1
|
Zwifelhofer NM, Cai X, Liao R, Mao B, Conn DJ, Mehta C, Keles S, Xia Y, Bresnick EH. GATA factor-regulated solute carrier ensemble reveals a nucleoside transporter-dependent differentiation mechanism. PLoS Genet 2020; 16:e1009286. [PMID: 33370779 PMCID: PMC7793295 DOI: 10.1371/journal.pgen.1009286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/08/2021] [Accepted: 11/18/2020] [Indexed: 01/19/2023] Open
Abstract
Developmental-regulatory networks often include large gene families encoding mechanistically-related proteins like G-protein-coupled receptors, zinc finger transcription factors and solute carrier (SLC) transporters. In principle, a common mechanism may confer expression of multiple members integral to a developmental process, or diverse mechanisms may be deployed. Using genetic complementation and enhancer-mutant systems, we analyzed the 456 member SLC family that establishes the small molecule constitution of cells. This analysis identified SLC gene cohorts regulated by GATA1 and/or GATA2 during erythroid differentiation. As >50 SLC genes shared GATA factor regulation, a common mechanism established multiple members of this family. These genes included Slc29a1 encoding an equilibrative nucleoside transporter (Slc29a1/ENT1) that utilizes adenosine as a preferred substrate. Slc29a1 promoted erythroblast survival and differentiation ex vivo. Targeted ablation of murine Slc29a1 in erythroblasts attenuated erythropoiesis and erythrocyte regeneration in response to acute anemia. Our results reveal a GATA factor-regulated SLC ensemble, with a nucleoside transporter component that promotes erythropoiesis and prevents anemia, and establish a mechanistic link between GATA factor and adenosine mechanisms. We propose that integration of the GATA factor-adenosine circuit with other components of the GATA factor-regulated SLC ensemble establishes the small molecule repertoire required for progenitor cells to efficiently generate erythrocytes. GATA transcription factors endow blood stem and progenitor cells with activities to produce progeny that transport oxygen to protect cells and tissues, evade pathogens and control physiological processes. GATA factors regulate hundreds of genes, and the actions of these genes mediate important biological functions. While the genes have been documented, many questions remain regarding how the “network” components mediate biological functions. The networks include members of large gene families, and the relationships between the regulation and function of individual family members is not well understood. Analyzing datasets from genetic complementation and enhancer mutant systems revealed that GATA factors regulate an ensemble of membrane transporters termed solute carrier proteins (SLCs), which dictate the small molecule composition of cells. Genetic analyses with Slc29a1, which transports adenosine, revealed its function to promote erythrocyte development, and Slc29a1 attenuated anemia in a mouse model. This study revealed the importance of SLC transporters in GATA factor networks. We propose that the GATA factor-adenosine circuit integrates with other SLCs to establish/maintain the small molecule constitution of progenitor cells as a new mechanism to control blood cell development.
Collapse
Affiliation(s)
- Nicole M. Zwifelhofer
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Xiaoli Cai
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
| | - Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Bin Mao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Conn
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
- * E-mail: (YX); (EHB)
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (YX); (EHB)
| |
Collapse
|
2
|
Baron L, Gombault A, Fanny M, Villeret B, Savigny F, Guillou N, Panek C, Le Bert M, Lagente V, Rassendren F, Riteau N, Couillin I. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death Dis 2015; 6:e1629. [PMID: 25654762 PMCID: PMC4669808 DOI: 10.1038/cddis.2014.576] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 12/11/2022]
Abstract
The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation.
Collapse
Affiliation(s)
- L Baron
- INEM, CNRS, UMR7355, University of Orleans, France
| | - A Gombault
- INEM, CNRS, UMR7355, University of Orleans, France
| | - M Fanny
- INEM, CNRS, UMR7355, University of Orleans, France
| | - B Villeret
- INEM, CNRS, UMR7355, University of Orleans, France
| | - F Savigny
- INEM, CNRS, UMR7355, University of Orleans, France
| | - N Guillou
- INEM, CNRS, UMR7355, University of Orleans, France
| | - C Panek
- INEM, CNRS, UMR7355, University of Orleans, France
| | - M Le Bert
- INEM, CNRS, UMR7355, University of Orleans, France
| | - V Lagente
- INSERM U991, University of Rennes, France
| | - F Rassendren
- IGF, CNRS, UMR 5203 and INSERM U661, University of Montpellier, France
| | - N Riteau
- INEM, CNRS, UMR7355, University of Orleans, France
| | - I Couillin
- INEM, CNRS, UMR7355, University of Orleans, France
| |
Collapse
|
3
|
Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity. Blood 2015; 125:1643-52. [PMID: 25587035 DOI: 10.1182/blood-2014-08-595751] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD.
Collapse
|
4
|
Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M. PhysiologicalControl ofImmuneResponse andInflammatoryTissueDamage byHypoxia-InducibleFactors andAdenosineA2AReceptors. Annu Rev Immunol 2004; 22:657-82. [PMID: 15032592 DOI: 10.1146/annurev.immunol.22.012703.104731] [Citation(s) in RCA: 556] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune cell-mediated destruction of pathogens may result in excessive collateral damage to normal tissues, and the failure to control activated immune cells may cause immunopathologies. The search for physiological mechanisms that downregulate activated immune cells has revealed a critical role for extracellular adenosine and for immunosuppressive A2A adenosine receptors in protecting tissue from inflammatory damage. Tissue damage-associated deep hypoxia, hypoxia-inducible factors, and hypoxia-induced accumulation of adenosine may represent one of the most fundamental and immediate tissue-protecting mechanisms, with adenosine A2A receptors triggering "OFF" signals in activated immune cells. In these regulatory mechanisms, oxygen deprivation and extracellular adenosine accumulation serve as "reporters," while A2A adenosine receptors serve as "sensors" of excessive tissue damage. The A2A receptor-triggered generation of intracellular cAMP then inhibits activated immune cells in a delayed negative feedback manner to prevent additional tissue damage. Targeting A2A adenosine receptors may have important clinical applications.
Collapse
Affiliation(s)
- Michail V Sitkovsky
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N256, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|