1
|
Woodford MR, Backe SJ, Wengert LA, Dunn DM, Bourboulia D, Mollapour M. Hsp90 chaperone code and the tumor suppressor VHL cooperatively regulate the mitotic checkpoint. Cell Stress Chaperones 2021; 26:965-971. [PMID: 34586601 PMCID: PMC8578495 DOI: 10.1007/s12192-021-01240-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/10/2024] Open
Abstract
Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes that plays a vital role in protecting and maintaining the functional integrity of deregulated signaling proteins in tumors. We have previously reported that the stability and activity of the mitotic checkpoint kinase Mps1 depend on Hsp90. In turn, Mps1-mediated phosphorylation Hsp90 regulates its chaperone function and is essential for the mitotic arrest. Cdc14-assisted dephosphorylation of Hsp90 is vital for the mitotic exit. Post-translational regulation of Hsp90 function is also known as the Hsp90 "Chaperone Code." Here, we demonstrate that only the active Mps1 is ubiquitinated on K86, K827, and K848 by the tumor suppressor von Hippel-Lindau (VHL) containing E3 enzyme, in a prolyl hydroxylation-independent manner and degraded in the proteasome. Furthermore, we show that this process regulates cell exit from the mitotic checkpoint. Collectively, our data demonstrates an interplay between the Hsp90 chaperone and VHL degradation machinery in regulating mitosis.
Collapse
Affiliation(s)
- Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology , SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210 , USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology , SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210 , USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Laura A Wengert
- Department of Urology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology , SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210 , USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology , SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210 , USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology , SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210 , USA.
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| |
Collapse
|
2
|
Woodford MR, Truman AW, Dunn DM, Jensen SM, Cotran R, Bullard R, Abouelleil M, Beebe K, Wolfgeher D, Wierzbicki S, Post DE, Caza T, Tsutsumi S, Panaretou B, Kron SJ, Trepel JB, Landas S, Prodromou C, Shapiro O, Stetler-Stevenson WG, Bourboulia D, Neckers L, Bratslavsky G, Mollapour M. Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors. Cell Rep 2016; 14:872-884. [PMID: 26804907 PMCID: PMC4887101 DOI: 10.1016/j.celrep.2015.12.084] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/24/2015] [Accepted: 12/17/2015] [Indexed: 11/25/2022] Open
Abstract
The molecular chaperone Hsp90 protects deregulated signaling proteins that are vital for tumor growth and survival. Tumors generally display sensitivity and selectivity toward Hsp90 inhibitors; however, the molecular mechanism underlying this phenotype remains undefined. We report that the mitotic checkpoint kinase Mps1 phosphorylates a conserved threonine residue in the amino-domain of Hsp90. This, in turn, regulates chaperone function by reducing Hsp90 ATPase activity while fostering Hsp90 association with kinase clients, including Mps1. Phosphorylation of Hsp90 is also essential for the mitotic checkpoint because it confers Mps1 stability and activity. We identified Cdc14 as the phosphatase that dephosphorylates Hsp90 and disrupts its interaction with Mps1. This causes Mps1 degradation, thus providing a mechanism for its inactivation. Finally, Hsp90 phosphorylation sensitizes cells to its inhibitors, and elevated Mps1 levels confer renal cell carcinoma selectivity to Hsp90 drugs. Mps1 expression level can potentially serve as a predictive indicator of tumor response to Hsp90 inhibitors.
Collapse
Affiliation(s)
- Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Sandra M Jensen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Richard Cotran
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Renee Bullard
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Mourad Abouelleil
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sara Wierzbicki
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Dawn E Post
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Tiffany Caza
- Department of Pathology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Shinji Tsutsumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Barry Panaretou
- Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Steve Landas
- Department of Pathology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | | | - Oleg Shapiro
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - William G Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
3
|
Boerkamp KM, Rutteman GR, Kik MJL, Kirpensteijn J, Schulze C, Grinwis GCM. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability. Cancers (Basel) 2012; 4:1300-17. [PMID: 24213507 PMCID: PMC3712725 DOI: 10.3390/cancers4041300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/16/2012] [Accepted: 11/26/2012] [Indexed: 02/08/2023] Open
Abstract
DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development.
Collapse
Affiliation(s)
- Kim M. Boerkamp
- Department of Clinical Science of Companion Animals, Faculty of Veterinary Medicine, UU, Yalelaan 104, 3584 CM, Utrecht, The Netherlands; E-Mails: (G.R.R.); (J.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel: +31-30-253-5243; Fax: +31-30-251-8126
| | - Gerard R. Rutteman
- Department of Clinical Science of Companion Animals, Faculty of Veterinary Medicine, UU, Yalelaan 104, 3584 CM, Utrecht, The Netherlands; E-Mails: (G.R.R.); (J.K.)
| | - Marja J. L. Kik
- Department of Pathobiology, Faculty of Veterinary Medicine, UU, Yalelaan 1, 3508 TD, Utrecht, The Netherlands; E-Mails: (M.J.L.K.); (C.S.); (G.C.M.G.)
| | - Jolle Kirpensteijn
- Department of Clinical Science of Companion Animals, Faculty of Veterinary Medicine, UU, Yalelaan 104, 3584 CM, Utrecht, The Netherlands; E-Mails: (G.R.R.); (J.K.)
| | - Christoph Schulze
- Department of Pathobiology, Faculty of Veterinary Medicine, UU, Yalelaan 1, 3508 TD, Utrecht, The Netherlands; E-Mails: (M.J.L.K.); (C.S.); (G.C.M.G.)
| | - Guy C. M. Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, UU, Yalelaan 1, 3508 TD, Utrecht, The Netherlands; E-Mails: (M.J.L.K.); (C.S.); (G.C.M.G.)
| |
Collapse
|