication may be necessary for transactivation of RNA2.
Collapse
Affiliation(s)
- Lance D Eckerle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
40
|
Albariño CG, Eckerle LD, Ball LA. The cis-acting replication signal at the 3' end of Flock House virus RNA2 is RNA3-dependent. Virology 2003; 311:181-91. [PMID: 12832215 DOI: 10.1016/s0042-6822(03)00190-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nodavirus Flock House virus has a bipartite positive-sense RNA genome consisting of RNAs 1 and 2, which encode the viral RNA-dependent RNA polymerase (RdRp) and capsid protein precursor, respectively. The RdRp catalyzes replication of both genome segments and produces from RNA1 a subgenomic RNA (RNA3) that transactivates RNA2 replication. Here, we replaced internal sequences of RNAs 1 and 2 with a common heterologous core and were thereby able to test the RNA termini for compatibility in supporting the replication of chimeric RNAs. The results showed that the 3' 50 nt of RNA2 contained an RNA3-dependent cis-acting replication signal. Since covalent RNA dimers can direct the synthesis of monomeric replication products, the RdRp can evidently respond to cis-acting replication signals located internally. Accordingly, RNA templates containing the 3' termini of both RNAs 1 and 2 in tandem generated different replication products depending on the presence or absence of RNA3.
Collapse
Affiliation(s)
- César G Albariño
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
41
|
Johnson KL, Price BD, Ball LA. Recovery of infectivity from cDNA clones of nodamura virus and identification of small nonstructural proteins. Virology 2003; 305:436-51. [PMID: 12573589 DOI: 10.1006/viro.2002.1769] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nodamura virus (NoV) was the first isolated member of the Nodaviridae, and is the type species of the alphanodavirus genus. The alphanodaviruses infect insects; NoV is unique in that it can also lethally infect mammals. Nodaviruses have bipartite positive-sense RNA genomes in which RNA1 encodes the RNA-dependent RNA polymerase and the smaller genome segment, RNA2, encodes the capsid protein precursor. To facilitate the study of NoV, we generated infectious cDNA clones of its two genomic RNAs. Transcription of these NoV1 and NoV2 cDNAs in mammalian cells led to viral RNA replication, protein synthesis, and production of infectious virus. Subgenomic RNA3 was produced during RNA replication and encodes nonstructural proteins B1 and B2 in overlapping ORFs. Site-directed mutagenesis of these ORFs, followed by SDS-PAGE and MALDI-TOF mass spectrometry analyses, showed synthesis of B1 and two forms of B2 (B2-134 and B2-137) during viral replication. We also characterized a point mutation in RNA1 far upstream of the RNA3 region that resulted in decreased RNA3 synthesis and RNA2 replication, and a reduced yield of infectious particles. The ability to reproduce the entire life cycle of this unusual nodavirus from cDNA clones will facilitate further analysis of NoV RNA replication and pathogenesis.
Collapse
Affiliation(s)
- Kyle L Johnson
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA.
| | | | | |
Collapse
|
42
|
White KA. The premature termination model: a possible third mechanism for subgenomic mRNA transcription in (+)-strand RNA viruses. Virology 2002; 304:147-54. [PMID: 12504556 DOI: 10.1006/viro.2002.1732] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- K Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|