1
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
2
|
Guerillot P, Salamov A, Louet C, Morin E, Frey P, Grigoriev IV, Duplessis S. A Remarkable Expansion of Oligopeptide Transporter Genes in Rust Fungi (Pucciniales) Suggests a Specialization in Nutrient Acquisition for Obligate Biotrophy. PHYTOPATHOLOGY 2023; 113:252-264. [PMID: 36044359 DOI: 10.1094/phyto-04-22-0128-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nutrient acquisition by rust fungi during their biotrophic growth has been assigned to a few transporters expressed in haustorial infection structures. We performed a comparative genomic analysis of all transporter genes (hereafter termed transportome) classified according to the Transporter Classification Database, focusing specifically on rust fungi (order Pucciniales) versus other species in the Dikarya. We also surveyed expression of transporter genes in the poplar rust fungus for which transcriptomics data are available across the whole life cycle. Despite a significant increase in gene number, rust fungi presented a reduced transportome compared with most fungi in the Dikarya. However, a few transporter families in the subclass Porters showed significant expansions. Notably, three metal transport-related families involved in the import, export, and sequestration of metals were expanded in Pucciniales and expressed at various stages of the rust life cycle, suggesting a tight regulation of metal homeostasis. The most remarkable gene expansion in the Pucciniales was observed for the oligopeptide transporter (OPT) family, with 25 genes on average compared with seven to 14 genes in the other surveyed taxonomical ranks. A phylogenetic analysis showed several specific expansion events at the root of the order Pucciniales with subsequent expansions in rust taxonomical families. The OPT genes showed dynamic expression patterns along the rust life cycle and more particularly during infection of the poplar host tree, suggesting a possible specialization for the acquisition of nitrogen and sulfur through the transport of oligopeptides from the host during biotrophic growth.
Collapse
Affiliation(s)
- Pamela Guerillot
- Université de Lorraine, INRAE, UMR 1136 IAM, 54000 Nancy, France
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Clémentine Louet
- Université de Lorraine, INRAE, UMR 1136 IAM, 54000 Nancy, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR 1136 IAM, 54000 Nancy, France
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Pascal Frey
- Université de Lorraine, INRAE, UMR 1136 IAM, 54000 Nancy, France
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, U.S.A
| | | |
Collapse
|
3
|
Wang Y, Zhang X, Luo B, Hu H, Zhong H, Zhang H, Zhang Z, Gao J, Liu D, Wu L, Gao S, Gao D, Gao S. Identification of a new mutant allele of ZmYSL2 that regulates kernel development and nutritional quality in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:7. [PMID: 37309320 PMCID: PMC10248714 DOI: 10.1007/s11032-022-01278-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The discovery and characterization of the opaque endosperm gene provide ideas and resources for the production and application of maize. We found an o213 mutant whose phenotype was opaque and shrunken endosperm with semi-dwarf plant height. The protein, lipid, and starch contents in the o213 endosperm were significantly decreased, while the free amino acid content in the o213 endosperm significantly increased. The aspartic acid, asparagine, and lysine contents were raised in the o213 endosperm by 6.5-, 8.5-, and 1.7-fold, respectively. Genetic analysis showed that this o213 mutant is a recessive single-gene mutation. The position mapping indicated that o213 is located in a 468-kb region that contains 11 protein-encoding genes on the long arm of chromosome 5. The coding sequence analysis of candidate genes between the WT and o213 showed that ZmYSL2 had only a single-base substitution (A-G) in the fifth exon, which caused methionine substitution to valine. Sequence analysis and the allelic test showed that o213 is a new mutant allele of ZmYSL2. The qRT-PCR results indicated that o213 is highly expressed in the stalks and anthers. Subcellular localization studies showed that o213 is a membrane transporter. In the variation analysis of o213, the amplification of 65 inbred lines in GWAS showed that this 3-bp deletion of the first exon of o213 was found only in temperate inbred lines, implying that the gene was artificially affected in the selection process. Our results suggest that o213 is an important endosperm development gene and may serve as a genetic resource. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01278-9.
Collapse
Affiliation(s)
- Yikai Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Bowen Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Hongmei Hu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Haixu Zhong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Zhicheng Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Jiajia Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| |
Collapse
|
4
|
Mapuranga J, Zhang L, Zhang N, Yang W. The haustorium: The root of biotrophic fungal pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:963705. [PMID: 36105706 PMCID: PMC9465030 DOI: 10.3389/fpls.2022.963705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 05/02/2023]
Abstract
Biotrophic plant pathogenic fungi are among the dreadful pathogens that continuously threaten the production of economically important crops. The interaction of biotrophic fungal pathogens with their hosts necessitates the development of unique infection mechanisms and involvement of various virulence-associated components. Biotrophic plant pathogenic fungi have an exceptional lifestyle that supports nutrient acquisition from cells of a living host and are fully dependent on the host for successful completion of their life cycle. The haustorium, a specialized infection structure, is the key organ for biotrophic fungal pathogens. The haustorium is not only essential in the uptake of nutrients without killing the host, but also in the secretion and delivery of effectors into the host cells to manipulate host immune system and defense responses and reprogram the metabolic flow of the host. Although there is a number of unanswered questions in this area yet, results from various studies indicate that the haustorium is the root of biotrophic fungal pathogens. This review provides an overview of current knowledge of the haustorium, its structure, composition, and functions, which includes the most recent haustorial transcriptome studies.
Collapse
|
5
|
Murata Y, Yoshida M, Sakamoto N, Morimoto S, Watanabe T, Namba K. Iron uptake mediated by the plant-derived chelator nicotianamine in the small intestine. J Biol Chem 2020; 296:100195. [PMID: 33334885 PMCID: PMC7948497 DOI: 10.1074/jbc.ra120.015861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 11/06/2022] Open
Abstract
Iron is an essential metal for all living organisms that is absorbed in the intestinal cells as a heme-chelated or free form. It is unclear how important plant-derived chelators, such as nicotianamine (NA), an organic small molecule that is ubiquitous in crops, vegetables, and various other foods, contribute to iron bioavailability in mammals. We performed electrophysiological assays with Xenopus laevis oocytes and radioactive tracer experiments with Caco-2 cells. The findings revealed that the proton-coupled amino acid transporter SLC36A1 (PAT1) transports iron in the form of NA-Fe (II) complex in vitro. Decreased expression of hPAT1 by RNA interference in Caco-2 cells reduced the uptake of NA-59Fe (II) complex. The uptake of inorganic 59Fe (II) was relatively unaffected. These results imply that PAT1 transports iron as a NA-Fe (II) complex. The rate of 59Fe absorption in the spleen, liver, and kidney was higher when mice were orally administered NA-59Fe (II) compared with free 59Fe (II). The profile of site-specific PAT1 expression in the mouse intestine coincided with those of NA and iron contents, which were the highest in the proximal jejunum. Orally administered NA-59Fe (II) complex in mice was detected in the proximal jejunum by thin layer chromatography. In contrast, much less 59Fe (or NA) was detected in the duodenum, where the divalent metal transporter SLC11A2 (DMT1) absorbs free Fe (II). The collective results revealed the role of PAT1 in NA-Fe (II) absorption in the intestine and potential implication of NA in iron uptake in mammals.
Collapse
Affiliation(s)
- Yoshiko Murata
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan.
| | - Masami Yoshida
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Naho Sakamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Shiho Morimoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Takehiro Watanabe
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Kosuke Namba
- Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
Genome-Wide Identification and Comparative Analysis for OPT Family Genes in Panax ginseng and Eleven Flowering Plants. Molecules 2018; 24:molecules24010015. [PMID: 30577553 PMCID: PMC6337337 DOI: 10.3390/molecules24010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Herb genomics and comparative genomics provide a global platform to explore the genetics and biology of herbs at the genome level. Panax ginseng C.A. Meyer is an important medicinal plant for a variety of bioactive chemical compounds of which the biosynthesis may involve transport of a wide range of substrates mediated by oligopeptide transporters (OPT). However, information about the OPT family in the plant kingdom is still limited. Only 17 and 18 OPT genes have been characterized for Oryza sativa and Arabidopsisthaliana, respectively. Additionally, few comprehensive studies incorporating the phylogeny, gene structure, paralogs evolution, expression profiling, and co-expression network between transcription factors and OPT genes have been reported for ginseng and other species. In the present study, we performed those analyses comprehensively with both online tools and standalone tools. As a result, we identified a total of 268 non-redundant OPT genes from 12 flowering plants of which 37 were from ginseng. These OPT genes were clustered into two distinct clades in which clade-specific motif compositions were considerably conservative. The distribution of OPT paralogs was indicative of segmental duplication and subsequent structural variation. Expression patterns based on two sources of RNA-Sequence datasets suggested that some OPT genes were expressed in both an organ-specific and tissue-specific manner and might be involved in the functional development of plants. Further co-expression analysis of OPT genes and transcription factors indicated 141 positive and 11 negative links, which shows potent regulators for OPT genes. Overall, the data obtained from our study contribute to a better understanding of the complexity of the OPT gene family in ginseng and other flowering plants. This genetic resource will help improve the interpretation on mechanisms of metabolism transportation and signal transduction during plant development for Panax ginseng.
Collapse
|
7
|
Pu Y, Yang D, Yin X, Wang Q, Chen Q, Yang Y, Yang Y. Genome-wide analysis indicates diverse physiological roles of the turnip ( Brassica rapa var. rapa) oligopeptide transporters gene family. PLANT DIVERSITY 2018; 40:57-67. [PMID: 30159543 PMCID: PMC6091929 DOI: 10.1016/j.pld.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 05/12/2023]
Abstract
Oligopeptide transporters (OPTs) encode integral membrane-localized proteins and have a broad range of substrate transport capabilities. Here, 28 BrrOPT genes were identified in the turnip. Phylogenetic analyses revealed two well-supported clades in the OPT family, containing 15 BrrOPTs and 13 BrrYSLs. The exon/intron structure of OPT clade are conserved but the yellow stripe-like (YSL) clade was different. The exon/intron of the YSL clade possesses structural differences, whereas the YSL class motifs structure are conserved. The OPT genes are distributed unevenly among the chromosomes of the turnip genome. Phylogenetic and chromosomal distribution analyses revealed that the expansion of the OPT gene family is mainly attributable to segmental duplication. For the expression profiles at different developmental stages, a comprehensive analysis provided insights into the possible functional divergence among members of the paralog OPT gene family. Different expression levels under a variety of ion deficiencies also indicated that the OPT family underwent functional divergence during long-term evolution. Furthermore, BrrOPT8.1, BrrYSL1.2, BrrYSL1.3, BrrYSL6 and BrrYSL9 responded to Fe(II) treatments and BrrYSL7 responded to calcium treatments, BrrYSL6 responded to multiple treatments in root, suggesting that turnip OPTs may be involved in mediating cross-talk among different ion deficiencies. Our data provide important information for further functional dissection of BrrOPTs, especially in transporting metal ions and nutrient deficiency stress adaptation.
Collapse
Affiliation(s)
- Yanan Pu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danni Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuli Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Yunnan University, Kunming 650091, China
| | - Qian Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
8
|
Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proc Natl Acad Sci U S A 2017; 114:E4435-E4441. [PMID: 28507139 DOI: 10.1073/pnas.1702072114] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Utricularia gibba, the humped bladderwort, is a carnivorous plant that retains a tiny nuclear genome despite at least two rounds of whole genome duplication (WGD) since common ancestry with grapevine and other species. We used a third-generation genome assembly with several complete chromosomes to reconstruct the two most recent lineage-specific ancestral genomes that led to the modern U. gibba genome structure. Patterns of subgenome dominance in the most recent WGD, both architectural and transcriptional, are suggestive of allopolyploidization, which may have generated genomic novelty and led to instantaneous speciation. Syntenic duplicates retained in polyploid blocks are enriched for transcription factor functions, whereas gene copies derived from ongoing tandem duplication events are enriched in metabolic functions potentially important for a carnivorous plant. Among these are tandem arrays of cysteine protease genes with trap-specific expression that evolved within a protein family known to be useful in the digestion of animal prey. Further enriched functions among tandem duplicates (also with trap-enhanced expression) include peptide transport (intercellular movement of broken-down prey proteins), ATPase activities (bladder-trap acidification and transmembrane nutrient transport), hydrolase and chitinase activities (breakdown of prey polysaccharides), and cell-wall dynamic components possibly associated with active bladder movements. Whereas independently polyploid Arabidopsis syntenic gene duplicates are similarly enriched for transcriptional regulatory activities, Arabidopsis tandems are distinct from those of U. gibba, while still metabolic and likely reflecting unique adaptations of that species. Taken together, these findings highlight the special importance of tandem duplications in the adaptive landscapes of a carnivorous plant genome.
Collapse
|
9
|
Xiang Q, Shen K, Yu X, Zhao K, Gu Y, Zhang X, Chen X, Chen Q. Analysis of the oligopeptide transporter gene family in Ganoderma lucidum: structure, phylogeny, and expression patterns. Genome 2017; 60:293-302. [DOI: 10.1139/gen-2016-0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oligopeptide transporters (OPTs) are believed to transport broad ranges of substrates across the plasma membrane from the extracellular environment into the cell and are thought to contribute to various biological processes. In the present study, 13 putative OPTs (Gl-OPT1 to Gl-OPT13) were identified through extensive search of Ganoderma lucidum genome database. Phylogenetic analysis with OPTs from other fungi and plants indicates that these genes can be further divided into five groups. Motif compositions of OPT members are highly conserved in each group, indicative of functional conservation. Expression profile analysis of the 13 Gl-OPT genes indicated that, with the exception of Gl-OPT7–Gl-OPT9, for which no transcripts were detected, all paralogues were differentially expressed, suggesting their potential involvement in stress response and functional development of fungi. Overall, the analyses in this study provide a starting point for elucidating the functions of OPT in G. lucidum, and for understanding the complexities of metabolic regulation.
Collapse
Affiliation(s)
- Quanju Xiang
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Keyu Shen
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yunfu Gu
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoping Zhang
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoqiong Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qiang Chen
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
10
|
Clarke VC, Loughlin PC, Gavrin A, Chen C, Brear EM, Day DA, Smith PMC. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol Cell Proteomics 2015; 14:1301-22. [PMID: 25724908 PMCID: PMC4424401 DOI: 10.1074/mcp.m114.043166] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/25/2015] [Indexed: 12/21/2022] Open
Abstract
Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Victoria C Clarke
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Patrick C Loughlin
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Aleksandr Gavrin
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Chi Chen
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Ella M Brear
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - David A Day
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia; §Flinders University, School of Biological Sciences, Adelaide Australia
| | - Penelope M C Smith
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia;
| |
Collapse
|
11
|
Liu T, Zeng J, Xia K, Fan T, Li Y, Wang Y, Xu X, Zhang M. Evolutionary expansion and functional diversification of oligopeptide transporter gene family in rice. RICE (NEW YORK, N.Y.) 2012; 5:12. [PMID: 27234238 PMCID: PMC5520842 DOI: 10.1186/1939-8433-5-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/22/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Oligopeptide transporters (OPTs) play important roles in the mobilization of organic nitrogenous compounds and usually associate with tissues that show signs of rapid protein hydrolysis, such as germinating seeds and senescing leaves. This study is to investigate rice OPT genes. RESULTS A total of sixteen OsOPT genes (Os for Oryza sative L.) were identified in the rice genome, which were then classified into six sections that belong to two subfamilies (the PT and YSL subfamily). The major mechanisms for evolutionary expansion of the sixteen genes during the rice genome evolution include segmental and tandem duplication. Calculation of the duplication event dates indicated that the sixteen genes originated from nine original OsOPT genes, and the duplication events could be classified into three evolutionary stages. The first evolutionary stage occurred approximately 50 million years ago (Mya) and involved the evolution of four new genes. The second evolutionary stage was approximately 20 Mya and was marked by the appearance of two new genes, and the third evolutionary stage was approximately 9 Mya when two new genes evolved. Mining of the expression database and RT-PCR analysis indicated that the expression of most duplicated OsOPT genes showed high tissue specificities. Diverse expression patterns for the sixteen genes were evaluated using both semi-quantitative RT-PCR and the MPSS data. Expression levels of some OsOPT genes were regulated by abiotic and biotic stresses suggesting the potential involvement of these gene products in rice stress adaptation. Five OsOPT gene mutants showed abnormal development and growth, the primary analysis of five OsOPT gene mutants suggested that they may be necessary for rice development. CONCLUSIONS These results suggested that rice-specific OsOPT genes might be potentially useful in improving rice.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
| | - Jiqing Zeng
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
| | - Tian Fan
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
| | - Yaqin Wang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, 510631 People's Republic of China
| | - Xinlan Xu
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
| |
Collapse
|
12
|
Abstract
BACKGROUND Glutathione (GSH) is synthesized in the cytoplasm but there is a requirement for glutathione not only in the cytoplasm, but in the other organelles and the extracellular milieu. GSH is also imported into the cytoplasm. The transports of glutathione across these different membranes in different systems have been biochemically demonstrated. However the molecular identity of the transporters has been established only in a few cases. SCOPE OF REVIEW An attempt has been made to present the current state of knowledge of glutathione transporters from different organisms as well as different organelles. These include the most well characterized transporters, the yeast high-affinity, high-specificity glutathione transporters involved in import into the cytoplasm, and the mammalian MRP proteins involved in low affinity glutathione efflux from the cytoplasm. Other glutathione transporters that have been described either with direct or indirect evidences are also discussed. MAJOR CONCLUSIONS The molecular identity of a few glutathione transporters has been unambiguously established but there is a need to identify the transporters of other systems and organelles. There is a lack of direct evidence establishing transport by suggested transporters in many cases. Studies with the high affinity transporters have led to important structure-function insights. GENERAL SIGNIFICANCE An understanding of glutathione transporters is critical to our understanding of redox homeostasis in living cells. By presenting our current state of understanding and the gaps in our knowledge the review hopes to stimulate research in these fields. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
|
13
|
Komarova NY, Meier S, Meier A, Grotemeyer MS, Rentsch D. Determinants for Arabidopsis peptide transporter targeting to the tonoplast or plasma membrane. Traffic 2012; 13:1090-105. [PMID: 22537078 DOI: 10.1111/j.1600-0854.2012.01370.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/19/2012] [Accepted: 04/26/2012] [Indexed: 12/29/2022]
Abstract
Di- and tripeptide transporters of the PTR/NRT1 (peptide transporter/nitrate transporter1)-family are localized either at the tonoplast (TP) or plasma membrane (PM). As limited information is available on structural determinants required for targeting of plant membrane proteins, we performed gene shuffling and domain swapping experiments of Arabidopsis PTRs. A 7 amino acid fragment of the hydrophilic N-terminal region of PTR2, PTR4 and PTR6 was required for TP localization and sufficient to redirect not only PM-localized PTR1 or PTR5, but also sucrose transporter SUC2 to the TP. Alanine scanning mutagenesis identified L(11) and I(12) of PTR2 to be essential for TP targeting, while only one acidic amino acid at position 5, 6 or 7 was required, revealing a dileucine (LL or LI) motif with at least one upstream acidic residue. Similar dileucine motifs could be identified in other plant TP transporters, indicating a broader role of this targeting motif in plants. Targeting to the PM required the loop between transmembrane domain 6 and 7 of PTR1 or PTR5. Deletion of either PM or TP targeting signals resulted in retention in internal membranes, indicating that PTR trafficking to these destination membranes requires distinct signals and is in both cases not by default.
Collapse
Affiliation(s)
- Nataliya Y Komarova
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Hu YT, Ming F, Chen WW, Yan JY, Xu ZY, Li GX, Xu CY, Yang JL, Zheng SJ. TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter. PLoS One 2012; 7:e38535. [PMID: 22761683 PMCID: PMC3382247 DOI: 10.1371/journal.pone.0038535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/06/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. METHODOLOGY/PRINCIPAL FINDINGS We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens. TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore, heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments demonstrated that TcOPT3 could transport Fe(2+) and Zn(2+). Moreover, expression of TcOPT3 in yeast increased metal (Fe, Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu). CONCLUSIONS Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate. This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the heavy metal hyperaccumulation.
Collapse
Affiliation(s)
- Yi Ting Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hanzhou, China
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Science, Zhejiang University, Hanzhou, China
| | - Feng Ming
- Institute of Plant Biology, School of Life Science, Fudan University, Shanghai, China
| | - Wei Wei Chen
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Science, Zhejiang University, Hanzhou, China
| | - Jing Ying Yan
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Science, Zhejiang University, Hanzhou, China
| | - Zheng Yu Xu
- The Anhui Provincial Lab of Nutrient Cycling, Resources and Environment; Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hanzhou, China
| | - Chun Yan Xu
- State Environmental Protection Administration of Radiation Environmental Monitoring Technology Center, Hanghzou, China
| | - Jian Li Yang
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Science, Zhejiang University, Hanzhou, China
| | - Shao Jian Zheng
- College of Environmental and Resource Sciences, Zhejiang University, Hanzhou, China
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Science, Zhejiang University, Hanzhou, China
| |
Collapse
|
15
|
Genetic and Biochemical Approaches for Studying the Yellow Stripe-Like Transporter Family in Plants. CURRENT TOPICS IN MEMBRANES 2012; 69:295-322. [DOI: 10.1016/b978-0-12-394390-3.00011-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Hartmann T, Cairns TC, Olbermann P, Morschhäuser J, Bignell EM, Krappmann S. Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol 2011; 82:917-35. [DOI: 10.1111/j.1365-2958.2011.07868.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Das S, Sen M, Saha C, Chakraborty D, Das A, Banerjee M, Seal A. Isolation and expression analysis of partial sequences of heavy metal transporters from Brassica juncea by coupling high throughput cloning with a molecular fingerprinting technique. PLANTA 2011; 234:139-156. [PMID: 21394470 DOI: 10.1007/s00425-011-1376-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/03/2011] [Indexed: 05/30/2023]
Abstract
Heavy metal transporters play a key role in regulating metal accumulation and transport in plants. These are important candidate genes to study in metal tolerant and accumulator plants for their potential use in environmental clean up. We coupled a degenerate primer-based RT-PCR approach with a molecular fingerprinting technique based on amplified rDNA restriction analysis (ARDRA) to identify novel ESTs corresponding to heavy metal transporters from metal accumulator Brassica juncea. We utilized this technique to clone several family members of natural resistance-associated macrophage proteins (NRAMP) and yellow stripe-like proteins (YSL) in a high throughput manner to distinguish between closely related isoforms and/or allelic variants from the allopolyploid B. juncea. Partial clones of 23 Brassica juncea NRAMPs and 27 YSLs were obtained with similarity to known Arabidopsis thaliana and Noccaea (Thlaspi) caerulescens NRAMP and YSL genes. The cloned transporters showed Brassica-specific changes in domains, which can have important functional consequences. Semi-quantitative RT-PCR-based expression analysis of chosen members indicated that even closely related isoforms/allelic variants of BjNRAMP and BjYSL have distinct tissue-specific and metal-dependent expressions which might be essential for adaptive fitness and heavy metal tolerance. Consistent to this, BjYSL6.1 and BjYSL5.8 were found to show elevated expressions specifically in cadmium-treated shoots and lead-treated roots of B. juncea, respectively.
Collapse
Affiliation(s)
- Soumita Das
- Department of Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | | | | | | | | | | | | |
Collapse
|
18
|
Gomolplitinant KM, Saier MH. Evolution of the oligopeptide transporter family. J Membr Biol 2011; 240:89-110. [PMID: 21347612 PMCID: PMC3061005 DOI: 10.1007/s00232-011-9347-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/21/2011] [Indexed: 12/31/2022]
Abstract
The oligopeptide transporter (OPT) family of peptide and iron-siderophore transporters includes members from both prokaryotes and eukaryotes but with restricted distribution in the latter domain. Eukaryotic members were found only in fungi and plants with a single slime mold homologue clustering with the fungal proteins. All functionally characterized eukaryotic peptide transporters segregate from the known iron-siderophore transporters on a phylogenetic tree. Prokaryotic members are widespread, deriving from many different phyla. Although they belong only to the iron-siderophore subdivision, genome context analyses suggest that many of them are peptide transporters. OPT family proteins have 16 or occasionally 17 transmembrane-spanning α-helical segments (TMSs). We provide statistical evidence that the 16-TMS topology arose via three sequential duplication events followed by a gene-fusion event for proteins with a seventeenth TMS. The proposed pathway is as follows: 2 TMSs → 4 TMSs → 8 TMSs → 16 TMSs → 17 TMSs. The seventeenth C-terminal TMS, which probably arose just once, is found in just one phylogenetic group of these homologues. Analyses for orthology revealed that a few phylogenetic clusters consist exclusively of orthologues but most have undergone intermixing, suggestive of horizontal transfer. It appears that in this family horizontal gene transfer was frequent among prokaryotes, rare among eukaryotes and largely absent between prokaryotes and eukaryotes as well as between plants and fungi. These observations provide guides for future structural and functional analyses of OPT family members.
Collapse
Affiliation(s)
- Kenny M Gomolplitinant
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
19
|
Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. THE PLANT CELL 2011; 23:534-49. [PMID: 21285328 PMCID: PMC3077786 DOI: 10.1105/tpc.110.081059] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 05/18/2023]
Abstract
The male germline in flowering plants arises through asymmetric division of a haploid microspore. The resulting germ cell undergoes mitotic division and specialization to produce the two sperm cells required for double fertilization. The male germline-specific R2R3 MYB transcription factor DUO1 POLLEN1 (DUO1) plays an essential role in sperm cell specification by activating a germline-specific differentiation program. Here, we show that ectopic expression of DUO1 upregulates a significant number (~63) of germline-specific or enriched genes, including those required for fertilization. We validated 14 previously unknown DUO1 target genes by demonstrating DUO1-dependent promoter activity in the male germline. DUO1 is shown to directly regulate its target promoters through binding to canonical MYB sites, suggesting that the DUO1 target genes validated thus far are likely to be direct targets. This work advances knowledge of the DUO1 regulon that encompasses genes with a range of cellular functions, including transcription, protein fate, signaling, and transport. Thus, the DUO1 regulon has a major role in shaping the germline transcriptome and functions to commit progenitor germ cells to sperm cell differentiation.
Collapse
Affiliation(s)
- Michael Borg
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Lynette Brownfield
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
- Department of Biology and Zurich-Basel Plant Science Centre, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland
| | - Hoda Khatab
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Anna Sidorova
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Melanie Lingaya
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - David Twell
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
20
|
|
21
|
Tegeder M, Rentsch D. Uptake and partitioning of amino acids and peptides. MOLECULAR PLANT 2010; 3:997-1011. [PMID: 21081651 DOI: 10.1093/mp/ssq047] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and selective transport systems for nitrogen uptake and transport within the plant to sustain development, growth, and finally reproduction. This review summarizes current knowledge on membrane proteins involved in transport of amino acids and peptides. A special emphasis was put on their function in planta. We focus on uptake of the organic nitrogen by the root, source-sink partitioning, and import into floral tissues and seeds.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | |
Collapse
|
22
|
The role of transmembrane domain 9 in substrate recognition by the fungal high-affinity glutathione transporters. Biochem J 2010; 429:593-602. [DOI: 10.1042/bj20100240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hgt1p, a high-affinity glutathione transporter from Saccharomyces cerevisiae belongs to the recently described family of OPTs (oligopeptide transporters), the majority of whose members still have unknown substrate specificity. To obtain insights into substrate recognition and translocation, we have subjected all 21 residues of TMD9 (transmembrane domain 9) to alanine-scanning mutagenesis. Phe523 was found to be critical for glutathione recognition, since F523A mutants showed a 4-fold increase in Km without affecting expression or localization. Phe523 and the previously identified polar residue Gln526 were on the same face of the helix suggesting a joint participation in glutathione recognition, whereas two other polar residues, Ser519 and Asn522, of TMD9, although also orientated on the same face, did not appear to be involved. The size and hydrophobicity of Phe523 were both key features of its functionality, as seen from mutational analysis. Sequence alignments revealed that Phe523 and Gln526 were conserved in a cluster of OPT homologues from different fungi. A second cluster contained isoleucine and glutamate residues in place of phenylalanine and glutamine residues, residues that are best tolerated in Hgt1p for glutathione transporter activity, when introduced together. The critical nature of the residues at these positions in TMD9 for substrate recognition was exploited to assign substrate specificities of several putative fungal orthologues present in these and other clusters. The presence of either phenylalanine and glutamine or isoleucine and glutamate residues at these positions correlated with their function as high-affinity glutathione transporters based on genetic assays and the Km of these transporters towards glutathione.
Collapse
|
23
|
Glutathione import in Haemophilus influenzae Rd is primed by the periplasmic heme-binding protein HbpA. Proc Natl Acad Sci U S A 2010; 107:13270-5. [PMID: 20628015 DOI: 10.1073/pnas.1005198107] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glutathione (GSH) is a vital intracellular cysteine-containing tripeptide across all kingdoms of life and assumes a plethora of cellular roles. Such pleiotropic behavior relies on a finely tuned spatiotemporal distribution of glutathione and its conjugates, which is not only controlled by synthesis and breakdown, but also by transport. Here, we show that import of glutathione in the obligate human pathogen Haemophilus influenzae, a glutathione auxotrophe, is mediated by the ATP-binding cassette (ABC)-like dipeptide transporter DppBCDF, which is primed for glutathione transport by a dedicated periplasmic-binding protein (PBP). We have identified the periplasmic lipoprotein HbpA, a protein hitherto implicated in heme acquisition, as the cognate PBP that specifically binds reduced (GSH) and oxidized glutathione (GSSG) forms of glutathione with physiologically relevant affinity, while it exhibits marginal binding to hemin. Dissection of the ligand preferences of HbpA showed that HbpA does not recognize bulky glutathione S conjugates or glutathione derivatives with C-terminal modifications, consistent with the need for selective import of useful forms of glutathione and the concomitant exclusion of potentially toxic glutathione adducts. Structural studies of the highly homologous HbpA from Haemophilus parasuis in complex with GSSG have revealed the structural basis of the proposed novel function for HbpA-like proteins, thus allowing a delineation of highly conserved structure-sequence fingerprints for the entire family of HbpA proteins. Taken together, our studies unmask the main physiological role of HbpA and establish a paradigm for glutathione import in bacteria. Accordingly, we propose a name change for HbpA to glutathione-binding protein A.
Collapse
|
24
|
Kaur J, Srikanth CV, Bachhawat AK. Differential roles played by the native cysteine residues of the yeast glutathione transporter, Hgt1p. FEMS Yeast Res 2009; 9:849-66. [DOI: 10.1111/j.1567-1364.2009.00529.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Kaur J, Bachhawat AK. Gln-222 in transmembrane domain 4 and Gln-526 in transmembrane domain 9 are critical for substrate recognition in the yeast high affinity glutathione transporter, Hgt1p. J Biol Chem 2009; 284:23872-84. [PMID: 19589778 PMCID: PMC2749159 DOI: 10.1074/jbc.m109.029728] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/02/2009] [Indexed: 11/06/2022] Open
Abstract
Hgt1p, a member of the oligopeptide transporter family, is a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. We have explored the role of polar or charged residues in the putative transmembrane domains of Hgt1p to obtain insights into the structural features of Hgt1p that govern its substrate specificity. A total of 22 charged and polar residues in the predicted transmembrane domains and other conserved regions were subjected to alanine mutagenesis. Functional characterization of these 22 mutants identified 11 mutants which exhibited significant loss in functional activity. All 11 mutants except T114A had protein expression levels comparable with wild type, and all except E744A were proficient in trafficking to the cell surface. Kinetic analyses revealed differential contributions toward the functional activity of Hgt1p by these residues and identified Asn-124 in transmembrane domain 1 (TMD1), Gln-222 in TMD4, Gln-526 in TMD9, and Glu-544, Arg-554, and Lys-562 in the intracellular loop region 537-568 containing the highly conserved proline-rich motif to be essential for the transport activity of the protein. Furthermore, mutants Q222A and Q526A exhibited a nearly 4- and 8-fold increase in the K(m) for glutathione. Interestingly, although Gln-222 is widely conserved among other functionally characterized oligopeptide transporter family members including those having a different substrate specificity, Gln-526 is present only in Hgt1p and Pgt1, the only two known high affinity glutathione transporters. These results provide the first insights into the substrate recognition residues of a high affinity glutathione transporter and on residues/helices involved in substrate translocation in the structurally uncharacterized oligopeptide transporter family.
Collapse
Affiliation(s)
- Jaspreet Kaur
- From the Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036, India
| | - Anand K. Bachhawat
- From the Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036, India
| |
Collapse
|
26
|
Kaur J, Bachhawat AK. A modified Western blot protocol for enhanced sensitivity in the detection of a membrane protein. Anal Biochem 2009; 384:348-9. [DOI: 10.1016/j.ab.2008.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/15/2008] [Accepted: 10/07/2008] [Indexed: 11/25/2022]
|
27
|
Thakur A, Kaur J, Bachhawat AK. Pgt1, a glutathione transporter from the fission yeastSchizosaccharomyces pombe. FEMS Yeast Res 2008; 8:916-29. [DOI: 10.1111/j.1567-1364.2008.00423.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Rentsch D, Schmidt S, Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 2007; 581:2281-9. [PMID: 17466985 DOI: 10.1016/j.febslet.2007.04.013] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
Nitrogen is an essential macronutrient for plant growth. Following uptake from the soil or assimilation within the plant, organic nitrogen compounds are transported between organelles, from cell to cell and over long distances in support of plant metabolism and development. These translocation processes require the function of integral membrane transporters. The review summarizes our current understanding of the molecular mechanisms of organic nitrogen transport processes, with a focus on amino acid, ureide and peptide transporters.
Collapse
Affiliation(s)
- Doris Rentsch
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3011 Bern, Switzerland.
| | | | | |
Collapse
|
29
|
Espinoza C, Vega A, Medina C, Schlauch K, Cramer G, Arce-Johnson P. Gene expression associated with compatible viral diseases in grapevine cultivars. Funct Integr Genomics 2006; 7:95-110. [PMID: 16775684 DOI: 10.1007/s10142-006-0031-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 04/11/2006] [Accepted: 04/14/2006] [Indexed: 12/20/2022]
Abstract
Viral diseases affect grapevine cultures without inducing any resistance response. Thus, these plants develop systemic diseases and are chronically infected. Molecular events associated with viral compatible infections responsible for disease establishment and symptoms development are poorly understood. In this study, we surveyed viral infection in grapevines at a transcriptional level. Gene expression in the Vitis vinifera red wine cultivars Carménère and Cabernet-Sauvignon naturally infected with GLRaV-3 were evaluated using a genome-wide expression profiling with the Vitis vinifera GeneChip from Affymetrix. We describe numerous genes that are induced or repressed in viral infected grapevines leaves. Changes in gene expression involved a wide spectrum of biological functions, including processes of translation and protein targeting, metabolism, transport, and cell defense. Considering cellular localization, the membrane and endomembrane systems appeared with the highest number of induced genes, while chloroplastic genes were mostly repressed. As most induced genes associated with the membranous system are involved in transport, the possible effect of virus in this process is discussed. Responses of both cultivars are analyzed and the results are compared with published data from other species. This is the first study of global gene profiling in grapevine in response to viral infections using DNA microarray.
Collapse
Affiliation(s)
- C Espinoza
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Alameda 340, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|