1
|
Preparation and characterization of magnetic PEG-PEI-PLA-PEI-PEG/FeO4-PCL/DNA micelles for gene delivery into MCF-7 cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Shaikh A, Neeli PK, Singuru G, Panangipalli S, Banerjee R, Maddi SR, Thennati R, Bathula SR, Kotamraju S. A functional and self-assembling octyl-phosphonium-tagged esculetin as an effective siRNA delivery agent. Chem Commun (Camb) 2021; 57:12329-12332. [PMID: 34740232 DOI: 10.1039/d1cc03497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we document a self-assembling octyl-TPP tagged esculetin (Mito-Esc) as functionally active and as a novel small molecule siRNA delivery vector. While Mito-Esc itself induces selective breast cancer cell death, the amphiphilic nature of Mito-Esc delivers therapeutic siRNAs intracellularly without the need for any excipient to exacerbate the anti-proliferative effects.
Collapse
Affiliation(s)
- Altab Shaikh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Praveen Kumar Neeli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| | - Gajalakshmi Singuru
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| | - Sravya Panangipalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| | - Rajkumar Banerjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| | - Sridhar Reddy Maddi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| | | | - Surendar Reddy Bathula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Srigiridhar Kotamraju
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
| |
Collapse
|
3
|
Bansal R, Seth B, Tiwari S, Jahan S, Kumari M, Pant AB, Chaturvedi RK, Kumar P, Gupta KC. Hexadecylated linear PEI self-assembled nanostructures as efficient vectors for neuronal gene delivery. Drug Deliv Transl Res 2018; 8:1436-1449. [DOI: 10.1007/s13346-018-0517-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Wang J, Li S, Han Y, Guan J, Chung S, Wang C, Li D. Poly(Ethylene Glycol)-Polylactide Micelles for Cancer Therapy. Front Pharmacol 2018; 9:202. [PMID: 29662450 PMCID: PMC5890116 DOI: 10.3389/fphar.2018.00202] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
For the treatment of malignancy, many therapeutic agents, including small molecules, photosensitizers, immunomodulators, proteins and genes, and so forth, have been loaded into nanocarriers for controllable cancer therapy. Among these nanocarriers, polymeric micelles have been considered as one of the most promising nanocarriers, some of which have already been applied in different stages of clinical trials. The successful advantages of polymeric micelles from bench to bedside are due to their special core/shell structures, which can carry specific drugs in certain disease conditions. Particularly, poly(ethylene glycol)–polylactide (PEG–PLA) micelles have been considered as one of the most promising platforms for drug delivery. The PEG shell effectively prevents the adsorption of proteins and phagocytes, thereby evidently extending the blood circulation period. Meanwhile, the hydrophobic PLA core can effectively encapsulate many therapeutic agents. This review summarizes recent advances in PEG–PLA micelles for the treatment of malignancy. In addition, future perspectives for the development of PEG–PLA micelles as drug delivery systems are also presented.
Collapse
Affiliation(s)
- Jixue Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shengxian Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingjing Guan
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shirley Chung
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Di Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
Sun Q, Kang Z, Xue L, Shang Y, Su Z, Sun H, Ping Q, Mo R, Zhang C. A Collaborative Assembly Strategy for Tumor-Targeted siRNA Delivery. J Am Chem Soc 2015; 137:6000-10. [DOI: 10.1021/jacs.5b01435] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qiong Sun
- State Key
Laboratory of Natural
Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic
Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Zisheng Kang
- State Key
Laboratory of Natural
Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic
Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Lingjing Xue
- State Key
Laboratory of Natural
Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic
Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yunkai Shang
- State Key
Laboratory of Natural
Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic
Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Zhigui Su
- State Key
Laboratory of Natural
Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic
Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Hongbin Sun
- State Key
Laboratory of Natural
Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic
Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Qineng Ping
- State Key
Laboratory of Natural
Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic
Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Ran Mo
- State Key
Laboratory of Natural
Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic
Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Can Zhang
- State Key
Laboratory of Natural
Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic
Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Majzoub RN, Chan CL, Ewert KK, Silva BFB, Liang KS, Safinya CR. Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: A platform for investigating early endosomal events. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1308-18. [PMID: 25753113 DOI: 10.1016/j.bbamem.2015.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/26/2015] [Accepted: 03/01/2015] [Indexed: 11/19/2022]
Abstract
Endosomal entrapment is known to be a major bottleneck to successful cytoplasmic delivery of nucleic acids (NAs) using cationic liposome-NA nanoparticles (NPs). Quantitative measurements of distributions of NPs within early endosomes (EEs) have proven difficult due to the sub-resolution size and short lifetime of wildtype EEs. In this study we used Rab5-GFP, a member of the large family of GTPases which cycles between the plasma membrane and early endosomes, to fluorescently label early endosomes. Using fluorescence microscopy and quantitative image analysis of cells expressing Rab5-GFP, we found that at early time points (t<1h), only a fraction (≈35%) of RGD-tagged NPs (which target cell surface integrins) colocalize with wildtype EEs, independent of the NP's membrane charge density. In comparison, a GTP-hydrolysis deficient mutant, Rab5-Q79L, which extends the size and lifetime of EEs yielding giant early endosomes (GEEs), enabled us to resolve and localize individual NPs found within the GEE lumen. Remarkably, nearly all intracellular NPs are found to be trapped within GEEs implying little or no escape at early time points. The observed small degree of colocalization of NPs and wildtype Rab5 is consistent with recycling of Rab5-GDP to the plasma membrane and not indicative of NP escape from EEs. Taken together, our results show that endosomal escape of PEGylated nanoparticles occurs downstream of EEs i.e., from late endosomes/lysosomes. Our studies also suggest that Rab5-Q79L could be used in a robust imaging assay which allows for direct visualization of NP interactions with the luminal membrane of early endosomes.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Chia-Ling Chan
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Institute of Physics, Academica Sinica, Taipei 11529, Taiwan; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Kai K Ewert
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Bruno F B Silva
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Division of Physical Chemistry, Centre for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Keng S Liang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan; Department of Electrophysics, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Cyrus R Safinya
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
7
|
Abebe DG, Kandil R, Kraus T, Elsayed M, Merkel OM, Fujiwara T. Three-Layered Biodegradable Micelles Prepared by Two-Step Self-Assembly of PLA-PEI-PLA and PLA-PEG-PLA Triblock Copolymers as Efficient Gene Delivery System. Macromol Biosci 2015; 15:698-711. [PMID: 25644720 DOI: 10.1002/mabi.201400488] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/31/2014] [Indexed: 12/17/2022]
Abstract
"Three-layered micelles" (3LM) composed of two triblock copolymers, poly(L-lactide)-b-polyethyleneimine-b-poly(L-lactide) (PLLA-PEI-PLLA) and poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) are designed to combine electrostatic interaction and solvent-induced condensation of DNA. The low molecular weight PLLA-PEI-PLLA is synthesized by a facile amine-protection/deprotection approach and employed as a gene vector, compacting DNA as a polyplex core in the organo-micelles. The individual organo-micelle is further encapsulated within a PLLA-PEG-PLLA amphiphilic micelle leading to an aqueous stable colloidal dispersion. The resulting spherical 3LM possess a hydrodynamic diameter of ca. 200 nm and zeta potential close to neutral and display excellent stability to competing polyanions such as dextran sulfate in neutral pH (7.4). Such high stability is attributed to the complete shielding of the PEI/DNA polyplex core with an impermeable hydrophobic intermediate layer. However, greater than 90% of the encapsulated DNA are released within 30 min when exposed to slightly acidic pH (4.5). Based on our findings, a new class of non-viral delivery system for nucleic acids with superb stability and stealth properties is identified.
Collapse
Affiliation(s)
- Daniel G Abebe
- Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee, 38152, USA
| | - Rima Kandil
- College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue., Detroit, Michigan, 48201, USA
| | - Teresa Kraus
- College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue., Detroit, Michigan, 48201, USA
| | - Maha Elsayed
- College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue., Detroit, Michigan, 48201, USA
| | - Olivia M Merkel
- College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue., Detroit, Michigan, 48201, USA.
| | - Tomoko Fujiwara
- Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee, 38152, USA.
| |
Collapse
|
8
|
Ji R, Cheng J, Yang T, Song C, Li L, Du FS, Li ZC. Shell-Sheddable, pH-Sensitive Supramolecular Nanoparticles Based on Ortho Ester-Modified Cyclodextrin and Adamantyl PEG. Biomacromolecules 2014; 15:3531-9. [DOI: 10.1021/bm500711c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ran Ji
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Cheng
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ting Yang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cheng−Cheng Song
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Majzoub RN, Chan CL, Ewert KK, Silva BFB, Liang KS, Jacovetty EL, Carragher B, Potter CS, Safinya CR. Uptake and transfection efficiency of PEGylated cationic liposome-DNA complexes with and without RGD-tagging. Biomaterials 2014; 35:4996-5005. [PMID: 24661552 PMCID: PMC4032065 DOI: 10.1016/j.biomaterials.2014.03.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/03/2014] [Indexed: 01/01/2023]
Abstract
Steric stabilization of cationic liposome-DNA (CL-DNA) complexes is required for in vivo applications such as gene therapy. PEGylation (PEG: poly(ethylene glycol)) of CL-DNA complexes by addition of PEG2000-lipids yields sterically stabilized nanoparticles but strongly reduces their gene delivery efficacy. PEGylation-induced weakening of the electrostatic binding of CL-DNA nanoparticles to cells (leading to reduced uptake) has been considered as a possible cause, but experimental results have been ambiguous. Using quantitative live-cell imaging in vitro, we have investigated cell attachment and uptake of PEGylated CL-DNA nanoparticles with and without a custom synthesized RGD-peptide grafted to the distal ends of PEG2000-lipids. The RGD-tagged nanoparticles exhibit strongly increased cellular attachment as well as uptake compared to nanoparticles without grafted peptide. Transfection efficiency of RGD-tagged PEGylated CL-DNA NPs increases by about an order of magnitude between NPs with low and high membrane charge density (σM; the average charge per unit area of the membrane; controlled by the molar ratio of cationic to neutral lipid), even though imaging data show that uptake of RGD-tagged particles is only slightly enhanced by high σM. This suggests that endosomal escape and, as a result, transfection efficiency of RGD-tagged NPs is facilitated by high σM. We present a model describing the interactions between PEGylated CL-DNA nanoparticles and the anionic cell membrane which shows how the PEG grafting density and membrane charge density affect adhesion of nanoparticles to the cell surface.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Chia-Ling Chan
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Institute of Physics, Academica Sinica, Taipei 11529, Taiwan; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Kai K Ewert
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Bruno F B Silva
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Division of Physical Chemistry, Centre for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Keng S Liang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan; Department of Electrophysics, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Erica L Jacovetty
- National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Cyrus R Safinya
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
10
|
Hellmund M, Zhou H, Samsonova O, Welker P, Kissel T, Haag R. Functionalized Polyglycerol Amine Nanogels as Nanocarriers for DNA. Macromol Biosci 2014; 14:1215-21. [DOI: 10.1002/mabi.201400144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/22/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Markus Hellmund
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
| | - Haixia Zhou
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
| | - Olga Samsonova
- Pharmaceutics and Biopharmacy, Faculty of Pharmacy; Philipps University of Marburg; Ketzerbach 63 35032 Marburg Germany
| | - Pia Welker
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
| | - Thomas Kissel
- Pharmaceutics and Biopharmacy, Faculty of Pharmacy; Philipps University of Marburg; Ketzerbach 63 35032 Marburg Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
| |
Collapse
|
11
|
Dai Z, Arévalo MT, Li J, Zeng M. Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery. Bioengineered 2013; 5:30-7. [PMID: 24424156 PMCID: PMC4008463 DOI: 10.4161/bioe.27339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo.
Collapse
Affiliation(s)
- Zhi Dai
- Center of Excellence for Infectious Diseases; Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| | - Maria T Arévalo
- Center of Excellence for Infectious Diseases; Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| | - Junwei Li
- Center of Excellence for Infectious Diseases; Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| | - Mingtao Zeng
- Center of Excellence for Infectious Diseases; Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| |
Collapse
|
12
|
Hong BJ, Chipre AJ, Nguyen ST. Acid-degradable polymer-caged lipoplex (PCL) platform for siRNA delivery: facile cellular triggered release of siRNA. J Am Chem Soc 2013; 135:17655-8. [PMID: 24000948 DOI: 10.1021/ja404491r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An acid-degradable polymer-caged lipoplex (PCL) platform consisting of a cationic lipoplex core and a biocompatible, pH-responsive polymer shell has been developed for the effective delivery of small interfering RNA (siRNA) through a combination of facile loading, rapid acid-triggered release, cellular internalization, and effective endosomal escape. In vitro testing of this degradable PCL delivery platform reveals ∼45- and ∼2.5-fold enhancement of enhanced green fluorescent protein knockdown in cancer cells in comparison to either free siRNA or siRNA-loaded non-acid-degradable lipoplex formulations, respectively.
Collapse
Affiliation(s)
- Bong Jin Hong
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | | | |
Collapse
|
13
|
Du X, Li W, Gao X, West MB, Saltzman WM, Cheng CJ, Stewart C, Zheng J, Cheng W, Kopke RD. Regeneration of mammalian cochlear and vestibular hair cells through Hes1/Hes5 modulation with siRNA. Hear Res 2013; 304:91-110. [PMID: 23850665 DOI: 10.1016/j.heares.2013.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/16/2013] [Accepted: 06/27/2013] [Indexed: 12/31/2022]
Abstract
The Notch pathway is a cell signaling pathway determining initial specification and subsequent cell fate in the inner ear. Previous studies have suggested that new hair cells (HCs) can be regenerated in the inner ear by manipulating the Notch pathway. In the present study, delivery of siRNA to Hes1 and Hes5 using a transfection reagent or siRNA to Hes1 encapsulated within poly(lactide-co-glycolide acid) (PLGA) nanoparticles increased HC numbers in non-toxin treated organotypic cultures of cochleae and maculae of postnatal day 3 mouse pups. An increase in HCs was also observed in cultured cochleae and maculae of mouse pups pre-conditioned with a HC toxin (4-hydroxy-2-nonenal or neomycin) and then treated with the various siRNA formulations. Treating cochleae with siRNA to Hes1 associated with a transfection reagent or siRNA to Hes1 delivered by PLGA nanoparticles decreased Hes1 mRNA and up-regulated Atoh1 mRNA expression allowing supporting cells (SCs) to acquire a HC fate. Experiments using cochleae and maculae of p27(kip1)/-GFP transgenic mouse pups demonstrated that newly generated HCs trans-differentiated from SCs. Furthermore, PLGA nanoparticles are non-toxic to inner ear tissue, readily taken up by cells within the tissue of interest, and present a synthetic delivery system that is a safe alternative to viral vectors. These results indicate that when delivered using a suitable vehicle, Hes siRNAs are potential therapeutic molecules that may have the capacity to regenerate new HCs in the inner ear and possibly restore human hearing and balance function.
Collapse
Affiliation(s)
- Xiaoping Du
- Hough Ear Institute, P.O. Box 23206, Oklahoma City, OK 73112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang XX, Lamanna CM, Kohman RE, McIntosh TJ, Han X, Grinstaff MW. Lipid-mediated DNA and siRNA Transfection Efficiency Depends on Peptide Headgroup. SOFT MATTER 2013; 9:10.1039/C3SM27633C. [PMID: 24391676 PMCID: PMC3878819 DOI: 10.1039/c3sm27633c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A series of amphiphiles with differing cationic tri- and di- peptide headgroups, designed and synthesized based on lysine (K), ornithine (O), arginine (R), and glycine (G), have been characterized and evaluated for DNA and siRNA delivery. DNA-lipoplexes formed from the tri- and di- lipopeptides possessed lipid:nucleic acid charge ratios of 7:1 to 10:1, diameters of ~200 nm to 375 nm, zeta potentials of 23 mV to 41 mV, melting temperatures of 12 °C to 46 °C, and lamellar repeat periods of 6 nm to 8 nm. These lipid-DNA complexes formed supramolecular structures in which DNA is entrapped at the surface between multilamellar liposomal vesicles. Compared to their DNA counterparts, siRNA-lipoplexes formed slightly larger complexes (348 nm to 424 nm) and required higher charge ratios to form stable structures. Additionally, it was observed that lipids with multivalent, tripeptide headgroups (i.e., KGG, OGG, and RGG) were successful at transfecting DNA in vitro, whereas DNA transfection with the dipeptide lipids proved ineffective. Cellular uptake of DNA was more effective with the KGG compared to the KG lipopeptide. In siRNA knockdown experiments, both tri- and di- peptide lipids (i.e., RGG, GGG, KG, OG, RG, GG) showed some efficacy, but total cellular uptake of siRNA complexes was not indicative of knockdown outcomes and suggested that the intracellular fate of lipoplexes may be a factor. Overall, this lipopeptide study expands the library of efficient DNA transfection vectors available for use, introduces new vectors for siRNA delivery, and begins to address the structure-activity relationships which influence delivery and transfection efficacy.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Caroline M Lamanna
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| | - Richie E Kohman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| | - Thomas J McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215. ; Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
15
|
Temperature-responsive cationic block copolymers as nanocarriers for gene delivery. Int J Pharm 2013; 448:105-14. [DOI: 10.1016/j.ijpharm.2013.03.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 12/12/2022]
|
16
|
Polymer Complexes in Biological Applications. FROM SINGLE MOLECULES TO NANOSCOPICALLY STRUCTURED MATERIALS 2013. [DOI: 10.1007/12_2013_229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Bonner DK, Zhao X, Buss H, Langer R, Hammond PT. Crosslinked linear polyethylenimine enhances delivery of DNA to the cytoplasm. J Control Release 2012; 167:101-7. [PMID: 22995755 DOI: 10.1016/j.jconrel.2012.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 08/28/2012] [Accepted: 09/04/2012] [Indexed: 02/01/2023]
Abstract
Crosslinked polyethylenimines (PEIs) have been frequently examined over the past decade since they can maintain the transfection efficiency of commercially available, 25k branched PEI, but exhibit less cytotoxicity. The argument is often made that the degradability of such polymers, generally synthesized with either disulfide or hydrolytically degradable crosslinkers, is critical to the high efficiency and low toxicity of the system. In this work, we present a crosslinked linear PEI (xLPEI) system in which either disulfide-responsive or non-degradable linkages are incorporated. As with previous systems, strong transfection efficiency in comparison with commercial standards was achieved with low cytotoxicity. However, these properties were shown to be present when either the degradable or non-degradable crosslinker was used. Uncomplexed polymer was demonstrated to be the critical factor determining transfection efficiency for these polymers, mediating efficient endosomal escape without signs of cell membrane damage. While several crosslinked PEI systems in the literature have demonstrated the effect of the disulfide moiety, this work demonstrates that disulfide-mediated unpackaging may not be as important as conventionally thought for some PEI systems.
Collapse
Affiliation(s)
- Daniel K Bonner
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Rm 66-350, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
18
|
Ornelas-Megiatto C, Wich PR, Fréchet JMJ. Polyphosphonium polymers for siRNA delivery: an efficient and nontoxic alternative to polyammonium carriers. J Am Chem Soc 2012; 134:1902-5. [PMID: 22239619 DOI: 10.1021/ja207366k] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A water-soluble polyphosphonium polymer was synthesized and directly compared with its ammonium analog in terms of siRNA delivery. The triethylphosphonium polymer shows transfection efficiency up to 65% with 100% cell viability, whereas the best result obtained for the ammonium analog reaches only 25% transfection with 85% cell viability. Moreover, the nature of the alkyl substituents on the phosphonium cations is shown to have an important influence on the transfection efficiency and toxicity of the polyplexes. The present results show that the use of positively charged phosphonium groups is a worthy choice to achieve a good balance between toxicity and transfection efficiency in gene delivery systems.
Collapse
|
19
|
Fischer W, Quadir MA, Barnard A, Smith DK, Haag R. Controlled Release of DNA From Photoresponsive Hyperbranched Polyglycerols with Oligoamine Shells. Macromol Biosci 2011; 11:1736-46. [DOI: 10.1002/mabi.201100248] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/15/2011] [Indexed: 01/08/2023]
|