1
|
Kuriakose T, Zheng M, Neale G, Kanneganti TD. IRF1 Is a Transcriptional Regulator of ZBP1 Promoting NLRP3 Inflammasome Activation and Cell Death during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1489-1495. [PMID: 29321274 DOI: 10.4049/jimmunol.1701538] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
Innate immune sensing of influenza A virus (IAV) induces activation of various immune effector mechanisms, including the nucleotide and oligomerization domain, leucine-rich repeat-containing protein family, pyrin domain containing 3 (NLRP3) inflammasome and programmed cell death pathways. Although type I IFNs are identified as key mediators of inflammatory and cell death responses during IAV infection, the involvement of various IFN-regulated effectors in facilitating these responses are less studied. In this study, we demonstrate the role of IFN regulatory factor (IRF)1 in promoting NLRP3 inflammasome activation and cell death during IAV infection. Both inflammasome-dependent responses and induction of apoptosis and necroptosis are reduced in cells lacking IRF1 infected with IAV. The observed reduction in inflammasome activation and cell death in IRF1-deficient cells during IAV infection correlates with reduced levels of Z-DNA binding protein 1 (ZBP1), a key molecule mediating IAV-induced inflammatory and cell death responses. We further demonstrate IRF1 as a transcriptional regulator of ZBP1. Overall, our study identified IRF1 as an upstream regulator of NLRP3 inflammasome and cell death during IAV infection and further highlights the complex and multilayered regulation of key molecules controlling inflammatory response and cell fate decisions during infections.
Collapse
Affiliation(s)
- Teneema Kuriakose
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Min Zheng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
2
|
Gene expression profiling reveals genes and transcription factors associated with dilated and ischemic cardiomyopathies. Pathol Res Pract 2016; 213:548-557. [PMID: 28318762 DOI: 10.1016/j.prp.2016.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/09/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022]
Abstract
AIMS Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) can cause heart failure, and this study aims to identify genes and transcription factors (TFs) associated with DCM and ICM. METHODS Gene expression dataset GSE42955 was generated from GEO database, and it contained 12 DCM, 12 ICM, and 5 control samples. Differentially expressed genes (DEGs) were identified between DCM (or ICM) and controls. Gene functions were investigated, and their associations were analyzed using Enrichmentmap plugin in Cytoscape. Protein-protein interactions (PPIs) between DEGs were determined, and DEGs with high degree were defined as key DEGs. Potential TFs of key DEGs were predicted using iRegulon plugin. Common DEGs were found, and their functional interactions were investigated using GeneMANIA. RESULTS A total of 362 and 300 DEGs were respectively identified for DCM and ICM in comparison with controls, and these DEGs mainly participated in similar functions about extracellular region, membrane, immune process, and defense response. PPI networks were respectively constructed for DCM and ICM, and 26 key DEGs (e.g. CXCL10, IL6, TLR3, and VCAM1) were found, which might be targeted by 35 TFs (e.g. IRF1). Besides, 47 common up-regulated DEGs were found, which participated in 14 pathways like Apoptosis, Collagen formation, as well as 127 common down-regulated DEGs that involved in 20 pathways like Adaptive immune system, Interferon γ signaling (e.g. IRF1, VCAM1), and Toll-like receptor signaling pathway (e.g. CXCL10, IL6, TLR3). CONCLUSION DCM and ICM may share similar mechanism, and TFs (e.g. IRF1) play crucial roles in their development via regulating gene expression.
Collapse
|
3
|
Danthi P, Holm GH, Stehle T, Dermody TS. Reovirus receptors, cell entry, and proapoptotic signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:42-71. [PMID: 23884585 DOI: 10.1007/978-1-4614-7651-1_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian orthoreoviruses (reoviruses) are members of the Reoviridae. Reoviruses contain 10 double-stranded (ds) RNA gene segments enclosed in two concentric protein shells, called outer capsid and core. These viruses serve as a versatile experimental system for studies of viral replication events at the virus-cell interface, including engagement of cell-surface receptors, internalization and disassembly, and activation of the innate immune response, including NF-κB-dependent cellular signaling pathways. Reoviruses also provide a model system for studies of virus-induced apoptosis and organ-specific disease in vivo.Reoviruses attach to host cells via the filamentous attachment protein, σ1. The σ1 protein of all reovirus serotypes engages junctional adhesion molecule-A (JAM-A), an integral component of intercellular tight junctions. The σ1 protein also binds to cell-surface carbohydrate, with the type of carbohydrate bound varying by serotype. Following attachment to JAM-A and carbohydrate, reovirus internalization is mediated by β1 integrins, most likely via clathrin-dependent endocytosis. In the endocytic compartment, reovirus outer-capsid protein σ3 is removed by acid-dependent cysteine proteases in most cell types. Removal of σ3 results in the exposure of a hydrophobic conformer of the viral membrane-penetration protein, μ1, which pierces the endosomal membrane and delivers transcriptionally active reovirus core particles into the cytoplasm.Reoviruses induce apoptosis in both cultured cells and infected mice. Perturbation of reovirus disassembly using inhibitors of endosomal acidification or protease activity abrogates apoptosis. The μ1-encoding M2 gene is genetically linked to strain-specific differences in apoptosis-inducing capacity, suggesting a function for μ1 in induction of death signaling. Reovirus disassembly leads to activation of transcription factor NF-κB, which modulates apoptotic signaling in numerous types of cells. Inhibition of NF-κB nuclear translocation using either pharmacologic agents or expression of transdominant forms of IκB blocks reovirus-induced apoptosis, suggesting an essential role for NF-κB activation in the death response. Multiple effector pathway s downstream of NF-κB-directed gene expression execute reovirus-induced cell death. This chapter will focus on the mechanisms by which reovirus attachment and disassembly activate NF-κB and stimulate the cellular proapoptotic machinery.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | | | | |
Collapse
|
4
|
Apoptosis induced by mammalian reovirus is beta interferon (IFN) independent and enhanced by IFN regulatory factor 3- and NF-κB-dependent expression of Noxa. J Virol 2011; 86:1650-60. [PMID: 22090144 DOI: 10.1128/jvi.05924-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A variety of signal transduction pathways are activated in response to viral infection, which dampen viral replication and transmission. These mechanisms involve both the induction of type I interferons (IFNs), which evoke an antiviral state, and the triggering of apoptosis. Mammalian orthoreoviruses are double-stranded RNA viruses that elicit apoptosis in vitro and in vivo. The transcription factors interferon regulatory factor 3 (IRF-3) and nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) are required for the expression of IFN-β and the efficient induction of apoptosis in reovirus-infected cells. However, it is not known whether IFN-β induction is required for apoptosis, nor have the genes induced by IRF-3 and NF-κB that are responsible for apoptosis been identified. To determine whether IFN-β is required for reovirus-induced apoptosis, we used type I IFN receptor-deficient cells, IFN-specific antibodies, and recombinant IFN-β. We found that IFN synthesis and signaling are dispensable for the apoptosis of reovirus-infected cells. These results indicate that the apoptotic response following reovirus infection is mediated directly by genes responsive to IRF-3 and NF-κB. Noxa is a proapoptotic BH3-domain-only protein of the Bcl-2 family that requires IRF-3 and NF-κB for efficient expression. We found that Noxa is strongly induced at late times (36 to 48 h) following reovirus infection in a manner dependent on IRF-3 and NF-κB. The level of apoptosis induced by reovirus is significantly diminished in cells lacking Noxa, indicating a key prodeath function for this molecule during reovirus infection. These results suggest that prolonged innate immune response signaling induces apoptosis by eliciting Noxa expression in reovirus-infected cells.
Collapse
|
5
|
Brien JD, Daffis S, Lazear HM, Cho H, Suthar MS, Gale M, Diamond MS. Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8(+) T cell immune responses against West Nile virus infection. PLoS Pathog 2011; 7:e1002230. [PMID: 21909274 PMCID: PMC3164650 DOI: 10.1371/journal.ppat.1002230] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/14/2011] [Indexed: 01/20/2023] Open
Abstract
Interferon regulatory factor (IRF)-1 is an immunomodulatory transcription factor that functions downstream of pathogen recognition receptor signaling and has been implicated as a regulator of type I interferon (IFN)-αβ expression and the immune response to virus infections. However, this role for IRF-1 remains controversial because altered type I IFN responses have not been systemically observed in IRF-1-/- mice. To evaluate the relationship of IRF-1 and immune regulation, we assessed West Nile virus (WNV) infectivity and the host response in IRF-1-/- cells and mice. IRF-1-/- mice were highly vulnerable to WNV infection with enhanced viral replication in peripheral tissues and rapid dissemination into the central nervous system. Ex vivo analysis revealed a cell-type specific antiviral role as IRF-1-/- macrophages supported enhanced WNV replication but infection was unaltered in IRF-1-/- fibroblasts. IRF-1 also had an independent and paradoxical effect on CD8+ T cell expansion. Although markedly fewer CD8+ T cells were observed in naïve animals as described previously, remarkably, IRF-1-/- mice rapidly expanded their pool of WNV-specific cytolytic CD8+ T cells. Adoptive transfer and in vitro proliferation experiments established both cell-intrinsic and cell-extrinsic effects of IRF-1 on the expansion of CD8+ T cells. Thus, IRF-1 restricts WNV infection by modulating the expression of innate antiviral effector molecules while shaping the antigen-specific CD8+ T cell response. Interferon regulatory factor (IRF)-1 is a transcription factor that has been implicated in immune regulation and induction of type I IFN gene expression. To better understand the contribution of IRF-1 to antiviral immunity, we infected cells and mice lacking IRF-1 with West Nile virus (WNV), an encephalitic flavivirus. IRF-1-/- mice were uniformly vulnerable to WNV infection with enhanced viral replication and rapid dissemination into the brain and spinal cord. Studies in cell culture revealed a cell-type specific antiviral role as IRF-1-/- macrophages but not fibroblasts supported enhanced WNV replication. IRF-1 also had an independent effect on CD8+ T cell responses. Although fewer CD8+ T cells were observed in naïve animals, WNV-specific CD8+ T cells rapidly expanded in IRF-1-/- mice and retained the capacity to clear infection. Collectively, our studies define independent roles for IRF-1 in restricting WNV pathogenesis and modulating the protective CD8+ T cell response.
Collapse
Affiliation(s)
- James D. Brien
- Departments of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephane Daffis
- Departments of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Helen M. Lazear
- Departments of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hyelim Cho
- Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mehul S. Suthar
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
6
|
Miyamoto SD, Brown RD, Robinson BA, Tyler KL, Long CS, Debiasi RL. Cardiac cell-specific apoptotic and cytokine responses to reovirus infection: determinants of myocarditic phenotype. J Card Fail 2009; 15:529-39. [PMID: 19643365 DOI: 10.1016/j.cardfail.2009.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/30/2008] [Accepted: 01/20/2009] [Indexed: 12/17/2022]
Abstract
BACKGROUND The pathophysiologic mechanisms underlying viral myocarditis are not well defined. As a result, effective treatments do not exist and viral myocarditis remains a potentially lethal infection of the heart. METHODS AND RESULTS We used cultured rat cardiac myocytes and fibroblasts to investigate apoptosis and cytokine production in response to infection by myocarditic vs. non-myocarditic strains of reovirus. Myocarditic reovirus strain 8B and non-myocarditic strain DB188 replicate comparably in each cardiac cell type. However, strain 8B and related myocarditic reoviruses preferentially increase apoptosis of myocytes relative to fibroblasts, whereas DB188 and nonmyocarditic strains preferentially increase fibroblast apoptosis. Infection of cardiac fibroblasts with the nonmyocarditic strain DB188 elicits substantial increases in a panel of cytokines compared to fibroblasts infected with strain 8B or mock-infected controls. Analysis of culture supernatants using cytometric bead arrays revealed that DB188 enhanced release of interleukin (IL)-1beta, IL-4, IL-6, IL-10, IL-12(p70), GRO-KC, tumor necrosis factor-alpha, and MCP-1 relative to 8B or mock-infected controls (all P < .05). CONCLUSION We hypothesize that differential cytokine production and cell-specific apoptosis are important determinants of myocarditic potential of reoviral strains. Therapies that target the beneficial effects of cytokines in limiting cytopathic damage may offer an effective and novel treatment approach to viral myocarditis.
Collapse
Affiliation(s)
- Shelley D Miyamoto
- Department of Pediatrics, University of Colorado Denver Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Johansson C, Wetzel JD, He J, Mikacenic C, Dermody TS, Kelsall BL. Type I interferons produced by hematopoietic cells protect mice against lethal infection by mammalian reovirus. ACTA ACUST UNITED AC 2007; 204:1349-58. [PMID: 17502662 PMCID: PMC2118611 DOI: 10.1084/jem.20061587] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We defined the function of type I interferons (IFNs) in defense against reovirus strain type 1 Lang (T1L), which is a double-stranded RNA virus that infects Peyer's patches (PPs) after peroral inoculation of mice. T1L induced expression of mRNA for IFN-alpha, IFN-beta, and Mx-1 in PPs and caused localized intestinal infection that was cleared in 10 d. In contrast, T1L produced fatal systemic infection in IFNalphaR1 knockout (KO) mice with extensive cell loss in lymphoid tissues and necrosis of the intestinal mucosa. Studies of bone-marrow chimeric mice indicated an essential role for hematopoietic cells in IFN-dependent viral clearance. Dendritic cells (DCs), including conventional DCs (cDCs), were the major source of type I IFNs in PPs of reovirus-infected mice, whereas all cell types expressed the antiviral protein Mx-1. Neither NK cells nor signaling via Toll-like receptor 3 or MyD88 were essential for viral clearance. These data demonstrate a requirement for type I IFNs in the control of an intestinal viral infection and indicate that cDCs are a significant source of type I IFN production in vivo. Therefore, innate immunity in PPs is an essential component of host defense that limits systemic spread of pathogens that infect the intestinal mucosa.
Collapse
Affiliation(s)
- Cecilia Johansson
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
8
|
Farone AL, O'Donnell SM, Brooks CS, Young KM, Pierce JM, Wetzel JD, Dermody TS, Farone MB. Reovirus Strain-Dependent Inflammatory Cytokine Responses and Replication Patterns in a Human Monocyte Cell Line. Viral Immunol 2006; 19:546-57. [PMID: 16987072 DOI: 10.1089/vim.2006.19.546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Mammalian Orthoreoviruses are important models for studies of viral pathogenesis. In the rat lung, Reovirus strain type 3 Dearing (T3D) induces substantially more inflammation than does strain type 1 Lang (T1L). To better understand mechanisms underlying differences in the host inflammatory response elicited by T1L and T3D, we characterized cytokine expression patterns induced by those strains after infection of THP-1 monocyte cells. THP-1 cells were adsorbed with either viable or ultraviolet- inactivated T1L and T3D and assayed for mRNA and protein production of growth-regulated oncogene-alpha (GRO-alpha), interleukin-8 (IL-8), or tumor necrosis factor-alpha (TNF-alpha). T3D stimulated mRNA and protein production of all three cytokines, whereas T1L stimulated mRNA and protein production of IL-8 and TNF-alpha but not GRO-alpha. In each case, T3D induced greater cytokine mRNA and protein expression than did T1L. Nonviable virus did not stimulate detectable cytokine secretion, suggesting a requirement for viral RNA synthesis in cytokine induction by THP-1 cells. A greater percentage of THP-1 cells was infected with T1L than T3D as assessed by infectious center assay, and T1L achieved higher yields of infectious progeny than did T3D in infected THP-1 cells as determined by plaque assay. These strain-dependent differences in cytokine responses and corresponding replication patterns in monocyte cells parallel findings made in studies of rat models of pneumonia and provide clues about how Reovirus interfaces with the host innate immune response to produce pulmonary disease.
Collapse
Affiliation(s)
- Anthony L Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Clarke P, Debiasi RL, Goody R, Hoyt CC, Richardson-Burns S, Tyler KL. Mechanisms of reovirus-induced cell death and tissue injury: role of apoptosis and virus-induced perturbation of host-cell signaling and transcription factor activation. Viral Immunol 2005; 18:89-115. [PMID: 15802955 PMCID: PMC2366905 DOI: 10.1089/vim.2005.18.89] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reoviruses have provided insight into the roles played by specific viral genes and the proteins they encode in virus-induced cell death and tissue injury. Apoptosis is a major mechanism of cell death induced by reoviruses. Reovirus-induced apoptosis involves both death-receptor and mitochondrial cell death pathways. Reovirus infection is associated with selective activation of mitogen activated protein kinase (MAPK) cascades including JNK/SAPK. Infection also perturbs transcription factor signaling resulting in the activation of c-Jun and initial activation followed by strain-specific inhibition of NF-kappaB. Infection results in changes in the expression of genes encoding proteins involved in cell cycle regulation, apoptosis, and DNA damage and repair processes. Apoptosis is a major mechanism of reovirus-induced injury to key target organs including the CNS and heart. Inhibition of apoptosis through the use of caspase or calpain inhibitors, minocycline, or in caspase 3(-/-) mice all reduce virus-associated tissue injury and enhance survival of infected animals. Reoviruses induce apoptotic cell death (oncolysis) in a wide variety of cancer cells and tumors. The capacity of reoviruses to grow efficiently in transformed cells is enhanced by the presence of an activated Ras signaling pathway likely through mechanisms involving inhibition of antiviral PKR signaling and activation of Ras/RalGEF/p38 pathways. The potential of reovirus-induced oncolysis in therapy of human cancers is currently being investigated in phase I/II clinical trials.
Collapse
Affiliation(s)
- P Clarke
- Department of Neurology, University of Colorado Health Sciences Center, 4200 East 9th Ave., Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
10
|
Clarke P, Debiasi RL, Meintzer SM, Robinson BA, Tyler KL. Inhibition of NF-kappa B activity and cFLIP expression contribute to viral-induced apoptosis. Apoptosis 2005; 10:513-24. [PMID: 15909114 PMCID: PMC2394667 DOI: 10.1007/s10495-005-1881-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Virus-induced activation of nuclear factor-kappa B (NF-kappaB) is required for Type 3 (T3) reovirus-induced apoptosis. We now show that NF-kappaB is also activated by the prototypic Type 1 reovirus strain Lang (T1L), which induces significantly less apoptosis than T3 viruses, indicating that NF-kappaB activation alone is not sufficient for apoptosis in reovirus-infected cells. A second phase of virus-induced NF-kappaB regulation, where NF-kappaB activation is inhibited at later times following infection with T3 Abney (T3A), is absent in T1L-infected cells. This suggests that inhibition of NF-kappaB activation at later times post infection also contributes to reovirus-induced apoptosis. Reovirus-induced inhibition of stimulus-induced activation of NF-kappaB is significantly associated with apoptosis following infection of HEK293 cells with reassortant reoviruses and is determined by the T3 S1 gene segment, which is also the primary determinant of reovirus-induced apoptosis. Inhibition of stimulus-induced activation of NF-kappaB also occurs following infection of primary cardiac myocytes with apoptotic (8B) but not non-apoptotic (T1L) reoviruses. Expression levels of the NF-kappaB-regulated cellular FLICE inhibitory protein (cFLIP) reflect NF-kappaB activation in reovirus-infected cells. Further, inhibition of NF-kappaB activity and cFLIP expression promote T1L-induced apoptosis. These results demonstrate that inhibition of stimulus-induced activation of NF-kappaB and the resulting decrease in cFLIP expression promote reovirus-induced apoptosis.
Collapse
Affiliation(s)
- P Clarke
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
11
|
Bonjardim CA. Interferons (IFNs) are key cytokines in both innate and adaptive antiviral immune responses--and viruses counteract IFN action. Microbes Infect 2005; 7:569-78. [PMID: 15792636 DOI: 10.1016/j.micinf.2005.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 11/23/2004] [Accepted: 11/25/2004] [Indexed: 12/16/2022]
Abstract
Interferons (IFNs) are transcriptionally regulated cytokines and key players in the innate antiviral immune response. Upon recognition of a virus, or its molecular patterns, by the Toll-like receptors of dendritic cells (DCs), high levels of IFNs are expressed by these cells. This in turn stimulates DC maturation and the subsequent expression of proinflammatory cytokines and costimulatory molecules, leading to the transition to an adaptive antiviral immunity. Conversely, viruses have developed diverse strategies to counterattack host defenses in order to generate their progenies.
Collapse
Affiliation(s)
- Claudio A Bonjardim
- Grupo de Transdução de Sinal, Laboratório de Vírus, Depto Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-Campus Pampulha, 31310-390 Belo Horizonte, MG, Brazil.
| |
Collapse
|
12
|
Lapadat R, Debiasi RL, Johnson GL, Tyler KL, Shah I. Genes Induced by Reovirus Infection Have a Distinct Modular Cis-Regulatory Architecture. Curr Genomics 2005; 6:501-513. [PMID: 23335855 DOI: 10.2174/138920205775067675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The availability of complete genomes and global gene expression profiling has greatly facilitated analysis of complex genetic regulatory systems. We describe the use of a bioinformatics strategy for analyzing the cis-regulatory design of genes diferentially regulated during viral infection of a target cell. The large-scale transcriptional activity of human embryonic kidney (HEK293) cells to reovirus (serotype 3 Abney) infection was measured using the Affymetrix HU-95Av2 gene array. Comparing the 2000 base pairs of 5' upstream sequence for the most differentially expressed genes revealed highly preserved sequence regions, which we call "modules". Higher-order patterns of modules, called "super-modules", were significantly over-represented in the 5' upstream regions of transcriptionally responsive genes. These supermodules contain binding sites for multiple transcription factors and tend to define the role of genes in processes associated with reovirus infection. The supermodular design encodes a cis-regulatory logic for transducing upstream signaling for the control of expression of genes involved in similar biological processes. In the case of reovirus infection, these processes recapitulate the integrated response of cells including signal transduction, transcriptional regulation, cell cycle control, and apoptosis. The computational strategies described for analyzing gene expression data to discover cis-regulatory features and associating them with pathological processes represents a novel approach to studying the interaction of a pathogen with its target cells.
Collapse
Affiliation(s)
- R Lapadat
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado
| | | | | | | | | |
Collapse
|
13
|
Richtsteiger R, Henke-Gendo C, Schmidtke M, Harste G, Heim A. Quantitative multiplex real-time PCR for the sensitive detection of interferon beta gene induction and viral suppression of interferon beta expression. Cytokine 2004; 24:190-200. [PMID: 14596815 DOI: 10.1016/j.cyto.2003.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interferon-beta (IFN-beta) protein and activity can be detected by enzyme immunoassays and biological assays. However, precise quantification of low IFN-beta mRNA concentrations, which is advantageous for investigating IFN-beta gene expression in small tissue samples or during the early stage of a virus infection, remains a challenge. Therefore, we established a quantitative real-time PCR (qPCR) for IFN-beta and the housekeeping gene porphobilinogen deanimase (PBGD) in separated assays as well as in a multiplex procedure. Sensitivity for both the templates was less than 20 copies with an intra- and interassay variability of less than 5%. IFN-beta qPCR was utilized to optimize IFN-beta induction with dsRNA polyinosic-polycytidylic acid (poly I:C), delivered by a liposomal transfection agent for reproducible but low, non-cell-toxic IFN-beta concentrations. For studying coxsackievirus B3 (CVB3) interference with IFN-beta expression, CVB3 infected fibroblasts were induced with poly I:C. A significant reduction of IFN-beta mRNA but not PBGD mRNA was demonstrated 5 h after CVB3 infection, indicating a specific inhibition of IFN-beta expression by CVB3 on the mRNA level, in addition to previously reported effects on the translation/post-translation level. In conclusion, sensitive IFN-beta/PBGD multiplex qPCR proved to be a useful tool to study viral interaction with IFN-beta expression.
Collapse
|
14
|
Abstract
Reovirus-induced murine myocarditis provides an excellent model for the human disease. Previously, we showed that reovirus induction of and sensitivity to interferon-beta (IFN-beta) are important determinants of protection against cardiac damage. IFN-beta induces a number of genes with antiviral activities, including the dsRNA-activated protein kinase, PKR. Once bound to viral dsRNA, PKR becomes activated and phosphorylates eukaryotic initiation factor-2 alpha (eIF2 alpha) leading to the cessation of host cell translation. Additionally, activated PKR can exert its antiviral effects by inducing phosphorylation of I kappa B, leading to the activation of the transcription factor NF kappa B and subsequent induction of IFN-beta. Thus, activated PKR can both induce and be induced by IFN-beta. Recently, numerous reports have shown PKR to be dispensable for both induction of IFN as well as protection against disease. However, both PKR's role in the heart in response to viral infection and its ability to prevent cardiac damage have gone largely unexplored. Here, we demonstrate PKR to be critical for viral induction of IFN-beta in primary cardiac myocyte cultures. Additionally, we show that loss of PKR leads to an increase in virulence for both myocarditic and nonmyocarditic reoviruses. Finally, we demonstrate PKR to be critical for protection against reovirus-induced viral myocarditis.
Collapse
Affiliation(s)
- Michael J Stewart
- Department of Microbiology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | | | | |
Collapse
|
15
|
Affiliation(s)
- J Craig Forrest
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|