1
|
Wang Y, Li J, Liu P, Zhu F. The performance of licensed rotavirus vaccines and the development of a new generation of rotavirus vaccines: a review. Hum Vaccin Immunother 2021; 17:880-896. [PMID: 32966134 DOI: 10.1080/21645515.2020.1801071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rotavirus, which causes acute gastroenteritis and severe diarrhea, has posed a great threat to children worldwide over the last 30 y. Since no specific drugs and therapies against rotavirus are available, vaccination is considered the most effective method of decreasing the morbidity and mortality related to rotavirus-associated gastroenteritis. To date, six rotavirus vaccines have been developed and licensed by local governments. Notably, Rotarix™ and RotaTeq™ have been recommended as universal agents against rotavirus infection by the World Health Organization; however, lower efficacies were found in less-developed and developing regions with medium and high child mortality than well-developed ones with low child mortality. For now, two promising novel vaccines, Rotavac™ and RotaSiil™ were pre-qualified by the World Health Organization in 2018. Other rotavirus vaccines in the pipeline including neonatal strain (RV3-BB) and several non-replicating rotavirus vaccines with a parenteral delivery strategy are currently undergoing investigation, with the potential to improve the performance of, and eliminate the safety concerns associated with, previous live oral rotavirus vaccines. This paper reviews the important developments in rotavirus vaccines in the last 20 y and discusses problems and challenges that require investigation in the future.
Collapse
Affiliation(s)
- Yuxiao Wang
- School of Public Health, Southeast University, Nanjing, China
| | - Jingxin Li
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Pei Liu
- School of Public Health, Southeast University, Nanjing, China
| | - Fengcai Zhu
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
2
|
Oem JK, Lee SY, Kim YS, Na EJ, Choi KS. Genetic characteristics and analysis of a novel rotavirus G3P[22] identified in diarrheic feces of Korean rabbit. INFECTION GENETICS AND EVOLUTION 2019; 73:368-377. [PMID: 31173932 PMCID: PMC7106088 DOI: 10.1016/j.meegid.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/22/2023]
Abstract
Group A rotaviruses (RVAs) are important gastroenteric pathogens that infect humans and animals. This study aimed to analyze the complete genome sequence, i.e., 11 genome segments of the lapine rotavirus (LRV) identified in the intestine of a dead rabbit in the Republic of Korea (ROK) and to describe the genetic relationships between this lapine isolate [RVA/Rabbit-wt/KOR/Rab1404/2014/G3P[22] (Rab1404)] and other lapine isolates/strains. Rab1404 possessed the following genotype constellation: G3-P[22]-I2-R3-C3-M3-A9-N2-T3-E3-H3. The P[22] genotype was found to originate from rabbits and was for the first time identified in the ROK. Phylogenetic analysis showed that Rab1404 possessed VP1-3 and VP7 genes, which were closely related to those of the bat strain LZHP2; NSP1-4 genes, which were closely related to those of the simian strain RRV; and VP4, VP6, and NSP5 genes, which were closely related to the genes obtained from other rabbits. Interestingly, a close relationship between Rab1404 and simian RVA strain RVA/Simian-tc/USA/RRV/1975/G3P[3] for 8 gene segments was observed. RRV is believed to be a reassortant between bovine-like RVA strain and canine/feline RVA strains. Rab1404 and canine/feline RVAs shared the genes encoding VP1, VP3, VP7, NSP3, and NSP4. Additionally, the genome segments VP6 (I2), NSP1 (N2), and NSP5 (H3) of Rab1404 were closely related to those of bovine RVAs. This is the first report describing the complete genome sequence of an LRV detected in the ROK. These results indicate that Rab1404 could be a result of interspecies transmission, possibly through multiple reassortment events in the strains of various animal species and the subsequent transmission of the virus to a rabbit. Additional studies are required to determine the evolutionary source and to identify possible reservoirs of RVAs in nature. This is the first report to describe the complete genome sequence of a rabbit rotavirus (Rab1404) detected in the ROK. The 11 genome segments of Rab1404 were determined; G3-P[22]-I2-R3-C3-M3-A9-N2-T3-E3-H3. G3P[22] identified in this study is found to originate from rabbit and may have more species specificity. Rab1404 could be a result of multiple reassortment events from strains originating from various animal species and transmitted to the rabbit.
Collapse
Affiliation(s)
- Jae-Ku Oem
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Soo-Young Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Young-Sik Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Eun-Jee Na
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Kyoung-Seong Choi
- College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea.
| |
Collapse
|
3
|
Beards G. Rotavirus. WIKIJOURNAL OF MEDICINE 2017. [DOI: 10.15347/wjm/2017.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq®. Virology 2010; 403:111-27. [DOI: 10.1016/j.virol.2010.04.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/19/2010] [Accepted: 04/02/2010] [Indexed: 11/20/2022]
|
5
|
Le VP, Chung YC, Kim K, Chung SI, Lim I, Kim W. Genetic variation of prevalent G1P[8] human rotaviruses in South Korea. J Med Virol 2010; 82:886-96. [DOI: 10.1002/jmv.21653] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Wu F, Liang S, Tsao K, Huang C, Lin C, Lin J, Su C, Eng H, Yang J, Chen P, Yang C. Hospital-based surveillance and molecular epidemiology of rotavirus infection in Taiwan, 2005–2007. Vaccine 2009; 27 Suppl 5:F50-4. [DOI: 10.1016/j.vaccine.2009.08.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Martínez-Laso J, Román A, Rodriguez M, Cervera I, Head J, Rodríguez-Avial I, Picazo JJ. Diversity of the G3 genes of human rotaviruses in isolates from Spain from 2004 to 2006: cross-species transmission and inter-genotype recombination generates alleles. J Gen Virol 2009; 90:935-943. [PMID: 19264637 DOI: 10.1099/vir.0.007807-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus evolves by using multiple genetic mechanisms which are an accumulation of spontaneous point mutations and reassortment events. Other mechanisms, such as cross-species transmission and inter-genotype recombination, may be also involved. One of the most interesting genotypes in the accumulation of these events is the G3 genotype. In this work, six new Spanish G3 sequences belonging to 0-2-year-old patients from Madrid were analysed and compared with 160 others of the same genotype obtained from humans and other host species to establish the evolutionary pathways of the G3 genotype. The following results were obtained: (i) there are four different lineages of the G3 genotype which have evolved in different species; (ii) Spanish G3 rotavirus sequences are most similar to the described sequences that belong to lineage I; (iii) several G3 genotype alleles were reassigned as other G genotypes; and (iv) inter-genotype recombination events in G3 viruses involving G1 and G2 were described. These findings strongly suggest multiple inter-species transmission events between different non-human mammalian species and humans.
Collapse
Affiliation(s)
- Jorge Martínez-Laso
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Angela Román
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Miriam Rodriguez
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Isabel Cervera
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Jacqueline Head
- Servicio de Microbiología Clínica, Hospital Clínico de San Carlos, 28040 Madrid, Spain
| | - Iciar Rodríguez-Avial
- Servicio de Microbiología Clínica, Hospital Clínico de San Carlos, 28040 Madrid, Spain
| | - Juan J Picazo
- Servicio de Microbiología Clínica, Hospital Clínico de San Carlos, 28040 Madrid, Spain
| |
Collapse
|
8
|
Bellido D, Craig PO, Mozgovoj MV, Gonzalez DD, Wigdorovitz A, Goldbaum FA, Dus Santos MJ. Brucella spp. lumazine synthase as a bovine rotavirus antigen delivery system. Vaccine 2009; 27:136-45. [DOI: 10.1016/j.vaccine.2008.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/30/2008] [Accepted: 10/02/2008] [Indexed: 11/29/2022]
|
9
|
Martinez-Laso J, Román A, Head J, Cervera I, Rodríguez M, Rodríguez-Avial I, Picazo JJ. Phylogeny of G9 rotavirus genotype: a possible explanation of its origin and evolution. J Clin Virol 2008; 44:52-7. [PMID: 18977689 DOI: 10.1016/j.jcv.2008.08.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 08/01/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND G9 rotavirus genotype was isolated in the 1980s and re-emerged without a clear explanation in the mid-1990s as one of the most frequently occurring genotypes with distinct genetic and molecular characteristics. OBJECTIVES To study the G9 genotype sequence polymorphisms in Spain and compare them with the human and porcine G9 VP7 genes from the rest of the world. Complete phylogenetic analyses have been done to better characterize G9 genotypes, their relationships and evolution. STUDY DESIGN Twelve G9 VP7 genes from Spanish patients were sequenced and compared with 240 G genotype sequences. Nucleotide and amino acid sequence similarity percentages and neighbour-joining dendrograms were used to establish a new phylogenetic analysis. RESULTS Eight of the 12 Spanish sequenced samples had different nucleotide translated region sequences, which yielded only five different proteins. New nucleotide and amino acid sequence comparisons were made that differed from previously described results. CONCLUSIONS Spanish G9 genotype sequences have similar structure of those belonging to lineage III as the majority of the G9 sequences and share amino acid motifs with other sequences. The phylogenetic analyses of G9 genotypes confirmed the existence of 6 lineages, but did not confirm the 11 sublineages previously reported.
Collapse
Affiliation(s)
- Jorge Martinez-Laso
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
10
|
Steyer A, Poljšak-Prijatelj M, Barlič-Maganja D, Marin J. Human, porcine and bovine rotaviruses in Slovenia: evidence of interspecies transmission and genome reassortment. J Gen Virol 2008; 89:1690-1698. [DOI: 10.1099/vir.0.2008/001206-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
A surveillance of human, porcine and bovine rotaviruses was carried out in Slovenia in 2004 and 2005. Stool samples were collected from a total of 406 pigs (373 from asymptomatic animals), 132 cattle (126 from asymptomatic animals) and 241 humans (all with diarrhoea), tested for group A rotaviruses using RT-PCR and analysed by sequencing. The aims of the study were to determine the incidence of asymptomatic rotavirus infection in animals, to look for evidence of zoonotic transmission and to detect reassortment among rotaviruses. The rates of asymptomatic shedding of rotaviruses in pigs and cattle were 18.0 % (67/373) and 4.0 % (5/126), respectively. Evidence for zoonotic transmission was detected in one human rotavirus strain, SI-MB6, with the G3P[6] genotype combination, as the nucleotide and predicted amino acid sequences of the VP6, VP7, VP8* and NSP4 genes of strain SI-MB6 and of porcine strains showed high nucleotide and amino acid sequence identity. Two porcine rotavirus strains carried VP7 of probable human origin, suggesting an interspecies reassortment event in the past.
Collapse
Affiliation(s)
- Andrej Steyer
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1104 Ljubljana, Slovenia
| | - Mateja Poljšak-Prijatelj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1104 Ljubljana, Slovenia
| | - Darja Barlič-Maganja
- College of Health Care, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Jožica Marin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1104 Ljubljana, Slovenia
| |
Collapse
|
11
|
Duan ZJ, Li DD, Zhang Q, Liu N, Huang CP, Jiang X, Jiang B, Glass R, Steele D, Tang JY, Wang ZS, Fang ZY. Novel human rotavirus of genotype G5P[6] identified in a stool specimen from a Chinese girl with diarrhea. J Clin Microbiol 2007; 45:1614-7. [PMID: 17301275 PMCID: PMC1865876 DOI: 10.1128/jcm.00032-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During a rotavirus surveillance conducted in Lulong County, Hebei Province, China, a total of 331 stool specimens collected in 2003 from children under 5 years old with diarrhea were screened. We identified a novel group A human rotavirus of genotype G5P[6]. Phylogenetic analysis confirmed that the VP7 protein of this newly identified strain, LL36755, was closely related to those of the G5 strains. As such, it has 95.4% homology with its counterparts in the porcine G5 strains C134 and CC117 at the amino acid sequence level. On the other hand, the VP4 protein of the LL36755 strain was 94.5% homologous to those of the porcine P[6] strains 134/04-10, 134/04-11, 221/04-7, and 221/04-13. Our findings indicate a dynamic interaction between human and porcine rotaviruses.
Collapse
Affiliation(s)
- Zhao-Jun Duan
- National Institute for Viral Disease Control and Prevention, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Iovane G, Pisanelli G, Pagnini U. Rotavirus diarrhoea in Buffaloes: epidemiology, pathogenesys and prophilaxis. ITALIAN JOURNAL OF ANIMAL SCIENCE 2007. [DOI: 10.4081/ijas.2007.s2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Martella V, Ciarlet M, Bányai K, Lorusso E, Arista S, Lavazza A, Pezzotti G, Decaro N, Cavalli A, Lucente MS, Corrente M, Elia G, Camero M, Tempesta M, Buonavoglia C. Identification of group A porcine rotavirus strains bearing a novel VP4 (P) Genotype in Italian swine herds. J Clin Microbiol 2006; 45:577-80. [PMID: 17122003 PMCID: PMC1829060 DOI: 10.1128/jcm.02262-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The VP4 gene of a G5 Italian porcine rotavirus strain, 344/04-1, was nontypeable by PCR genotyping. The amino acid sequence of the full-length VP4 protein had low identity (<or=76.6%) with the homologous sequences of representative strains of the remaining P genotypes, providing evidence for a novel P genotype.
Collapse
Affiliation(s)
- V Martella
- Department of Animal Health and Well-Being, University of Bari, Valenzano, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Park SH, Saif LJ, Jeong C, Lim GK, Park SI, Kim HH, Park SJ, Kim YJ, Jeong JH, Kang MI, Cho KO. Molecular characterization of novel G5 bovine rotavirus strains. J Clin Microbiol 2006; 44:4101-12. [PMID: 16928963 PMCID: PMC1698340 DOI: 10.1128/jcm.01196-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Accepted: 08/15/2006] [Indexed: 11/20/2022] Open
Abstract
Group A rotaviruses are a major cause of acute gastroenteritis in young children as well as many domestic animals. The rotavirus genome is composed of 11 segments of double-stranded RNA and can undergo genetic reassortment during mixed infections, leading to progeny viruses with novel or atypical phenotypes. The aim of this study was to determine if the bovine group A rotavirus strains KJ44 and KJ75, isolated from clinically infected calves, share genetic features with viruses obtained from heterologous species. All 11 genes sequences of the KJ44 and KJ75 strains were sequenced and analyzed. The KJ44 VP4 had 91.7% to 96.3% deduced amino acid identity to the bovine related P[1] strain, whereas the KJ75 strain was most closely related to the bovine related P[5] strain (91.9% to 96.9% amino acid identity). Both KJ44 and KJ75 strains also contained the bovine related VP3 gene. The remaining 9 segments were closely related to porcine group A rotaviruses. The KJ44 and KJ75 strains showed high amino acid identity to the G5 rotaviruses, sharing 90.4% to 99.0% identity. In addition, these strains belonged to the NSP4 genotype B, which is typical of porcine rotaviruses and subgroup I, with the closest relationship to the porcine JL-94 strain. These results strongly suggest that bovine rotavirus strains with the G5 genotype occur in nature as a novel G genotype in cattle as a result of a natural reassortment between bovine and porcine strains.
Collapse
Affiliation(s)
- Sung-Hee Park
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Steyer A, Poljsak-Prijatelj M, Barlic-Maganja D, Jamnikar U, Mijovski JZ, Marin J. Molecular characterization of a new porcine rotavirus P genotype found in an asymptomatic pig in Slovenia. Virology 2006; 359:275-82. [PMID: 17078990 DOI: 10.1016/j.virol.2006.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/20/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Rotaviral RNA was detected in the stool sample of an asymptomatic fattening pig at a Slovenian pig farm. To characterize the rotavirus, RT-PCR was used, employing primers specific for the VP7, VP4 and NSP4 genes. Specific products were purified and the sequencing reaction was performed for the molecular analysis of amplified genes. Nucleotide and amino acid sequences of the VP7 gene were found highly identical (85.3-88.1% and 90.7-91.6%) to G1 genotype strains. Phylogenetic and molecular analyses of the VP7 antigen regions revealed the sample to be from a new lineage of G1 genotype. In the molecular analysis of the VP4 gene, only 70.9% nucleotide (76.2% amino acid) identity was found with the most related rotavirus VP4 gene from GenBank. Following this, the NSP4 gene was also analyzed. After the phylogenetic analysis, it clustered with the NSP4 B genotype, but also seemed to represent a new lineage of this genotype. This new rotavirus strain, named P21-5, differed greatly from all rotaviruses characterized so far in all three genes analyzed. The virulence of this strain is not clear yet and has to be investigated.
Collapse
Affiliation(s)
- Andrej Steyer
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1104 Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
16
|
Rodríguez-Castillo A, Ramírez-González JE, Padilla-Noriega L, Barrón BL. Analysis of human rotavirus G1P[8] strains by RFLP reveals higher genetic drift in the VP7 than the VP4 gene during a 4-year period in Mexico. J Virol Methods 2006; 138:177-83. [PMID: 17030065 DOI: 10.1016/j.jviromet.2006.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 08/22/2006] [Accepted: 08/31/2006] [Indexed: 11/24/2022]
Abstract
Several studies have demonstrated that rotaviruses of the G1P[8] genotype are among the most important worldwide. Sequence analysis of G1P[8] strains has revealed high genetic variability of VP4 and VP7 genes. The aim of this study was to investigate by restriction fragment length polymorphism (RFLP) analysis the genetic variability of the VP7 and VP4 genes within rotaviruses of the G1P[8] genotype. A total of 60 rotavirus-positive fecal samples genotyped as G1P[8], were collected from children with acute diarrhea under 5 years of age, between October 1995 and October 1998. The VP7 and VP4 genes were amplified by RT/PCR, using the Beg9/End9 primer pair and the Con3 and Con2 primers, respectively. VP7 amplicons were digested with three restriction enzymes Hae III, Taq I and Rsa I in separate reactions and VP4 amplicons were digested similarly with endonucleases Hinf I, Sau96 I and Rsa I. Analysis of the digested VP7 and VP4 amplicons showed a higher genetic drift for the VP7 gene (18 RFLPs) compared to the VP4 gene (9 RFLPs). The combination of profiles for both VP7 and VP4 amplicons, showed 27 different patterns, none of them similar to the Wa-1 strain. Furthermore, RFLP analysis of these G1P[8] strains, clearly differentiated the viruses into two main clusters, both of them sharing the same restriction pattern for the VP4 gene, and a different one for the VP7 gene.
Collapse
Affiliation(s)
- Araceli Rodríguez-Castillo
- Laboratorio de Enfermedades Virales, Instituto Nacional de Diagnóstico y Referencia Epidemiológicos (InDRE), Secretaría de Salud, Carpio 470, Colonia Santo Tomas, C.P. 11340 México D.F., Mexico
| | | | | | | |
Collapse
|
17
|
Garaicoechea L, Bok K, Jones LR, Combessies G, Odeón A, Fernandez F, Parreño V. Molecular characterization of bovine rotavirus circulating in beef and dairy herds in Argentina during a 10-year period (1994-2003). Vet Microbiol 2006; 118:1-11. [PMID: 16982159 DOI: 10.1016/j.vetmic.2006.06.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 05/19/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
Group A bovine rotavirus (BRV) is one of the main causes of neonatal calf diarrhea. The present study reports the incidence of rotavirus diarrhea and the genotypes of BRV strains circulating in beef and dairy herds from Argentina, during a 10-year period (1994-2003). Group A BRV was detected in 62.5% (250/400) of the total studied cases of diarrhea. Positive cases were analyzed by heminested multiplex RT-PCR for P and G genotypes identification. Sixty percent of them were typed as P[5]G6, 4.4% P[11]G10, 4.4% P[11]G6 and 2.4% P[5]G10. Additionally, 9.2% of the cases were initially typed as G8 combined with P[5] or P[11], but sequence analysis revealed they belonged to genotype G6, lineage Hun4-like. Partial typing was assessed in 12.0% of the cases. One of the partially typed samples was closely related to genotype G15. BRV was detected in 71% and 58% of the outbreaks registered in beef and dairy farms, respectively. A clear differential distribution of G/P types was found according to the herd type. P[5]G6 was the prevalent strain in beef herds, while P[11] was the prevalent P-type in dairy herds (71%), associated in similar proportions with G6 and G10, These findings indicate that BRV genotypes included in the current commercially available rotavirus vaccines (G6, G10, P[5] and P[11]) should protect calves from most Argentinean field strains. Nevertheless, continuous surveillance is necessary to detect the emergence of new variants.
Collapse
Affiliation(s)
- L Garaicoechea
- Instituto de Virología, CICV y A, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
18
|
Arista S, Giammanco GM, De Grazia S, Ramirez S, Lo Biundo C, Colomba C, Cascio A, Martella V. Heterogeneity and temporal dynamics of evolution of G1 human rotaviruses in a settled population. J Virol 2006; 80:10724-33. [PMID: 16928744 PMCID: PMC1641777 DOI: 10.1128/jvi.00340-06] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A rotavirus sample collection from 19 consecutive years was used to investigate the heterogeneity and the dynamics of evolution of G1 rotavirus strains in a geographically defined population. Phylogenetic analysis of the VP7 gene sequences of G1P[8] human rotavirus strains showed the circulation of a heterogeneous population comprising three lineages and seven sublineages. Increases in the circulation of G1 rotaviruses were apparently associated with the introduction of novel G1 strains that exhibited multiple amino acid changes in antigenic regions involved in rotavirus neutralization compared to the strains circulating in the previous years. The emergence and/or introduction of G1 antigenic variants might be responsible for the continuous circulation of G1 rotaviruses in the local population, with the various lineages and sublineages appearing, disappearing, or cocirculating in an alternate fashion under the influence of immune-pressure mechanisms. Sequence analysis of VP4-encoding genes of the G1 strains revealed that the older strains were associated with a unique VP4 lineage, while a novel VP4 lineage emerged after 1995. The introduction of human rotavirus vaccines might alter the forces and balances that drive rotavirus evolution and determine the spread of novel strains that are antigenically different from those included in the vaccine formulations. The continuous emergence of VP7-VP4 gene combinations in human rotavirus strains should be taken into consideration when devising vaccination strategies.
Collapse
Affiliation(s)
- Serenella Arista
- Dipartimento di Igiene e Microbiologia, via del Vespro 133, 90127, Palermo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ghosh S, Varghese V, Samajdar S, Bhattacharya SK, Kobayashi N, Naik TN. Molecular characterization of a porcine Group A rotavirus strain with G12 genotype specificity. Arch Virol 2006; 151:1329-44. [PMID: 16502286 DOI: 10.1007/s00705-005-0714-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
A porcine Group A rotavirus strain (RU172) was detected and molecularly characterized during a surveillance study conducted for rotavirus infection in a pig farm located in a suburban area of Kolkata City, India. The G12 genotype specificity of RU172 was revealed by PCR-based genotyping assays following addition of a G12 type-specific primer (designed in our laboratory to pick up G12 isolates from field samples) and was confirmed by sequence analysis of the VP7-encoding gene. The RU172 strain exhibited maximum VP7 identities of 93.6% to 94.5% with human G12 strains at the deduced amino acid level. In spite of its G12 genotype nature, RU172 appeared to be distinct from human G12 rotaviruses and, on phylogenetic analysis, formed a separate lineage with human G12 strains. Among the other gene segments analyzed, RU172 belonged to NSP4 genotype B, had a NSP5 and VP6 of porcine origin, and shared maximum VP4 identities with porcine P[7] rotaviruses (94.3%-95.4% at the deduced amino acid level). Therefore, to the best of our knowledge, this is the first report of detection of an animal rotavirus strain with G12 genotype specificity. Detection of strains like RU172 provides vital insights into the genomic diversity of Group A rotaviruses of man and animals.
Collapse
Affiliation(s)
- S Ghosh
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, India
| | | | | | | | | | | |
Collapse
|
20
|
Pisanelli G, Martella V, Pagnini U, De Martino L, Lorusso E, Iovane G, Buonavoglia C. Distribution of G (VP7) and P (VP4) genotypes in buffalo group A rotaviruses isolated in Southern Italy. Vet Microbiol 2006; 110:1-6. [PMID: 16137843 DOI: 10.1016/j.vetmic.2005.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 06/21/2005] [Accepted: 06/29/2005] [Indexed: 11/28/2022]
Abstract
Group A rotaviruses are established agents of disease in buffalo calves. Early epidemiological studies in Italian buffalo herds revealed the predominance of strains with G8 specificity and detected strains with the rare, RRV-like, VP4 P[3] genotype. To acquire additional information on the VP4 and VP7 specificities of buffalo rotaviruses, a total of 125 fecal samples were collected from buffalo calves affected with diarrhoea, in seven dairy farms in Southern Italy. Rotaviruses were detected in 21 samples (16.8%) by an immunochromatographic assay and by reverse transcription-PCR (RT-PCR). Analysis of the VP7 gene revealed that 57% (12 of 21) of the isolates were G6, 23.8% were G8 (5 of 21) and 19% (4 of 21) were G10. Analysis of the VP4 revealed that 71.4% (15 of 21) of the isolates were P[5] and that 28.6% (6 of 21) were P[1]. The most common combination of G and P types was P[5],G6 (57%), followed by P[1],G10 (19%), P[5],G8 (14%) and P[1],G8 (9.5%). While P[5],G6 rotaviruses are very common in Italian bovine herds, the antigenic combination P[1],G10 is unusual and presumably derives from reassortment between P[1] and G10 strains, that appear to be more frequent in buffaloes and bovines, respectively. The presence of bovine-like G and P serotypes suggests that in Italy the epidemiology of buffalo rotaviruses overlaps the epidemiology of bovine rotaviruses, presumably because of the strict species affinity and/or of the intermingled distribution over the same geographical areas of the buffalo and bovine herds.
Collapse
Affiliation(s)
- Giuseppe Pisanelli
- Department of Pathology and Animal Health, Section Infectious Disease, Faculty of Veterinary Medicine, University of Naples, Federico II, 80137 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Martella V, Bányai K, Ciarlet M, Iturriza-Gómara M, Lorusso E, De Grazia S, Arista S, Decaro N, Elia G, Cavalli A, Corrente M, Lavazza A, Baselga R, Buonavoglia C. Relationships among porcine and human P[6] rotaviruses: Evidence that the different human P[6] lineages have originated from multiple interspecies transmission events. Virology 2006; 344:509-19. [PMID: 16194556 DOI: 10.1016/j.virol.2005.08.029] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/30/2005] [Accepted: 08/21/2005] [Indexed: 10/25/2022]
Abstract
Porcine rotavirus strains (PoRVs) bearing human-like VP4 P[6] gene alleles were identified. Genetic characterization with either PCR genotyping or sequence analysis allowed to determine the VP7 specificity of the PoRVs as G3, G4, G5 and G9, and the VP6 as genogroup I, that is predictive of a subgroup I specificity. Sequence analysis of the VP8* trypsin-cleavage product of VP4 allowed PoRVs to be characterized further into genetic lineages within the P[6] genotype. Unexpectedly, the strains displayed significantly higher similarity (up to 94.6% and 92.5% at aa and nt level, respectively) to human M37-like P[6] strains (lineage I), serologically classifiable as P2A, or to the atypical Hungarian P[6] human strains (HRVs), designated as lineage V (up to 97.0% aa and 96.1% nt), than to the porcine P[6] strain Gottfried, lineage II (<85.1% aa and 82.2 nt), which is serologically classified as P2B. Interestingly, no P[6] PoRV resembling the original prototype porcine strain, Gottfried, was detected, while Japanase P[6] PoRV clustered with the atypical Japanase G1 human strain AU19. By analysis of the 10th and 11th genome segments, all the strains revealed a NSP4B genogroup (Wa-like) and a NSP5/6 gene of porcine origin. These findings strongly suggest interspecies transmission of rotavirus strains and/or genes, and may indicate the occurrence of at least 3 separate rotavirus transmission events between pigs and humans, providing convincing evidence that evolution of human rotaviruses is tightly intermingled with the evolution of animal rotaviruses.
Collapse
Affiliation(s)
- Vito Martella
- Dipartimento di Sanità e Benessere Animale, Facoltà di Medicina Veterinaria di Bari, S.p. per Casamassima km 3, 70010 Valenzano, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shah K, Kirkwood CD, Bhave M, Palombo EA. Genetic variation ofNSP1 andNSP4 genes among serotype G9 rotaviruses causing hospitalization of children in Melbourne, Australia, 1997–2002. J Med Virol 2006; 78:1124-30. [PMID: 16789013 DOI: 10.1002/jmv.20672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Serotype G9 rotaviruses have emerged as one of the leading causes of gastroenteritis in children worldwide. We examined 29 representative G9 rotavirus isolates from a 6-year collection (1997-2002) and determined the level of variation in genes encoding non-structural proteins, NSP1 and NSP4. Northern hybridization analysis with a whole genome probe derived from the prototype G9 strain, F45, revealed that the NSP1 gene (gene 5) of two isolates (R1 and R14) did not exhibit significant homology. Complementary DNA probes of R1 and R14 genes 5 were used in Northern blot hybridization and indicated the presence of at least two gene 5 alleles among Melbourne G9 rotaviruses. Nucleotide sequence analysis revealed that isolates carrying the R14 gene 5 shared 94-98% sequence identities with one another, while sequence identity to R1 was 78%. Surprisingly, R1 displayed 96% nucleotide identity with the prototype serotype G1 strain, Wa. The detection of different alleles of NSP1 genes prompted us to investigate the level of variation in another non-structural protein, NSP4, a multifunctional protein and the first viral-encoded enterotoxin. Phylogenetic analysis indicated that while all isolates clustered into one group containing the Wa NSP4 allele (genotype 1), isolate R1 was most closely related to Wa. This study reveals new information about the diversity of non-structural proteins of G9 rotaviruses.
Collapse
Affiliation(s)
- Kiran Shah
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | | | | | | |
Collapse
|
23
|
Martella V, Ciarlet M, Bányai K, Lorusso E, Cavalli A, Corrente M, Elia G, Arista S, Camero M, Desario C, Decaro N, Lavazza A, Buonavoglia C. Identification of a novel VP4 genotype carried by a serotype G5 porcine rotavirus strain. Virology 2005; 346:301-11. [PMID: 16364388 DOI: 10.1016/j.virol.2005.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/21/2005] [Accepted: 11/02/2005] [Indexed: 11/20/2022]
Abstract
Rotavirus genome segment 4, encoding the spike outer capsid VP4 protein, of a porcine rotavirus (PoRV) strain, 134/04-15, identified in Italy was sequenced, and the predicted amino acid (aa) sequence was compared to those of all known VP4 (P) genotypes. The aa sequence of the full-length VP4 protein of the PoRV strain 134/04-15 showed aa identity values ranging from 59.7% (bovine strain KK3, P8[11]) to 86.09% (porcine strain A46, P[13]) with those of the remaining 25 P genotypes. Moreover, aa sequence analysis of the corresponding VP8* trypsin cleavage fragment revealed that the PoRV strain 134/04-15 shared low identity, ranging from 37.52% (bovine strain 993/83, P[17]) to 73.6% (porcine strain MDR-13, P[13]), with those of the remaining 25 P genotypes. Phylogenetic relationships showed that the VP4 of the PoRV strain 134/04-15 shares a common evolutionary origin with porcine P[13] and lapine P[22] rotavirus strains. Additional sequence analyses of the VP7, VP6, and NSP4 genes of the PoRV strain 134/04-15 revealed the highest VP7 aa identity (95.9%) to G5 porcine strains, a porcine-like VP6 within VP6 genogroup I, and a Wa-like (genotype B) NSP4, respectively. Altogether, these results indicate that the PoRV strain 134/04-15 should be considered as prototype of a new VP4 genotype, P[26], and provide further evidence for the vast genetic and antigenic diversity of group A rotaviruses.
Collapse
Affiliation(s)
- V Martella
- Department of Animal Health and Well-being, University of Bari, Valenzano, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Martella V, Ciarlet M, Lavazza A, Camarda A, Lorusso E, Terio V, Ricci D, Cariola F, Gentile M, Cavalli A, Camero M, Decaro N, Buonavoglia C. Lapine rotaviruses of the genotype P[22] are widespread in Italian rabbitries. Vet Microbiol 2005; 111:117-24. [PMID: 16257498 DOI: 10.1016/j.vetmic.2005.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/13/2005] [Accepted: 10/03/2005] [Indexed: 11/20/2022]
Abstract
An epidemiological survey was carried out to investigate the distribution of the VP7 and VP4 specificities of lapine rotaviruses (LRVs) in rabbitries from different geographical regions of Italy. Almost all the strains were characterized as P[22],G3, confirming the presence of the newly-recognized rotavirus P[22] VP4 allele in Italian rabbits. Only one P[14],G3 LRV strain was identified and two samples contained a mixed (P[14] + [22],G3) rotavirus infection. All the LRV strains analyzed exhibited a genogroup I VP6 specificity and a long dsRNA electropherotype. However, one of the P[14],G3 strains possessed a super-short pattern. Altogether, these data highlight the epidemiological relevance of the P[22] LRVs in Italian rabbitries.
Collapse
Affiliation(s)
- V Martella
- Department of Animal Health and Well-Being, University of Bari, Valenzano, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fukai K, Yamada K, Inoue K. Serological characterization of novel P11[14],G8 bovine group A rotavirus, Sun9, isolated in Japan. Virus Res 2005; 114:167-71. [PMID: 15996788 DOI: 10.1016/j.virusres.2005.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 05/19/2005] [Accepted: 05/19/2005] [Indexed: 11/18/2022]
Abstract
In this study, a novel bovine group A rotavirus (BoRV-A), Sun9, isolated from calf diarrhea in Tochigi Prefecture, Japan, was serologically characterized by a cross-neutralization assay, and serological surveillance by using its reassortant was performed on cattle bred in Japan. The G serotype of Sun9 was identified as G serotype 8 based on the one- or two-way serological relationships observed in Sun9 and other G8 strains. The P serotype of Sun9 was identified as P serotype 11 based on the one- or two-way serological relationships observed in Sun9, its reassortants, and the P11 lapine group A rotavirus R-2. The serological surveillance data indicated that 2.4% of the specimens appeared to possess antibodies against the P11[14] antigen. Few P11[14] bovine group A rotaviruses may exist in the Japanese cattle population.
Collapse
Affiliation(s)
- Katsuhiko Fukai
- Tochigi Prefectural Central District Animal Hygiene Service Center, 6-8 Hiraidekougyoudanchi, Utsunomiya, Tochigi 321-0905, Japan..
| | | | | |
Collapse
|
26
|
Martella V, Ciarlet M, Baselga R, Arista S, Elia G, Lorusso E, Bányai K, Terio V, Madio A, Ruggeri FM, Falcone E, Camero M, Decaro N, Buonavoglia C. Sequence analysis of the VP7 and VP4 genes identifies a novel VP7 gene allele of porcine rotaviruses, sharing a common evolutionary origin with human G2 rotaviruses. Virology 2005; 337:111-23. [PMID: 15914225 DOI: 10.1016/j.virol.2005.03.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/01/2005] [Accepted: 03/25/2005] [Indexed: 11/26/2022]
Abstract
During an epidemiological survey encompassing several porcine herds in Saragoza, Spain, the VP7 and VP4 of a rotavirus-positive sample, 34461-4, could not be predicted by using multiple sets of G- and P-type-specific primers. Sequence analysis of the VP7 gene revealed a low amino acid (aa) identity with those of well-established G serotypes, ranging between 58.33% and 88.88%, with the highest identity being to human G2 rotaviruses. Analysis of the VP4 gene revealed a P[23] VP4 specificity, as its VP8* aa sequence was 95.9% identical to that of the P14[23],G5 porcine strain A34, while analysis of the VP6 indicated a genogroup I, that is predictive of subgroup I specificity. Analysis of the 10th and 11th RNA segments revealed close identity to strains of porcine and human origin, respectively. The relatively low overall aa sequence conservation (<89% aa) to G2 human rotaviruses, the lack of N-glycosylation sites that are usually highly conserved in G2 rotaviruses, and the presence of several amino acid substitutions in the major antigenic hypervariable regions hampered an unambiguous classification of the porcine strain 34461-4 as G2 serotype on the basis of sequence analysis alone. The identification of a borderline, G2-like, VP7 gene allele in pigs, while reinforcing the hypotheses of a tight relationship in the evolution of human and animal rotaviruses, provides additional evidence for the wide genetic/antigenic diversity of group A rotaviruses.
Collapse
Affiliation(s)
- V Martella
- Dipartimento di Sanità e Benessere Animale, Facoltà di Medicina Veterinaria di Bari, Valenzano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fukai K, Saito T, Inoue K, Sato M. Molecular characterization of novel P[14],G8 bovine group A rotavirus, Sun9, isolated in Japan. Virus Res 2005; 105:101-6. [PMID: 15325086 DOI: 10.1016/j.virusres.2004.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/21/2004] [Accepted: 04/21/2004] [Indexed: 11/22/2022]
Abstract
In this study, a novel bovine group A rotavirus (RV-A), Sun9, isolated from calf diarrhea in the Tochigi Prefecture, Japan, was characterized genetically by the sequence analysis of the genome segments encoding VP4 and VP7. The nucleotide and deduced amino acid sequences of the genome segments encoding VP4 and VP7 of Sun9 revealed high homology with P[14] human and lapine RV-As (80.2-88.7% and 90.9-94.8%) and G8 bovine and human RV-As (83.1-95.5% and 92.3-98.2%). Sun9 was also classified into P[14] and G8 in the phylogenetic analysis of the nucleotide sequences of the genome segments encoding VP4 and VP7. Although previous reports have suggested that P[14],G8 human RV-As isolated until now were obtained from the reassortment between human and bovine RV-As, or the interspecies transmission of bovine RV-A to human, no P[14],G8 bovine RV-A has yet been reported. Sun9 may be initial direct evidence of the above hypothesis.
Collapse
Affiliation(s)
- Katsuhiko Fukai
- Tochigi Prefectural Central District Animal Hygiene Service Center, 6-8 Hiraidekougyoudanchi, Utsunomiya, Tochigi 321-0905, Japan.
| | | | | | | |
Collapse
|
28
|
Bányai K, Martella V, Jakab F, Melegh B, Szücs G. Sequencing and phylogenetic analysis of human genotype P[6] rotavirus strains detected in Hungary provides evidence for genetic heterogeneity within the P[6] VP4 gene. J Clin Microbiol 2004; 42:4338-43. [PMID: 15365040 PMCID: PMC516303 DOI: 10.1128/jcm.42.9.4338-4343.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 05/10/2004] [Accepted: 05/27/2004] [Indexed: 11/20/2022] Open
Abstract
Although rotavirus genotype P[6] is one of the three most common VP4 specificities associated with human infection, the relatively few sequence data available in public databases suggest that the genetic variability within P[6] might be presently unexplored. Thus far, two human P[6] lineages (M37-like and AU19-like) and a single porcine P[6] lineage (Gottfried-like) have been identified by phylogenetic analysis. Serologic studies demonstrated that these three lineages are antigenically distinct from each other, a finding based on which they were classified into three subtypes, P2A[6] (M37-like), P2B[6] (Gottfried-like), and P2C[6] (AU19-like). To study heterogeneity within this genotype, we selected for molecular characterization a total of six P[6] strains detected during an ongoing surveillance in Hungary. The variable region of the VP4 gene was subjected to sequencing and phylogenetic analysis. Our data indicated that these six strains fell into two phylogenetic lineages distinguishable from the human lineages M37-like and AU19-like and from the porcine lineage Gottfried-like. Further studies are needed to understand whether these two novel lineages are genuine human strains or might have originated from animal strains and to evaluate the antigenic relationship of the novel Hungarian P[6] strains to the three established subtypes.
Collapse
Affiliation(s)
- Krisztián Bányai
- Regional Laboratory of Virology, Baranya County Institute of State Public Health Service, Szabadság út 7, Pécs, H-7623, Hungary.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Vaccination is the current strategy for control and prevention of severe rotavirus infections, a major cause of acute, dehydrating diarrhoea in young children worldwide. Public health interventions aimed at improving water, food and sanitation are unlikely adequately to control the disease. The development of vaccines against severe rotavirus diarrhoea is based upon homotypic or heterotypic protection provided against either a single common G serotype (monovalent vaccines) or against multiple serotypes (multivalent vaccines). Rotavirus strain surveillance has a high priority in disease control programmes worldwide. The continued identification of the most common G and P serotypes for inclusion in vaccines is an important priority. And subsequent to the introduction of a vaccine candidate, not only monitoring of circulating strains is recommended, but also surveillance of potential reassortment of animal rotavirus genes from the vaccine into human rotavirus strains is critical. Conventional methods used in the characterisation of rotavirus strains, such as enzyme immunoassay serotyping and reverse‐transcription PCR‐based genotyping often fail to identify uncommon and newly appearing strains. The application of newer molecular approaches, including sequencing and oligonucleotide microarray hybridisation, may be required to characterise such strains. The present paper presents a brief overview of the variety of standard methods available, followed by suggestions for a systematic approach for routine rotavirus strain surveillance as well as for characterisation of incompletely typed rotavirus strains. Improved detection and characterisation of incompletely typed strains will help to develop a comprehensive strain surveillance that may be required for tailoring effective rotavirus vaccines. Published in 2004 by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Thea K Fischer
- Centre for International Health, University of Bergen, Norway, Laboratorio National de Saúde Publica, Bissau, Guinea-Bissau and Department of Epidemiology Research, Danish Epidemiology Science Centre, Copenhagen, Denmark.
| | | |
Collapse
|
30
|
Martella V, Ciarlet M, Pratelli A, Arista S, Terio V, Elia G, Cavalli A, Gentile M, Decaro N, Greco G, Cafiero MA, Tempesta M, Buonavoglia C. Molecular analysis of the VP7, VP4, VP6, NSP4, and NSP5/6 genes of a buffalo rotavirus strain: identification of the rare P[3] rhesus rotavirus-like VP4 gene allele. J Clin Microbiol 2004; 41:5665-75. [PMID: 14662959 PMCID: PMC309001 DOI: 10.1128/jcm.41.12.5665-5675.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We report the detection and molecular characterization of a rotavirus strain, 10733, isolated from the feces of a buffalo calf affected with diarrhea in Italy. Strain 10733 was classified as a P[3] rotavirus, as the VP8* trypsin cleavage product of the VP4 protein revealed a high amino acid identity (96.2%) with that of rhesus rotavirus strain RRV (P5B[3]), used as the recipient virus in the human-simian reassortant vaccine. Analysis of the VP7 gene product revealed that strain 10733 possessed G6 serotype specificity, a type common in ruminants, with an amino acid identity to G6 rotavirus strains ranging from 88 to 98%, to Venezuelan bovine strain BRV033, and Hungarian human strain Hun4. Phylogenetic analysis based on the VP7 gene of G6 rotaviruses identified at least four lineages and an apparent linkage between each lineage and the VP4 specificity, suggesting the occurrence of repeated interspecies transmissions and genetic reassortment events between ruminant and human rotaviruses. Moreover, strain 10733 displayed a bovine-like NSP4 and NSP5/6 and a subgroup I VP6 specificity, as well as a long electropherotype pattern. The detection of the rare P[3] genotype in ruminants provides additional evidence for the wide genetic and antigenic diversity of group A rotaviruses.
Collapse
Affiliation(s)
- V Martella
- Department of Animal Health and Wellbeing, Faculty of Veterinary Medicine of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liprandi F, Gerder M, Bastidas Z, López JA, Pujol FH, Ludert JE, Joelsson DB, Ciarlet M. A novel type of VP4 carried by a porcine rotavirus strain. Virology 2003; 315:373-80. [PMID: 14585340 DOI: 10.1016/s0042-6822(03)00534-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The gene encoding the VP8* trypsin-cleavage product of the VP4 protein of porcine rotavirus strain A34 was sequenced, and the predicted amino acid (aa) sequence was compared to the homologous region of all known P genotypes. The aa sequence of the VP8* of strain A34 shared low identity, ranging from 39% (bovine strain B223, P8[11]) to 76% (human strain 69M, P4[10]), with the homologous sequences of representative strains of the remaining 21 P genotypes. Phylogenetic relationships showed that the VP8* of strain A34 shares a common evolutionary lineage with those of human 69M (P4[10]) and equine H-2 (P4[12]) strains. Hyperimmune sera raised to strain A34 and to a genetic reassortant strain containing the VP4 gene from strain A34, both with high homologous neutralization titer via VP4, failed to neutralize strains representative of 15 different P genotypes. These results indicate that strain A34 should be considered as prototype of a new P genotype and serotype (P14[23]) and provide further evidence for the vast genetic and antigenic diversity of group A rotaviruses.
Collapse
Affiliation(s)
- Ferdinando Liprandi
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, 21827 Caracas 1020-A, Venezuela.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Martella V, Ciarlet M, Camarda A, Pratelli A, Tempesta M, Greco G, Cavalli A, Elia G, Decaro N, Terio V, Bozzo G, Camero M, Buonavoglia C. Molecular characterization of the VP4, VP6, VP7, and NSP4 genes of lapine rotaviruses identified in italy: emergence of a novel VP4 genotype. Virology 2003; 314:358-70. [PMID: 14517088 DOI: 10.1016/s0042-6822(03)00418-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genes encoding the glycoprotein VP7, the VP8* trypsin-cleavage product of the protein VP4, a fragment of the protein VP6 associated with subgroup (SG) specificity, and the enterotoxin NSP4 of rotavirus strains identified in diarrheic fecal samples of rabbits in Italy were sequenced. The Italian lapine rotavirus (LRV) strains possessed a G3 VP7, SG I VP6, and KUN-like NSP4, a gene constellation typical of LRVs. One LRV strain (30/96), isolated in 1996, shared the closest amino acid (aa) identity (87-96%) with the P[14] genotype, composed of human and LRV strains. Conversely, three LRV strains (160/01, 229/01, and 308/01), identified in 2001, were highly identical (90-95%) among each other, but showed low aa identity (34-77%) to the VP8* genotype-specific sequences of representative rotavirus strains of all remaining P genotypes. This report confirms the worldwide genetic constellations of LRVs and identifies a novel VP4 genotype in rabbits, tentatively proposed as genotype P[22].
Collapse
Affiliation(s)
- Vito Martella
- Department of Animal Health and Well-being, Faculty of Veterinary Medicine of Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|