1
|
Semashko TA, Fisunov GY, Shevelev GY, Govorun VM. BAC-browser: the tool for synthetic biology. BMC Bioinformatics 2025; 26:27. [PMID: 39849360 PMCID: PMC11758742 DOI: 10.1186/s12859-025-06049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Currently, synthetic genomics is a rapidly developing field. Its main tasks, such as the design of synthetic sequences and the assembly of DNA sequences from synthetic oligonucleotides, require specialized software. In this article, we present a program with a graphical interface that allows non-bioinformatics to perform the tasks needed in synthetic genomics. RESULTS We developed BAC-browser v.2.1. It helps to design nucleotide sequences and features the following tools: generate nucleotide sequence from amino acid sequences using a codon frequency table for a specific organism, as well as visualization of restriction sites, GC composition, GC skew and secondary structure. To assemble DNA sequences, a fragmentation tool was created: regular breakdown into oligonucleotides of a certain length and breakdown into oligonucleotides with thermodynamic alignment. We demonstrate the possibility of DNA fragments assemblies designed in different modes of BAC-browser. CONCLUSIONS The BAC-browser has a large number of tools for working in the field of systemic genomics and is freely available at the link with a direct link https://sysbiomed.ru/upload/BAC-browser-2.1.zip .
Collapse
Affiliation(s)
- Tatiana A Semashko
- Research Institute for Systems Biology and Medicine, Moscow, Russian Federation.
- Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation.
| | - Gleb Y Fisunov
- Research Institute for Systems Biology and Medicine, Moscow, Russian Federation
- Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Georgiy Y Shevelev
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russian Federation
| | - Vadim M Govorun
- Research Institute for Systems Biology and Medicine, Moscow, Russian Federation
| |
Collapse
|
2
|
Ji W, Xu L, Sun X, Xu X, Zhang H, Luo H, Yao B, Zhang W, Su X, Huang H. Exploiting Systematic Engineering of the Expression Cassette as a Powerful Tool to Enhance Heterologous Gene Expression in Trichoderma reesei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5307-5317. [PMID: 38426871 DOI: 10.1021/acs.jafc.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Many endeavors in expressing a heterologous gene in microbial hosts rely on simply placing the gene of interest between a selected pair of promoters and terminator. However, although the expression efficiency could be improved by engineering the host cell, how modifying the expression cassette itself systematically would affect heterologous gene expression remains largely unknown. As the promoter and terminator bear plentiful cis-elements, herein using the Aspergillus niger mannanase with high application value in animal feeds and the eukaryotic filamentous fungus workhorse Trichoderma reesei as a model gene/host, systematic engineering of an expression cassette was investigated to decipher the effect of its mutagenesis on heterologous gene expression. Modifying the promoter, signal peptide, the eukaryotic-specific Kozak sequence, and the 3'-UTR could stepwise improve extracellular mannanase production from 17 U/mL to an ultimate 471 U/mL, representing a 27.7-fold increase in expression. The strategies can be generally applied in improving the production of heterologous proteins in eukaryotic microbial hosts.
Collapse
Affiliation(s)
- Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Li Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Xianhua Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| |
Collapse
|
3
|
Xiao Z, Wang Y, Liu J, Zhang S, Tan X, Zhao Y, Mao J, Jiang N, Zhou J, Shan Y. Systematic Engineering of Saccharomyces cerevisiae Chassis for Efficient Flavonoid-7- O-Disaccharide Biosynthesis. ACS Synth Biol 2023; 12:2740-2749. [PMID: 37566738 DOI: 10.1021/acssynbio.3c00348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Flavonoids are an essential class of secondary metabolites found in plants and possess various nutritional, medicinal, and agricultural properties. However, the poor water solubility of flavonoid aglycones limits their potential applications. To overcome this issue, glycosylation is a promising approach for improving water solubility and bioavailability. In this study, we constructed a flavonoid-7-O-disaccharide biosynthetic pathway with flavonoid aglycones as substrates in Saccharomyces cerevisiae. Subsequently, through metabolic engineering and promoter strategies, we constructed a UDP-rhamnose regeneration system and optimized the UDP-glucose (UDPG) synthetic pathway. The optimized strain produced up to 131.3 mg/L eriocitrin. After this, the chassis cells were applied to other flavonoids, with substrates such as (2S)-naringenin, (2S)-hesperetin, diosmetin, and (2S)-eriodictyol, which resulted in the synthesis of 179.9 mg/L naringin, 276.6 mg/L hesperidin, 249.0 mg/L neohesperidin, 30.4 mg/L diosmin, and 100.7 mg/L neoeriocitrin. To the best of our knowledge, this is the first report on the biosynthesis of flavonoid-7-O-disaccharide.
Collapse
Affiliation(s)
- Zhiqiang Xiao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yongtong Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Juan Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Siqi Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yifei Zhao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Ning Jiang
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| |
Collapse
|
4
|
Xu M, Chang Y, Zhang Y, Wang W, Hong J, Zhao J, Lu X, Tan D. Development and Application of Transcription Terminators for Polyhydroxylkanoates Production in Halophilic Halomonas bluephagenesis TD01. Front Microbiol 2022; 13:941306. [PMID: 35832813 PMCID: PMC9271916 DOI: 10.3389/fmicb.2022.941306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Halomonas bluephagenesis TD01 is one of the ideal chassis for low-cost industrial production based on “Next Generation Industrial Biotechnology,” yet the limited genetically regulatory parts such as transcriptional terminators, which are crucial for tuned regulations on gene expression, have hampered the engineering and applications of the strain. In this study, a series of intrinsic Rho-independent terminators were developed by either genome mining or rational design, and seven of them proved to exhibit higher efficiencies than the canonical strong T7 terminator, among which three terminators displayed high efficiencies over 90%. A preliminary modeling on the sequence-efficiency relationship of the terminators suggested that the poly U sequence regularity, the length and GC content of the stem, and the number and the size of hairpin loops remarkably affected the termination efficiency (TE). The rational and de novo designs of novel synthetic terminators based on the sequence-efficiency relationship and the “main contributor” engineering strategy proved to be effective, and fine-tuned polyhydroxylkanoates production was also achieved by the regulation of these native or synthetic terminators with different efficiencies. Furthermore, a perfectly positive correlation between the promoter activity and the TE was revealed in our study. The study enriches our knowledge of transcriptional termination via its sequence–strength relationship and enables the precise regulation of gene expression and PHA synthesis by intrinsic terminators, contributing to the extensive applications of H. bluephagenesis TD01 in the low-cost production of various chemicals.
Collapse
|
5
|
de Felippes FF, Shand K, Waterhouse PM. Identification of a Transferrable Terminator Element That Inhibits Small RNA Production and Improves Transgene Expression Levels. FRONTIERS IN PLANT SCIENCE 2022; 13:877793. [PMID: 35651775 PMCID: PMC9149433 DOI: 10.3389/fpls.2022.877793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/27/2022] [Indexed: 06/06/2023]
Abstract
The role of terminators is more commonly associated with the polyadenylation and 3' end formation of new transcripts. Recent evidence, however, suggests that this regulatory region can have a dramatic impact on gene expression. Nonetheless, little is known about the molecular mechanisms leading to the improvements associated with terminator usage in plants and the different elements in a plant terminator. Here, we identified an element in the Arabidopsis HSP18.2 terminator (tHSP) to be essential for the high level of expression seen for transgenes under the regulation of this terminator. Our molecular analyses suggest that this newly identified sequence acts to improve transcription termination, leading to fewer read-through events and decreased amounts of small RNAs originating from the transgene. Besides protecting against silencing, the tHSP-derived sequence positively impacts splicing efficiency, helping to promote gene expression. Moreover, we show that this sequence can be used to generate chimeric terminators with enhanced efficiency, resulting in stronger transgene expression and significantly expanding the availability of efficient terminators that can be part of good expression systems. Thus, our data make an important contribution toward a better understanding of plant terminators, with the identification of a new element that has a direct impact on gene expression, and at the same time, creates new possibilities to modulate gene expression via the manipulation of 3' regulatory regions.
Collapse
Affiliation(s)
- Felipe Fenselau de Felippes
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council (ARC) Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kylie Shand
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter M. Waterhouse
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council (ARC) Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
7
|
Zhan T, Chen Q, Zhang C, Bi C, Zhang X. Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in Escherichia coli. ACS Synth Biol 2020; 9:2600-2609. [PMID: 32794740 DOI: 10.1021/acssynbio.0c00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycolate is an important α-hydroxy acid with a wide range of industrial applications. The current industrial production of glycolate mainly depends on chemical synthesis, but biochemical production from renewable resources using engineered microorganisms is increasingly viewed as an attractive alternative. Crude glycerol is an abundant byproduct of biodiesel production and a widely investigated potential sustainable feedstock. Here, we constructed a novel biosynthetic pathway for the production of glycolate from glycerol in Escherichia coli. The pathway starts from the oxidation of glycerol to d-glycerate by alditol oxidase, followed by sequential enzymatic dehydrogenation and decarboxylation as well as reduction reactions. We screened and characterized the catalytic activity of candidate enzymes, and a variant of alditol oxidase from Streptomyces coelicolor A3(2), 2-hydroxyglutarate-pyruvate transhydrogenase from Saccharomyces cerevisiae, α-ketoisovalerate decarboxylase from Lactococcus lactis, and aldehyde dehydrogenase from Escherichia coli were selected and assembled to create an artificial operon for the biosynthetic production of glycolate from glycerol. We also characterized the native strong constitutive promoter Plpp from E. coli and compared it with the PT7 promoter, which was employed to express the artificial operon on the plasmid pSC105-ADKA. To redirect glycerol flux toward glycolate synthesis, we deleted key genes of the native glycerol assimilation pathways and other branches of native E. coli metabolism, and we introduced a second plasmid expressing Dld3 to reduce the accumulation of the intermediate d-glycerate. Finally, the engineered strain TZ-108 harboring pSC105-ADKA and pACYC184-Plpp-Dld3 produced 0.64 g/L glycolate in shake flasks, which was increased to 4.74 g/L in fed-batch fermentation. This study provides an alternative pathway for glycolate synthesis and demonstrates the potential for producing other commodity chemicals by redesigning glycerol metabolism.
Collapse
Affiliation(s)
- Tao Zhan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qian Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chao Zhang
- College of Chemistry and Life Sciences, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
8
|
Xiong X, Chen S. Expanding Toolbox for Genes Expression of Yarrowia lipolytica to Include Novel Inducible, Repressible, and Hybrid Promoters. ACS Synth Biol 2020; 9:2208-2213. [PMID: 32584553 DOI: 10.1021/acssynbio.0c00243] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Promoters are critical tools to precisely control gene expression for both synthetic biology and metabolic engineering. Although Yarrowia lipolytica has demonstrated many industrially relevant advantages, promoter discovery efforts on this non-conventional yeast are limited due to the challenge in finding suitable inducible and repressible promoters. Six copper-inducible promoters and five repressible promoters were isolated in this work. Especially, Cu2+-repressible promoters showed relatively high activity under non-repressing conditions compared with a constitutive promoter, but the strength could be almost fully repressed by a supplement of a low content of Cu2+. The six Cu2+-inducible promoters were engineered to improve their dynamic regulation range with a tandem upstream activation sequence. An engineered promoter was successfully used to construct a more productive pathway for production of a novel bioproduct, wax ester, than that used for both Cu2+-inducible promoter and constitutive promoter. This study provides effective tools applicable to fine-tune the gene expression in this microbial host.
Collapse
Affiliation(s)
- Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
9
|
Hou Y, Chen S, Wang J, Liu G, Wu S, Tao Y. Isolating promoters from Corynebacterium ammoniagenes ATCC 6871 and application in CoA synthesis. BMC Biotechnol 2019; 19:76. [PMID: 31718625 PMCID: PMC6849255 DOI: 10.1186/s12896-019-0568-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Corynebacterium ammoniagenes is an important industrial organism that is widely used to produce nucleotides and the potential for industrial production of coenzyme A by C. ammoniagenes ATCC 6871 has been shown. However, the yield of coenzyme A needs to be improved, and the available constitutive promoters are rather limited in this strain. RESULTS In this study, 20 putative DNA promoters derived from genes with high transcription levels and 6 promoters from molecular chaperone genes were identified. To evaluate the activity of each promoter, red fluorescence protein (RFP) was used as a reporter. We successfully isolated a range of promoters with different activity levels, and among these a fragment derived from the upstream sequence of the 50S ribosomal protein L21 (Prpl21) exhibited the strongest activity among the 26 identified promoters. Furthermore, type III pantothenate kinase from Pseudomonas putida (PpcoaA) was overexpressed in C. ammoniagenes under the control of Prpl21, CoA yield increased approximately 4.4 times. CONCLUSIONS This study provides a paradigm for rational isolation of promoters with different activities and their application in metabolic engineering. These promoters will enrich the available promoter toolkit for C. ammoniagenes and should be valuable in current platforms for metabolic engineering and synthetic biology for the optimization of pathways to extend the product spectrum or improve the productivity in C. ammoniagenes ATCC 6871 for industrial applications.
Collapse
Affiliation(s)
- Yingshuo Hou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Siyu Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jianjun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Guizhen Liu
- Kaiping Genuine Biochemical Pharmaceutical Co. Ltd, Kaiping, People's Republic of China
| | - Sheng Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
10
|
Xu N, Wei L, Liu J. Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microbiol Biotechnol 2019; 35:33. [DOI: 10.1007/s11274-019-2606-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/23/2019] [Indexed: 01/24/2023]
|
11
|
Dong ZQ, Hu ZG, Li HQ, Jiang YM, Cao MY, Chen P, Lu C, Pan MH. Construction and characterization of a synthetic Baculovirus-inducible 39K promoter. J Biol Eng 2018; 12:30. [PMID: 30534200 PMCID: PMC6280533 DOI: 10.1186/s13036-018-0121-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/19/2018] [Indexed: 01/27/2023] Open
Abstract
Background Silkworm genetic engineering is widely used in gene function, silk engineering and disease-resistant engineering in most of Asia. Some of the earliest promoter elements are used to control the development of silkworm transgenic expression and gene therapy. However, the low expression and specificity of natural promoters limit the applications of genetic engineering. To construct a highly efficient synthetic inducible promoter in the Bombyx mori (Lepidoptera), we analyzed the regulatory elements and functional regions of the B. mori nucleopolyhedrovirus 39 K promoter. Results Truncated mutation analysis of the 39 K promoter showed that the transcriptional regulatory region spanning positions - 573 to - 274 and + 1 to + 62 are essential for virus-inducible promoter activity. Further investigations using the electrophoretic mobility shift assay revealed that the baculovirus IE-1 protein binds to the 39 K promoter at the - 310 to - 355 region, and transcription activates the expression of 39 K promoter assay. Finally, we successfully constructed a synthetic inducible promoter that increased the virus-inducing activity of other promoters using the baculovirus-inducible transcriptional activation region that binds to specific core elements of 39 K (i.e., spanning the region - 310 to - 355). Conclusions In summary, we constructed a novel, synthetic, and highly efficient biological tool, namely, a virus-inducible 39 K promoter, which provides endless possibilities for future research on gene function, gene therapy, and pest control in genetic engineering.
Collapse
Affiliation(s)
- Zhan-Qi Dong
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Zhi-Gang Hu
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Hai-Qing Li
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Ya-Ming Jiang
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Ming-Ya Cao
- 3Joint National Laboratory for Antibody Drug Engineering, Institute of Immunology, Henan University School of Medicine, Kaifeng, 475004 China
| | - Peng Chen
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Cheng Lu
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China.,2Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716 China
| | - Min-Hui Pan
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China.,2Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716 China
| |
Collapse
|
12
|
Whole genome engineering by synthesis. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1515-1527. [PMID: 30465231 DOI: 10.1007/s11427-018-9403-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 01/12/2023]
Abstract
Whole genome engineering is now feasible with the aid of genome editing and synthesis tools. Synthesizing a genome from scratch allows modifications of the genomic structure and function to an extent that was hitherto not possible, which will finally lead to new insights into the basic principles of life and enable valuable applications. With several recent genome synthesis projects as examples, the technical details to synthesize a genome and applications of synthetic genome are addressed in this perspective. A series of ongoing or future synthetic genomics projects, including the different genomes to be synthesized in GP-write, synthetic minimal genome, massively recoded genome, chimeric genome and synthetic genome with expanded genetic alphabet, are also discussed here with a special focus on theoretical and technical impediments in the design and synthesis process. Synthetic genomics will become a commonplace to engineer pathways and genomes according to arbitrary sets of design principles with the development of high-efficient, low-cost genome synthesis and assembly technologies.
Collapse
|
13
|
Song L, Zeng AP. Engineering 'cell robots' for parallel and highly sensitive screening of biomolecules under in vivo conditions. Sci Rep 2017; 7:15145. [PMID: 29123248 PMCID: PMC5680304 DOI: 10.1038/s41598-017-15621-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/31/2017] [Indexed: 02/03/2023] Open
Abstract
Cells are capable of rapid replication and performing tasks adaptively and ultra-sensitively and can be considered as cheap "biological-robots". Here we propose to engineer cells for screening biomolecules in parallel and with high sensitivity. Specifically, we place the biomolecule variants (library) on the bacterial phage M13. We then design cells to screen the library based on cell-phage interactions mediated by a specific intracellular signal change caused by the biomolecule of interest. For proof of concept, we used intracellular lysine concentration in E. coli as a signal to successfully screen variants of functional aspartate kinase III (AK-III) under in vivo conditions, a key enzyme in L-lysine biosynthesis which is strictly inhibited by L-lysine. Comparative studies with flow cytometry method failed to distinguish the wild-type from lysine resistance variants of AK-III, confirming a higher sensitivity of the method. It opens up a new and effective way of in vivo high-throughput screening for functional molecules and can be easily implemented at low costs.
Collapse
Affiliation(s)
- Lifu Song
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| |
Collapse
|
14
|
Deaner M, Mejia J, Alper HS. Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:1931-1943. [PMID: 28700213 DOI: 10.1021/acssynbio.7b00163] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Standard approaches for dCas9-based modification of gene expression are limited in the ability to multiplex targets, establish streamlined cassettes, and utilize commonly studied Pol II promoters. In this work, we repurpose the dCas9-VPR activator to act as a dual-mode activator/repressor that can be programmed solely on the basis of target position at gene loci. Furthermore, we implement this approach using a streamlined Pol II-ribozyme system that allows expression of many sgRNAs from a single transcript. By "stepping" dCas9-VPR within the promoter region and ORF we create graded activation and repression (respectively) of target genes, allowing precise control over multiplexed gene modulation. Expression from the Pol II system increased the net amount of sgRNA production in cells by 3.88-fold relative to the Pol III SNR52 promoter, leading to a significant improvement in dCas9-VPR repression strength. Finally, we utilize our Pol II system to create galactose-inducible switching of gene expression states and multiplex constructs capable of modulating up to 4 native genes from a single vector. Our approach represents a significant step toward minimizing DNA required to assemble CRISPR systems in eukaryotes while enhancing the efficacy (greater repression strength), scale (more sgRNAs), and scope (inducibility) of dCas9-mediated gene regulation.
Collapse
Affiliation(s)
- Matthew Deaner
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Julio Mejia
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Hal S. Alper
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
- Institute
for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Tuning the Sensitivity of the PDR5 Promoter-Based Detection of Diclofenac in Yeast Biosensors. SENSORS 2017; 17:s17071506. [PMID: 28672842 PMCID: PMC5539612 DOI: 10.3390/s17071506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023]
Abstract
The commonly used drug diclofenac is an important environmental anthropogenic pollutant. Currently, detection of diclofenac is mainly based on chemical and physical methods. Here we describe a yeast biosensor that drives the diclofenac-dependent expression of a recombinant fluorescent protein from the authentic promoter of the PDR5 gene. This key component of the pleiotropic drug response encodes a multidrug transporter that is involved in cellular detoxification. We analyse the effects on diclofenac sensitivity of artificial PDR5 promoter derivatives in wild-type and various yeast mutant strains. This approach enabled us to generate sensor strains with elevated drug sensitivity.
Collapse
|
16
|
Younger AKD, Dalvie NC, Rottinghaus AG, Leonard JN. Engineering Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription. ACS Synth Biol 2017; 6:311-325. [PMID: 27744683 DOI: 10.1021/acssynbio.6b00184] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Efforts to engineer microbial factories have benefitted from mining biological diversity and high throughput synthesis of novel enzymatic pathways, yet screening and optimizing metabolic pathways remain rate-limiting steps. Metabolite-responsive biosensors may help to address these persistent challenges by enabling the monitoring of metabolite levels in individual cells and metabolite-responsive feedback control. We are currently limited to naturally evolved biosensors, which are insufficient for monitoring many metabolites of interest. Thus, a method for engineering novel biosensors would be powerful, yet we lack a generalizable approach that enables the construction of a wide range of biosensors. As a step toward this goal, we here explore several strategies for converting a metabolite-binding protein into a metabolite-responsive transcriptional regulator. By pairing a modular protein design approach with a library of synthetic promoters and applying robust statistical analyses, we identified strategies for engineering biosensor-regulated bacterial promoters and for achieving design-driven improvements of biosensor performance. We demonstrated the feasibility of this strategy by fusing a programmable DNA binding motif (zinc finger module) with a model ligand binding protein (maltose binding protein), to generate a novel biosensor conferring maltose-regulated gene expression. This systematic investigation provides insights that may guide the development of additional novel biosensors for diverse synthetic biology applications.
Collapse
Affiliation(s)
- Andrew K. D. Younger
- Interdisciplinary
Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil C. Dalvie
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Austin G. Rottinghaus
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Joshua N. Leonard
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Member, Robert
H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Anaerobes in Industrial- and Environmental Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:1-33. [DOI: 10.1007/10_2016_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|